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Power-Normalized Cepstral Coefficients (PNCC)
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Abstract—This paper presents a new feature extraction algo-
rithm called power normalized Cepstral coefficients (PNCC) that
is motivated by auditory processing. Major new features of
PNCC processing include the use of a power-law nonlinearity
that replaces the traditional log nonlinearity used in MFCC
coefficients, a noise-suppression algorithm based on asymmetric
filtering that suppresses background excitation, and a module
that accomplishes temporal masking. We also propose the use
of medium-time power analysis in which environmental param-
eters are estimated over a longer duration than is commonly
used for speech, as well as frequency smoothing. Experimental
results demonstrate that PNCC processing provides substantial
improvements in recognition accuracy compared to MFCC and
PLP processing for speech in the presence of various types of
additive noise and in reverberant environments, with only slightly
greater computational cost than conventional MFCC processing,
and without degrading the recognition accuracy that is observed
while training and testing using clean speech. PNCC processing
also provides better recognition accuracy in noisy environments
than techniques such as vector Taylor series (VTS) and the ETSI
advanced front end (AFE) while requiring much less compu-
tation. We describe an implementation of PNCC using “online
processing” that does not require future knowledge of the input.

Index Terms—Robust speech recognition, feature extraction,
physiological modeling, rate-level curve, power function, asym-
metric filtering, medium-time power estimation, spectral weight
smoothing, temporal masking, modulation filtering, on-line speech
processing.

I. INTRODUCTION

I N recent decades following the introduction of hidden
Markov models (e.g. [1]) and statistical language mod-

els (e.g.[2]), the performance of speech recognition systems
in benign acoustical environments has dramatically improved.
Nevertheless, most speech recognition systems remain sensitive
to the nature of the acoustical environments within which they
are deployed, and their performance deteriorates sharply in the
presence of sources of degradation such as additive noise, linear
channel distortion, and reverberation.
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One of the most challenging contemporary problems is that
recognition accuracy degrades significantly if the test environ-
ment is different from the training environment and/or if the
acoustical environment includes disturbances such as additive
noise, channel distortion, speaker differences, reverberation,
and so on. Over the years dozens if not hundreds of algo-
rithms have been introduced to address these problems. Many
of these conventional noise compensation algorithms have pro-
vided substantial improvement in accuracy for recognizing
speech in the presence of quasi-stationary noise (e.g. [3]–[10]).
Unfortunately these same algorithms frequently do not provide
significant improvements in more difficult environments with
transitory disturbances such as a single interfering speaker or
background music (e.g. [11]).

Many of the current systems developed for automatic speech
recognition, speaker identification, and related tasks are based
on variants of one of two types of features: mel frequency
cepstral coefficients (MFCC) [12] or perceptual linear predic-
tion (PLP) coefficients [13]. Spectro-temporal features have
also been recently introduced with promising results (e.g. [14]–
[16]). It has been observed that two-dimensional Gabor filters
provide a reasonable approximation to the spectro-temporal
response fields of neurons in the auditory cortex, which has lead
to various approaches to extract features for speech recognition
(e.g. [17]–[20]).

In this paper we describe the development of an addi-
tional feature set for speech recognition which we refer to as
power-normalized cepstral coefficients (PNCC). While previ-
ous implementations of PNCC processing [21], [22] appeared
to be promising, they could not be easily implemented for
online applications without look-ahead over an entire sentence.
In addition, previous implementations of PNCC did not con-
sider the effects of temporal masking. The implementation of
PNCC processing in the present paper has been significantly
revised to address these issues in a fashion that enables it to
provide superior recognition accuracy over a broad range of
conditions of noise and reverberation using features that are
computable in real time using “online” algorithms that do not
require extensive look-ahead, and with a computational com-
plexity that is comparable to that of traditional MFCC and PLP
features.

