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ABSTRACT

We present an algorithm for dereverberation of speech signals for
automatic speech recognition (ASR) applications. Often ASR sys-
tems are presented with speech that has been recorded in environ-
ments that include noise and reverberation. The performance of
ASR systems degrades with increasing levels of noise and rever-
beration. While many algorithms have been proposed for robust
ASR in noisy environments, reverberation is still a challenging prob-
lem. In this paper, we present 1 an approach for dereverberation
that models reverberation as a convolution operation in the speech
spectral domain. Using a least-squares error criterion we decom-
pose reverberated spectra into clean spectra convolved with a filter.
We incorporate non-negativity and sparsity of the speech spectra as
constraints within a non-negative matrix factorization (NMF) frame-
work to achieve the decomposition. In ASR experiments where the
system is trained with unreverberated and reverberated speech, we
show that the proposed approach can provide upto 40% and 19%
relative reduction respectively in performance.

Index Terms— Dereverberation, Spectral modeling, Spectral
decomposition, NMF, Speech recognition

1. INTRODUCTION

Current state-of-the-art ASR systems work quite well in controlled
environments where the speech recorded is clean. However, the
presence of noise and reverberation effects in real environments can
severely degrade the performance of these systems. While a number
of algorithms have been proposed for robust ASR in noisy environ-
ments [1][2], reverberation remains a challenging problem for ASR.
The objective of the current work is to develop an approach for dere-
verberation that, in addition to improving the quality of the signal,
also improves ASR performance.

Reverberation is an acoustic phenomenon that happens when a
sound wave traveling in an enclosure is repeatedly reflected by the
different surfaces in the enclosure. The multiple reflections cause
the sound to persist even after original sound is switched off, causing
interference with the current sound. Reverberation for an enclosure
is measured in terms of reverberation time (RT), which is the time
taken for the signal power to decay by 60 dB from the instant the
signal source is switched off. Thus, environments with higher RTs
imply greater signal self-interference.

While the human auditory system is surprisingly robust to the
effects of reverberation, ASR systems perform poorly even when

1This research was supported by the National Science Foundation (Grant
IIS-10916918) and the C. Stark Draper Laboratory.

reverberation effects in speech are small. There have been many ap-
proaches to mitigate reverberation effects in speech. Cepstral Mean
Normalization (CMN) was initially proposed for compensating an
unknown linear filtering operation whose impulse response had a
very short duration, shorter than the analysis window of 25 ms for
speech feature. CMN works well to mitigate the channel effects of
microphones etc. but does not work in reverberation, as the typi-
cal RT for a room extends up to 200-500 ms, which is significantly
larger than the typical speech ASR feature analysis window size (25
ms). Consequently, other approaches such as long-term log-spectral
subtraction (LTLSS) [3] have been proposed as a direct extension of
CMN processing. In LTLSS, CMN processing is applied to longer
analysis windows (1-2 s). ASR features are then obtained from
the reconstructed speech. Recently, sparse-NMF [4], likelihood-
maximizing filtering [5] etc. have also been proposed for derever-
beration.

In this paper we present an approach for dereverberation that
works in the Gammatone [6] magnitude spectral domain. In our con-
volutional model in the spectral domain, reverberated speech spec-
tra are assumed to be the resultant of convolution of clean speech
spectra and room response spectra. The framework we present for
estimating these is based on a constrained non-negative matrix fac-
torization that uses a least-squares error criterion to decompose re-
verberated spectra into its convolutive constituents. The constrains
that we use are of non-negativity [7] [8] and sparsity (optional) [4]
of speech spectra.

The rest of the paper is arranged as follows. In Sec. 2 we de-
scribe our model for dereverberation in the Gammatone spectral do-
main. We also distinguish our model from previously presented
work on dereverberation using sparse-NMF [4] and highlight the key
differences. In Sec. 3 we describe our technical approach where we
present a constrained NMF formulation with incorporation of the
various constraints into its solution. In Sec. 5 we present our experi-
mental results and finally in Sec. 6 we present our conclusions.