Previous versions of PNCC processing [21], [22] have been
evaluated by various teams of researchers and compared to
several different algorithms including zero crossing peak ampli-
tude (ZCPA) [23], RASTA-PLP [24], perceptual minimum
variance distortionless response (PMVDR) [25], invariant-
integration features (IIF) [26], and subband spectral centroid
histograms (SSCH) [27]. Results from initial comparisons
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(e.g. [28]–[32]), tend to show that PNCC processing provides
better speech recognition accuracy than the other algorithms
cited above. The improvements provided by PNCC are typi-
cally greatest when the speech recognition system is trained
on clean speech and noise and/or reverberation is present in
the testing environment. For systems that are trained and tested
using large databases of speech with a mixture of environmental
conditions, PNCC processing also tends to outperform MFCC
and PLP processing, but the differences are smaller. Portions
of PNCC processing have also been incorporated into other
feature extraction algorithms (e.g [33], [34]).

In the subsequent subsections of this Introduction we dis-
cuss the broader motivations and overall structure of PNCC
processing. We specify the key elements of the processing in
some detail in Sec. II. In Sec. III we compare the recognition
accuracy provided by PNCC processing under a variety of con-
ditions with that of other processing schemes, and we consider
the impact of various components of PNCC on these results.
We compare the computational complexity of the MFCC, PLP,
and PNCC feature extraction algorithms in Sec. IV, and we
summarize our results in the final section.

A. Broader Motivation for the PNCC Algorithm

The development of PNCC feature extraction was motivated
by a desire to obtain a set of practical features for speech recog-
nition that are more robust with respect to acoustical variability
in their native form, without loss of performance when the
speech signal is undistorted, and with a degree of computational
complexity that is comparable to that of MFCC and PLP coef-
ficients. While many of the attributes of PNCC processing have
been strongly influenced by consideration of various attributes
of human auditory processing (cf. [35], [36]), we have favored
approaches that provide pragmatic gains in robustness at small
computational cost over approaches that are more faithful to
auditory physiology in developing the specific processing that
is performed.

Some of the innovations of the PNCC processing that we
consider to be the most important include:

• The use of “medium-time” processing with a duration
of 50–120 ms to analyze the parameters characteriz-
ing environmental degradation, in combination with the
traditional short-time Fourier analysis with frames of 20–
30 ms used in conventional speech recognition systems.
We believe that this approach enables us to estimate envi-
ronmental degradation more accurately while maintaining
the ability to respond to rapidly-changing speech signals,
as discussed in Sec. II-B.

• The use of a form of “asymmetric nonlinear filtering”
to estimate the level of the acoustical background noise
for each time frame and frequency bin. We believe that
this approach enables us to remove slowly-varying com-
ponents easily without incurring many of the artifacts
associated with over-correction in techniques such as
spectral subtraction [37], as discussed in Sec. II-C.

• The development of a signal processing block that real-
izes temporal masking with a similar mechanism, as
discussed in Sec. II-D.

• The replacement of the log nonlinearity in MFCC pro-
cessing by a power-law nonlinearity that is carefully
chosen to approximate the nonlinear relation between sig-
nal intensity and auditory-nerve firing rate, which phys-
iologists consider to be a measure of short-time signal
intensity at a given frequency. We believe that this nonlin-
earity provides superior robustness by suppressing small
signals and their variability, as discussed in Sec. II-G.

• The development of computationally-efficient realiza-
tions of the algorithms above that support “online” real-
time processing that does not require substantial non-
causal look-ahead of the input signal to compute the
PNCC coefficients. An analysis of computational com-
plexity is provided in Sec. IV.

B. Structure of the PNCC algorithm

Figure 1 compares the structure of conventional MFCC pro-
cessing [12], PLP processing [13], [24], and the new PNCC
approach which we introduce in this paper. As was noted
above, the major innovations of PNCC processing include
the redesigned nonlinear rate-intensity function, along with
the series of processing elements to suppress the effects of
background acoustical activity based on medium-time analysis.

As can be seen from Fig. 1, the initial processing stages
of PNCC processing are quite similar to the corresponding
stages of MFCC and PLP analysis, except that the frequency
analysis is performed using gammatone filters [38]. This is fol-
lowed by the series of nonlinear time-varying operations that
are performed using the longer-duration temporal analysis that
accomplish noise subtraction as well as a degree of robustness
with respect to reverberation. The final stages of processing are
also similar to MFCC and PLP processing, with the exception
of the carefully-chosen power-law nonlinearity with exponent
1/15, which will be discussed in Sec. II-G below. Finally, we
note that if the shaded blocks in Fig. 1 are omitted, the pro-
cessing that remains is referred to as simple power-normalized
cepstral coefficients (SPNCC). SPNCC processing has been
employed in other studies on robust recognition (e.g. [34]).

II. COMPONENTS OF PNCC PROCESSING

In this section we describe and discuss the major compo-
nents of PNCC processing in greater detail. While the detailed
description below assumes a sampling rate of 16 kHz, the
PNCC features are easily modified to accommodate other
sampling frequencies.

A. Initial Processing

As in the case of MFCC features, a pre-emphasis filter of
the form H(z) = 1− 0.97z−1 is applied. A short-time Fourier
transform (STFT) is performed using Hamming windows of
duration 25.6 ms, with 10 ms between frames, using a DFT
size of 1024. Spectral power in 40 analysis bands is obtained
by weighting the magnitude-squared STFT outputs for pos-
itive frequencies by the frequency response associated with
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Fig. 1. Comparison of the structure of the MFCC, PLP, and PNCC feature extraction algorithms. The modules of PNCC that function on the basis of “medium-
time” analysis (with a temporal window of 65.6 ms) are plotted in the rightmost column. If the shaded blocks of PNCC are omitted, the remaining processing is
referred to as simple power-normalized cepstral coefficients (SPNCC).

a 40-channel gammatone-shaped filter bank [38] whose cen-
ter frequencies are linearly spaced in Equivalent Rectangular
Bandwidth (ERB) [39] between 200 Hz and 8000 Hz, using
the implementation of gammatone filters in Slaney’s Auditory
Toolbox [40]. In previous work [21] we observed that the use of
gammatone frequency weighting provides slightly better ASR
accuracy in white noise, but the differences compared to the
traditional triangular weights in MFCC processing are small.
The frequency response of the gammatone filterbank is shown
in Fig. 2. In each channel the area under the squared transfer
function is normalized to unity to satisfy the equation:

(K/2)−1∑
k=0

|Hl(e
jωk)|2 = 1 (1)

where Hl(e
jωk) is the response of the lth gammatone chan-

nel at frequency ωk, and ωk is the dimensionless discrete-time

frequency 2πk/K where K is the DFT size. The correspond-
ing continuous-time frequencies are νk = kFs/K, where νk is
in Hz and Fs is the sampling frequency for 0 ≤ k ≤ K/2. To
reduce the amount of computation, we modified the gamma-
tone filter responses slightly by setting Hl(e

jωk) equal to zero
for all values of ωk for which the unmodified Hl(e

jωk) would
be less than 0.5 percent of its maximum value (corresponding
to −46 dB).

We obtain the short-time spectral power P [m, l] using the
squared gammatone summation as below:

P [m, l] =

(K/2)−1∑
k=0

|X[m, ejωk ]Hl(e
jωk)|2 (2)

where m and l represent the frame and channel indices,
respectively.
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Fig. 2. The frequency response of a gammatone filterbank with each area of the
squared frequency response normalized to be unity. Characteristic frequencies
are uniformly spaced between 200 and 8000 Hz according to the Equivalent
Rectangular Bandwidth (ERB) scale [39].

B. Temporal Integration for Environmental Analysis

Most speech recognition and speech coding systems use
analysis frames of duration between 20 ms and 30 ms. It is fre-
quently observed that longer analysis windows provide better
performance for noise modeling and/or environmental normal-
ization (e.g. [22], [24], [41], [42]), because the power associated
with most background noise conditions changes more slowly
than the instantaneous power associated with speech. In addi-
tion, Hermansky and others have observed that the character-
ization and exploitation of information about the longer-term
envelopes of each gammatone channel can provide complemen-
tary information that is useful for improving speech recognition
accuracy, as in the TRAPS and FDLP algorithms (e.g. [43]–
[45]), and it is becoming common to combine features over
a longer time span to improve recognition accuracy, even in
baseline conditions (e.g. [46]).