2. A MODEL FOR DEREVERBERATION IN THE
SPECTRAL DOMAIN

Reverberation is mathematically modeled as a linear system to rep-
resent the delayed and attenuated components of the sound in

s̃[n] = s[n] ∗ h[n] (1)

where, s[n] is a discrete-time speech signal, h[n] is the impulse re-
sponse of a linear system (also called the room impulse response
(RIR)), s̃[n] is the reverberated signal and n is the time index. The
parameters of the filter h[n] change with changes in the environ-
mental parameters such as size of the room, room configuration, po-
sition of objects etc. It is typically assumed that compared to the



rate at which the spectral characteristics of speech change, the rate
of change in room-response spectral characteristics is slow. As a
result, for a short duration (2-3 s) we can assume that h[n] is time-
invariant and thus the entire system in (1) becomes a linear time-
invariant (LTI) system.

The time-domain model in (1) is a useful abstraction that has
been utilized in approaches like [3]. Although useful, its direct ap-
plication (1) in dereverberation for ASR is not consistent with the
domain in which ASR is performed. While the LTI system in (1)
is in time-domain, ASR systems work (on features derived) in the
spectral domain. Our hypothesis is that a more useful model for
reverberation, especially for speech recognition, would be one that
models reverberation directly in the spectral domain. Such a model
would map clean spectra to reverberated spectra. Within the model
framework we can then develop dereverberation algorithms that in-
fer the underlying clean spectra from the observed spectra of the
reverberated signal under some assumptions of the mapping.

Following this hypothesis we use the model proposed in [10]
that represents reverberation in the signal spectral domain as a linear-
filtering operation as follows:

Xs[n, k]✲ Hs[n, k] ✲Ys[n, k]

Fig. 1. Modeling reverberation in spectral feature domain

In Fig. 1, the symbols Xs and Ys denote the spectra of clean
speech and reverberated speech respectively. Hs denotes the spec-
trum of the RIR. n is a frame index and k is a frequency index.

Note that the basic model presented in Fig. 1 has recently been
used in other work such as [4][5][8]. However our model dif-
fers from these approaches in several key aspects. Firstly, while
traditional approaches model reverberation in the Fourier spectral
domain, our model works in the Gammatone spectral domain. Sec-
ondly, approaches such as [4] present solutions that are based on
power spectra, while our model incorporates magnitude spectra.
This has special implications for ASR that work in favor of ASR
performance. These implications are further discussion in Sec. 4.1
and Sec. 4.2. Also, as further discussed in the next section, the
sparsity constraint does not fit well with the Gammatone spectra and
accordingly, while our model can incorporate the sparsity constraint,
we do not explicitly do so. Further details of the model represented
by (1), including its derivation, are given in [10].

3. MATHEMATICAL FORMULATION OF NMF

Our approach for dereverberation using the spectral domain model
presented in Sec. 2 is to try to estimate the spectrum of clean speech
Xs through a decomposition of the reverberated speech spectrum Ys

into its convolutive components Xs and Hs. In this section we for-
mulate a least-squares error criterion to achieve this decomposition.

In general, reverberation compensation algorithms should not
require a priori knowledge of nature of the reverberation. This is the
case for our algorithm also – we do not require any knowledge of
Xs and Hs. Our model of reverberation represents the reverberation
effects as the filter Hs, the Hs filter parameters are not observed
directly. Rather we attempt to infer the filter parameters through
the reverberated spectra Ys. This problem is however highly un-
constrained. According to the model in Fig. 1, there exist infinitely
many decompositions of Ys into Xs and Hs. To constrain the solu-
tion space, it becomes necessary to assume some knowledge about
either Xs or Hs that we can use as constraints. In our work, we

choose two such constraints. One is that the spectral components
are non-negative i.e. all the elements in Xs and Hs are ≥ 0. This
is apparent since the magnitude spectra are inherently non-negative.
The second assumption is an optional one, wherein we assume that
the clean spectra Xs are sparse. Later in this paper we discuss these
constraints in greater detail.