In PNCC processing we estimate a quantity that we refer to as
“medium-time power” Q̃[m, l] by computing the running aver-
age of P [m, l], the power observed in a single analysis frame,
according to the equation:

Q̃[m, l] =
1

2M + 1

m+M∑
m′=m−M

P [m′, l] (3)

where m represents the frame index and l is the channel index.
We will apply the tilde symbol to all power estimates that are
performed using medium-time analysis.

We observed experimentally that the choice of the temporal
integration factor M has a substantial impact on performance
in white noise (and presumably other types of broadband back-
ground noise). This factor has less impact on the accuracy
that is observed in more dynamic interference or reverberation,
although the longer temporal analysis window does provide
some benefit in these environments as well [47]. We chose
the value of M = 2 (corresponding to five consecutive win-
dows with a total net duration of 65.6 ms) on the basis of
these observations, as described in [47]. Since Q̃[m, l] is the
moving average of P [m, l], Q̃[m, l] is a low-pass function of
m. If M = 2, the upper frequency is approximately 15 Hz.
Nevertheless, if we were to use features based on Q̃[m, l]
directly for speech recognition, recognition accuracy would be

degraded because onsets and offsets of the frequency compo-
nents would become blurred. Hence in PNCC, we use Q̃[m, l]
only for noise estimation and compensation, which are used to
modify the information based on the short-time power estimates
P [m, l]. We also apply smoothing over the various frequency
channels, which will be discussed in Sec. II-E below.

C. Asymmetric Noise Suppression

In this section, we discuss a new approach to noise com-
pensation which we refer to as asymmetric noise suppression
(ANS). This procedure is motivated by the observation men-
tioned above that the speech power in each channel usually
changes more rapidly than the background noise power in the
same channel. Alternately we might say that speech usually has
a higher-frequency modulation spectrum than noise. Motivated
by this observation, many algorithms, including the widely-
used RASTA-PLP processing, have been developed using either
high-pass filtering or band-pass filtering in the modulation spec-
trum domain either explicitly or implicitly (e.g. [24], [48], [49],
[50]). The simplest way to accomplish this objective is to per-
form high-pass filtering in each channel (e.g. [51], [52]) which
has the effect of removing slowly-varying components which
typically represent the effects of additive noise sources rather
than the speech signal.

One significant problem with the application of conventional
linear high-pass filtering in the power domain is that the fil-
ter output can become negative. Negative values for the power
coefficients are problematic in the formal mathematical sense
(in that power itself is positive). They also cause problems in
the application of the compressive nonlinearity and in speech
resynthesis unless a suitable floor value is applied to the power
coefficients (e.g. [49], [52]). Rather than filtering in the power
domain, we could perform filtering after applying the logarith-
mic nonlinearity, as is done with conventional cepstral mean
normalization in MFCC processing. Nevertheless, as will be
seen in Sec. III, this approach is not very helpful for environ-
ments with additive noise. Spectral subtraction is another way
to reduce the effects of noise, whose power changes slowly. In
spectral subtraction techniques, the noise level is typically esti-
mated from the power of non-speech segments (e.g. [37]) or
through the use of a continuous-update approach (e.g. [51]). In
the approach that we introduce, we obtain a running estimate
of the time-varying noise floor using an asymmetric nonlinear
filter, and subtract that from the instantaneous power.

Figure 3 is a block diagram of the complete asymmetric non-
linear suppression processing with temporal masking. Let us
begin by describing the general characteristics of the asymmet-
ric nonlinear filter that is the first stage of processing. This filter
is represented by the following equation for arbitrary input and
output Q̃in[m, l] and Q̃out[m, l], respectively:

Q̃out[m, l] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λaQ̃out[m− 1, l] + (1− λa)Q̃in[m, l],

if Q̃in[m, l] ≥ Q̃out[m− 1, l]

λbQ̃out[m− 1, l] + (1− λb)Q̃in[m, l],

if Q̃in[m, l] < Q̃out[m− 1, l]