To solve the problem of decomposition we use a non-negative
matrix factorization (NMF) framework. NMF was initially proposed
for data clustering application in [7]. It was further developed and
applied in audio applications in [8], and for speech signal derever-
beration in [4]. We use the NMF paradigm in [4][8] to build our
framework for dereverberation for ASR.

Next we consider the mathematical formulation of NMF. We
first assume that our actual observation sequence is Zs[n, k], which
is approximately Ys[n,k]

Zs[n, k] ≈ Ys[n, k] = Xs[n, k] ∗Hs[n, k] (2)

The difference between Zs and Ys can result from observation noise
or from the error in decomposing Zs into the convolutional com-
ponents Xs and Hs. Using (2), we define our objective to be the
minimization of the mean-squared error between Zs and Ys. This
objective function is minimized by a gradient descent process that
guarantees at least a locally optimal solution. We further impose the
non-negativity and sparsity constraints [4] as defined below:
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Where Xs[n, k] ≥ 0, Hs[n, k] ≥ 0,
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Hs[n, k] = 1

(3)

where we also constrain the Hs[n] to sum to 1 to avoid scaling prob-
lems. Note that sparsity implies that while a small number of spectral
components in Xs are expected to exhibit high values, most other
components have very small (negligible) values. Note also that of
the many ways that exist to include sparsity constraints in an NMF
framework, we choose to use the L1-norm. The first term in the ob-
jective function (3) minimizes the mean-squared error and the sec-
ond term imposes sparsity on Xs. The optimization is solved subject
to the stated non-negativity constraints on Xs and Hs. Correspond-
ing to the L1 norm, we choose p = 1 in (3).

3.1. Minimization of the Objective Function in an NMF Frame-
work

We minimize the objective function in (3) by a variant of the gradient
descent approach that ensures that the spectral components at the end
of each iteration of the gradient descent are non-negative. Noting
that p = 1 in (3), the derivative of the objective function with respect
to Xs[n, k] is

∂E

∂Xs[n, k]
= −2

�

i

�
Zs[i, k]− Ys[i, k]

�
Hs[i− n, k] + λ (4)

with the Xs update equation being X̄s[n, k] = Xs[n, k]−ηs
∂E

∂Xs[n,k] ,
where ηs is the learning-rate parameter. Note that in general there
is no guarantee that the updated X̄s is non-negative. However, we
can select a special value of ηs to impose non-negativity. We choose
ηs = Xs[n,k]

2
�

i Ys[i,k]Hs[i−n,k]+λ
. Incorporating the above value of ηs



in (4), the updates become:

X̄s[n, k] ← Xs[n, k].

�
i
Zs[i, k]Hs[i− n, k]�

i
Ys[i, k]Hs[i− n, k] + λ/2

H̄s[n, k] ← Hs[n, k].

�
i
Zs[i, k]Xs[i− n, k]�

i
Ys[i, k]Xs[i− n, k]

(5)

The updates for Hs can be derived in parallel to the Xs updates in
(5). The iterative update is done for a specified number of itera-
tions. Further, given a non-negative initialization, the updates are
guaranteed to be non-negative. Eq. 5 provides iterative updates for
the output of a particular sub-band indexed by k. Similar processing
will also be applied individually to each of the sub-bands. The NMF
optimization will at least reach a locally optimal solution. While the
estimated Xs may not be identically equal to the actual clean spec-
tra, it is expected that the processing will result in a solution for Xs

that will be largely dereverberated.
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Fig. 2. (a) NMF processing in frequency domain, (b) NMF process-
ing in Gammatone frequency domain.