(4)
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Fig. 3. Functional block diagram of the modules for asymmetric noise sup-
pression (ANS) and temporal masking in PNCC processing. All processing
is performed on a channel-by-channel basis. Q̃[m, l] is the medium-time-
averaged input power as defined by Eq. (3), R̃[m, l] is the speech output of
the ANS module, and Q̃tm[m, l] is the output after temporal masking (which
is applied only to the speech frames). The block labelled Temporal Masking is
depicted in detail in Fig. 5.

where m is the frame index and l is the channel index, and λa

and λb are constants between zero and one.
If λa = λb it is easy to verify that Eq. (4) reduces to a conven-

tional first-order IIR filter (with a pole at z = λ in the z-plane)
that is lowpass in nature because the values of the λ parame-
ters are positive, as shown in Fig. 4(a). In contrast, If 1 > λb >
λa > 0, the nonlinear filter functions as a conventional “upper”
envelope detector, as illustrated in Fig. 4(b). Finally, and most
usefully for our purposes, if 1 > λa > λb > 0, the filter output
Q̃out tends to follow the lower envelope of Q̃in[m, l], as seen
in Fig. 4(c). In our processing, we will use this slowly-varying
lower envelope in Fig. 4(c) to serve as a model for the estimated
medium-time noise level, and the activity above this enve-
lope is assumed to represent speech activity. Hence, subtracting
this low-level envelope from the original input Q̃in[m, l] will
remove a slowly varying non-speech component.

We will use the notation

Q̃out[m, l] = AFλa,λb
[Q̃in[m, l]] (5)

Fig. 4. Sample inputs (solid curves) and outputs (dashed curves) of the asym-
metric nonlinear filter defined by Eq. (4) for conditions when (a) λa = λb

(b) λa < λb, and (c) λa > λb. In this example, the channel index l is 8.

to represent the nonlinear filter described by Eq. (4). We note
that this filter operates only on the frame indices m for each
channel index l.

Keeping the characteristics of the asymmetric filter described
above in mind, we may now consider the structure shown
in Fig. 3. In the first stage, the lower envelope Q̃le[m, l],
which represents the average noise power, is obtained by ANS
processing according to the equation

Q̃le[m, l] = AF0.999,0.5[Q̃[m, l]] (6)

as depicted in Fig. 4(c). Q̃le[0, l] is initialized to 0.9 Q̃[m, l].
Q̃le[m, l] is subtracted from the input Q̃[m, l], effectively high-
pass filtering the input, and that signal is passed through an
ideal half-wave linear rectifier to produce the rectified output
Q̃0[m, l]. The impact of the specific values of the forgetting
factors λa and λb on speech recognition accuracy is discussed
in [47].

The remaining elements of ANS processing in the right-hand
side of Fig. 3 (other than the temporal masking block) are
included to cope with problems that develop when the rectifier
output Q̃0[m, l] remains zero for an interval, or when the local
variance of Q̃0[m, l] becomes excessively small. Our approach
to this problem is motivated by our previous work [22] in which
it was noted that applying a well-motivated flooring level to
power is very important for noise robustness. In PNCC process-
ing we apply the asymmetric nonlinear filter for a second time
to obtain the lower envelope of the rectifier output Q̃f [m, l],
and we use this envelope to establish this floor level. This
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envelope Q̃f [m, l] is obtained using asymmetric filtering as
before:

Q̃f [m, l] = AF0.999,0.5[Q̃0[m, l]] (7)

Q̃f [0, l] is initialized as Q̃0[m, l]. As shown in Fig. 3, we use
the lower envelope of the rectified signal Q̃f [m, l] as a floor
level for Q̃1[m, l] after temporal masking:

Q̃1[m, l] = max (Q̃tm[m, l], Q̃f [m, l]) (8)

where Q̃tm[m, l] is the temporal masking output depicted in
Fig. 3. Temporal masking for speech segments is discussed in
Sec. II-D.

We have found that applying lowpass filtering to the sig-
nal segments that do not appear to be driven by a periodic
excitation function (as in voiced speech) improves recognition
accuracy in noise by a small amount. For this reason we use
the lower envelope of the rectified signal Q̃0[m, l] directly for
these non-excitation segments. This operation, which is effec-
tively a further lowpass filtering, is not performed for the speech
segments because blurring the power coefficients for speech
degrades recognition accuracy.

Excitation/non-excitation decisions for this purpose are
obtained for each value of m and l in a very simple fashion:

“excitation segment” if Q̃[m, l] ≥ c Q̃le[m, l] (9a)

“non-excitation segment” if Q̃[m, l] < c Q̃le[m, l] (9b)

where Q̃le[m, l] is the lower envelope of Q̃[m, l] as described
above, and c is a fixed constant. In other words, a particular
value of Q̃[m, l] is not considered to be a sufficiently large exci-
tation if it is less than a fixed multiple of its own lower envelope.
Based on the ”excitation/non-excitation” result shown in (9),
the final output of the block in Fig. 3 is given by the following
equation:

R̃[m, l] = Q̃1[m, l] if excitation segment (10a)

R̃[m, l] = Q̃f [m, l] if non-excitation segment (10b)

We observed experimentally that while a broad range of
values of λb between 0.25 and 0.75 appear to provide reason-
able recognition accuracy, the choice of λb = 0.5 appears to
be best under most circumstances [47]. The parameter values
used for the current standard implementation are λa = 0.999
and λb = 0.5, which were chosen in part to maximize the recog-
nition accuracy in clean speech as well as performance in noise.
We also observed (in experiments in which the temporal mask-
ing described below was bypassed) that the threshold-parameter
value c = 2 provides the best performance for white noise (and
presumably other types of broadband noise). The value of c has
little impact on performance in background music and in the
presence of reverberation, as discusssed in [47].

D. Temporal Masking

Many authors have noted that the human auditory system
appears to focus more on the onset of an incoming power

Fig. 5. Block diagram of the components that accomplish temporal masking in
Fig. 3.

envelope rather than the falling edge of that same power enve-
lope (e.g. [53], [54]). This observation has led to several onset
enhancement algorithms (e.g. [52], [55]–[57]). In this section
we describe a simple way to incorporate this effect in PNCC
processing, by obtaining a moving peak for each frequency
channel l and suppressing the instantaneous power if it falls
below this envelope.

The processing invoked for temporal masking is depicted in
block diagram form in Fig. 5. We first obtain the online peak
power Qp[m, l] for each channel using the following equation:

Q̃p[m, l] = max
(
λtQ̃p[m− 1, l], Q̃0[m, l]

)
(11)

where λt is the forgetting factor for obtaining the online peak.
As before, m is the frame index and l is the channel index.
Temporal masking for speech segments is accomplished using
the following equation:

Q̃tm[m, l] =

{
Q̃0[m, l], Q̃0[m, l] ≥ λtQ̃p[m− 1, l]

μtQ̃p[m− 1, l], Q̃0[m, l] < λtQ̃p[m− 1, l]

(12)

We have found [47] that if the forgetting factor λt is equal to
or less than 0.85 and if μt ≤ 0.2, recognition accuracy remains
almost constant for clean speech and most additive noise con-
ditions, and if λt increases beyond 0.85, performance degrades.
The value of λt = 0.85 also appears to be best in the reverberant
condition. For these reasons we use the values λt = 0.85 and
μt = 0.2 in the standard implementation of PNCC. We have
chosen a parameter value of λt = 0.85 to maximize recognition
accuracy [47]. This value of λt corresponds to a time con-
stant of 28.2 ms, so the offset attenuation lasts approximately
100 ms. This characteristic is in accordance with observed data
for humans [58].

Figure 6 illustrates the effect of this temporal masking. In
general, with temporal masking the response of the system is
inhibited for portions of the input signal Q̃[m, l] other than
rising “attack transients.” The difference between the signals
with and without masking is especially pronounced in reverber-
ant environments, for which the temporal processing module is
especially helpful.
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Fig. 6. Demonstration of the effect of temporal masking in the ANS module
for (a) clean speech, and (b) speech in simulated reverberation T60 = 0.5 s. In
this example, the channel index l is 18.