Fig. 2 presents both, the general procedure for frequency do-
main NMF processing for dereverberation and our specific approach
using Gammatone spectra. In both, the speech signal is first pre-
emphasized (PE) with a causal filter with a single pole at z = 0.97.
It is then windowed and FFT analysis is done on the windowed sig-
nal. In Fig. 2(a) which represents NMF processing in the Fourier
frequency domain, the NMF decomposition is directly applied in-
dividually to each of the FFT channels. In contrast, in Fig. 2(b)
which represents our method, NMF processing is applied to each in-
dividual channel of the Gammatone filtered spectra, and this is fol-
lowed by an inverse transformation. Gammatone sub-bands are ob-
tained from the Fourier frequency sub-bands via the Gammatone ma-
trix Gs[k�, k], that stores Gammatone frequency response for the k�
Gammatone sub-band against each of the k Fourier frequency sub-
bands. NMF processing is applied on the product Ys[n, k].Gs[k, k�].
The NMF processed spectra in the Gammatone domain is multiplied
with pseudo-inverse of Gs to obtain the processed Fourier frequency
components, from which the signal is reconstructed. Since our pro-
cessing is done on individual channels in the Gammatone filtered
magnitude spectral domain, we call our approach Gammatone sub-
band magnitude-domain dereverberation. Finally in both the cases
the signal is optionally reconstructed or feature vectors for speech

recognition may be derived from the resultant dereverberated spec-
tra.

4. KEY FEATURES OF GAMMATONE SUB-BAND NMF

In this section we highlight some key aspects of our proposed ap-
proach as shown in Fig. 2(b).

4.1. Advantage of using Magnitude spectra over Power spectra

The model in (2) is an approximation and will in general incur an
approximation error Es as follows:

Ys[n, k]= Ŷs[n, k]+Es[n, k]=Xs[n, k]∗Hs[n, k]+Es[n, k] (6)

We have empirically observed that the approximation error Es is
lower in the magnitude spectral domain than in the power spec-
tral domain. Experimentally we found that the power of Es is
usually about 13-dB below the power of Ŷs in the power spectral
domain. In contrast, in the magnitude spectral domain, we ob-
served an approximation error attenuation of 17-dB. Thus, working
in the magnitude-spectral domain incurs lower error. In our ap-
proach shown in Fig. 2(b) setting the parameter q = 1 results in
magnitude domain NMF processing, and q = 2 results in power
domain processing. We will refer to magnitude domain processing
as “M-NMF” and power domain processing as “P-NMF”.

4.2. Advantage of using Gammatone Sub-bands

Processing in the Gammatone domain provides two key benefits.
Firstly, the Gammatone sub-bands apply a perceptual weighting to
the signal and emphasize the frequency regions where the speech
signal is supposed to be dominant for better perception. This di-
rectly benefits the quality of the clean signal obtained through the
decomposition. Secondly, working in Gammatone sub-bands offers
significant saving in computation: there are about 257 sub-bands for
a 512 points FFT in Fourier frequency NMF as against only about
40-80 Gammatone sub-bands for the same processing. We also get
a significant practical advantage since we estimate fewer parameters
from the same overall data. We refer to Gammatone based NMF
processing as “GNMF”.

4.3. Using Different Hs for Different Sub-bands

In general, we expect the Hs[n, k] in (2) to be different for each of
the different sub-bands indexed by k. This is expected to result in
a more effective solution for Xs than can be obtained by using the
same Hs for all the sub-bands. We verify this empirically in the
experimental section. To use the same Hs across all sub-bands, the
updates in (5) can be adapted as follows:

H̄s[n, .] ← Hs[n, .].

�
k

�
i
Zs[i, k]Xs[i− n, k]�

k

�
i
Ys[i, k]Xs[i− n, k]

(7)

We refer to NMF with same Hs across all sub-bands as “NMF-H”.