The final output of the asymmetric noise suppression and
temporal masking modules is R̃[m, l] = Q̃tm[m, l] for the exci-
tation segments and R̃[m, l] = Q̃f [m, l] for the non-excitation
segments, assuming Q̃tm[m, l] > Q̃f [m, l].

E. Spectral Weight Smoothing

In our previous research on speech enhancement and noise
compensation techniques (e.g., [21], [22], [42], [59], [60]),
it has been frequently observed that smoothing the response
across channels is helpful. This is true especially in processing
schemes such as PNCC where there are nonlinearities and/or
thresholds that vary in their effect from channel to channel,
as well as processing schemes that are based on inclusion of
responses only from a subset of time frames and frequency
channels (e.g. [59]) or systems that rely on missing-feature
approaches (e.g. [61]).

From the discussion above, we can represent the combined
effects of asymmetric noise suppression and temporal masking
for a specific time frame and frequency bin as the transfer func-
tion R̃[m, l]/Q̃[m, l]. Smoothing the transfer function across
frequency is accomplished by computing the running average
over the channel index l of the ratio R̃[m, l]/Q̃[m, l]. Hence,
the frequency averaged weighting function T̃ [m, l] (which had
previously been subjected to temporal averaging) is given by:

S̃[m, l] =

(
1

l2 − l1 + 1

l2∑
l′=l1

R̃[m, l′]
Q̃[m, l′]

)
(13)

where l2 = min(l +N,L) and l1 = max(l −N, 1), and L is
the total number of channels.

The time-averaged, frequency-averaged transfer function
S̃[m, l] is used to modulate the original short-time power
P [m, l]:

T [m, l] = P [m, l]S̃[m, l] (14)

In the present implementation of PNCC, we use a value of
N = 4, and a total number of L = 40 gammatone channels,
again based on empirical optimization from the results of pilot
studies [47]. We note that if we were to use a different number
of channels L, the optimal value of N would be also different.

F. Mean Power Normalization

It is well known that auditory processing includes an auto-
matic gain control that reduces the impact of changes of
amplitude in the incoming signal, and this processing is often
an explicit component of physiologically-motivated models of
signal processing (e.g. [49], [62], [63]). In conventional MFCC
processing, multiplication of the input signal by a constant
scale factor produces only an additive shift of the C0 coef-
ficient because a logarithmic nonlinearity is included in the
processing, and this shift is easily removed by cepstral mean
normalization. In PNCC processing, however, the replacement
of the log nonlinearity by a power-law nonlinearity, as dis-
cussed below, causes the response of the processing to be
affected by changes in absolute power, even though we have
observed that this effect is usually small. In order to reduce
the potential impact of amplitude scaling in PNCC further we
invoke a stage of mean power normalization.

While the easiest way to normalize power would be to divide
the instantaneous power by the average power over the utter-
ance, this is not feasible for real-time online processing because
of the “look ahead” that would be required. For this reason, we
normalize input power in the present online implementation of
PNCC by dividing the incoming power by a running average of
the overall power. The mean power estimate μ[m] is computed
from the simple difference equation:

μ[m] = λμμ[m− 1] +
(1− λμ)

L

L−1∑
l=0

T [m, l] (15)

where m and l are the frame and channel indices, as before,
and L represents the number of frequency channels. We use a
value of 0.999 for the forgetting factor λμ. For the initial value
of μ[m], we use the value obtained from the training database.
Since the time constant corresponding to λμ is around 4.6 sec-
onds, we do not need to incorporate a formal voice activity
detector (VAD) in conjunction with PNCC if the continuous
non-speech portions of an utterance are no longer than 3 to 4
seconds. If silences of longer duration are interspersed with the
speech, however, we recommend the use of an appropriate VAD
in combination with PNCC processing.