5. EXPERIMENTAL RESULTS

We applied the NMF 2 formulation in Sec. 3 to the problem of dere-
verberation for ASR. In our experiments, we simulated reverbera-
tion effects to various degrees in the the DARPA Resource Manage-
ment (RM) database, dereverberated the signals, and then measured

2NMF software will be available at http://www.cs.cmu.edu/
˜robust/archive/algorithms/NMF_ICASSP2010/.
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Fig. 3. (a) WER comparisons for different flavors of NMF (b) NMF WER comparisons for clean-training (c) NMF WER comparisons for
matched-training.

the recognition accuracy on dereverberated signals using matched
and mismatched recognizers. The ASR system we used for train-
ing and decoding speech was the CMU Sphinx-3 opensource sys-
tem. We used 13-dimensional Mel-frequency cepstra (MFC) as fea-
tures for ASR. For actual recognition, these were augmented with
13-dimensional delta and double-delta cepstra. CMN was done in
all cases. The acoustic models consisted of 3-state Bakis topology
HMMs with a mixture of 8 Gaussians per state, and a total of 1000
tied states. A bigram language model was used in all experiments.

Utterances in the RM database were artificially reverberated
with different RTs [10], as shown in Fig. 3(b). In the first exper-
iment, NMF processing methods as shown in Fig. 2 were applied
to dereverberate the utterances. We used 15-20 iterations of NMF
processing with a window size of 64ms for the NMF processing,
reconstructed the speech and extracted conventional MFC features
for ASR from the reconstructed speech. These use a window size
of 25ms. In Fig. 3(a), we present our experimental results with the
different flavors of the NMF processing in Secs. 4.1, 4.2, and 4.3.
Note that the bar titled “P-NMF” shows ASR results for conven-
tional sparsity constrained power domain NMF [4], while the bar
titled “M-GNMF” shows the performance obtained with our ap-
proach. Experimentally, we found that sparsity was not helpful for
the Gammatone sub-bands and hence not applied. A small sparsity
[4] factor was applied in Fourier frequency domain.

Overall, we note that NMF processing in gammatone bands pro-
vides 20-25% relative reduction in word error rate (WER) over the
same processing in Fourier frequency domain. NMF processing
in magnitude domain provides 10-18% relative improvement over
power domain processing. Further, different Hs for different sub-
bands provide 10-20% relative improvement over same Hs for all
sub-bands. We thus finalize NMF processing in magnitude domain
with Gammatone sub-bands and different Hs for different sub-bands
as our baseline NMF processing and now ownards refer to the exper-
iment “M-GNMF” as “NMF”.

In Fig. 3(b), we plot word error rate percent (WER%) results
for the case where the system is trained with clean (unreverberated
speech) and tested on dereverberated speech. We see that here the
relative reduction in WER is limited to 15-20% for the baseline dere-
verberation algorithms. The NMF processing provides 45% relative
reduction WER at RT-300 ms which is substantially better than any
of the baseline algorithms.

In Fig. 3(c), we plot WER results for the case when the ASR sys-
tem is trained on the same kind of speech as it is tested on (matched-
condition training). We note from these experiments that algorithm

is able to improve over matched-condition testing, and to substan-
tially improve over clean-condition testing. Note that it is usually
very difficult to improve over matched-condition testing in ASR. It
is usually used as a gold-standard in many instances. Matched-NMF
provides an additional 19% relative reduction in WER over simple
matched training and testing with MFCs from reverberated speech.

6. CONCLUSION

We have presented an NMF-based approach for dereverberation of
speech signals in the Gammatone sub-band domain. This has spe-
cific advantages for ASR that we have experimentally shown to be
valid. The algorithm presented is able to improve WER performance
by about 15% relative to matched-condition training, which has been
generally observed to be a performance threshold that is hard to ex-
ceed. The algorithm results in 30-40% WER reduction under mis-
matched conditions, where the system is trained on clean speech but
attempts to recognize reverberated speech, or dereverberated speech
as the case may be.
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