The normalized power is obtained directly from the running
power estimate μ[m]:

U [m, l] = k
T [m, l]

μ[m]
(16)

where the value of the constant k is arbitrary. In pilot experi-
ments we found that the speech recognition accuracy obtained
using the online power normalization described above is
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Fig. 7. Synapse output for a pure tone input with a carrier frequency of 500 Hz
at 60 dB SPL. This synapse output is obtained using the auditory model by
Heinz et al. [64].

Fig. 8. Comparison of the onset rate (solid curve) and sustained rate (dashed
curve) obtained using the model proposed by Heinz et al. [64]. The curves were
obtained by averaging responses over seven frequencies. See text for details.

comparable to the accuracy that would be obtained by normal-
izing according to a power estimate that is computed over the
entire estimate in offline fashion.

G. Rate-Level Nonlinearity

Several studies in our group (e.g. [21], [60]) have confirmed
the critical importance of the nonlinear function that describes
the relationship between incoming signal amplitude in a given
frequency channel and the corresponding response of the pro-
cessing model. This “rate-level nonlinearity” is explicitly or
implicitly a crucial part of every conceptual or physiological
model of auditory processing (e.g. [62], [65], [66]). In this
section we summarize our approach to the development of the
rate-level nonlinearity used in PNCC processing.

It is well known that the nonlinear curve relating sound
pressure level in decibels to the auditory-nerve firing rate is
compressive (e.g. [64], [67]). It has also been observed that
the average auditory-nerve firing rate exhibits an overshoot at
the onset of an input signal. As an example, we compare in
Fig. 8 the average onset firing rate versus the sustained rate
as predicted by the model of Heinz et al. [64]. The curves in
this figure were obtained by averaging the rate-intensity values

Fig. 9. Comparison between a human rate-intensity relation using the auditory
model developed by Heinz et al. [64], a cube root power-law approximation, an
MMSE power-law approximation, and a logarithmic function approximation.
Upper panel: Comparison using the pressure (Pa) as the x-axis. Lower panel:
Comparison using the sound pressure level (SPL) in dB as the x-axis.

obtained from sinusoidal tone bursts over seven frequencies,
100, 200, 400, 800, 1600, 3200, and 6400 Hz. For the onset-rate
results we partitioned the response into bins of length of 2.5 ms,
and searched for the bin with maximum rate during the initial
10 ms of the tone burst. To measure the sustained rate, we aver-
aged the response rate between 50 and 100 ms after the onset
of the signals. The curves were generated under the assumption
that the spontaneous rate is 50 spikes/second. We observe in
Fig. 8 that the sustained firing rate (broken curve) is S-shaped
with a threshold around 0 dB SPL and a saturating segment that
begins at around 30 dB SPL. The onset rate (solid curve), on the
other hand, increases continuously without apparent saturation
over the conversational hearing range of 0 to 80 dB SPL. We
choose to model the onset rate-intensity curve for PNCC pro-
cessing because of the important role that it appears to play in
auditory perception. Figure 9 compares the onset rate-intensity
curve depicted in Fig. 8 with various analytical functions that
approximate this function. The curves are plotted as a function
of dB SPL in the lower panel of the figure and as a function of
absolute pressure in Pascals in the upper panel, and the putative
spontaneous firing rate of 50 spikes per second is subtracted
from the curves in both cases.

The most widely used current feature extraction algo-
rithms are Mel Frequency Cepstral Coefficients (MFCC) and
Perceptual Linear Prediction (PLP) coefficients. Both the
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MFCC and PLP procedures include an intrinsic nonlinearity,
which is logarithmic in the case of MFCC and a cube-root
power function in the case of PLP analysis. We plot these curves
relating the power of the input pressure p to the response s in
Fig. 9 using values of the arbitrary scaling parameters that are
chosen to provide the best fit to the curve of the Heinz et al.
model, resulting in the following equations:

scube = 4294.1p2/3 (17)

slog = 120.2 log(p) + 1319.3 (18)

We note that the exponent of the power function is dou-
bled because we are plotting power rather than pressure. Even
though scaling and shifting by fixed constants in Eqs. (17) and
(18) do not have any significance in speech recognition systems,
we included them in the above equation to fit these curves to the
rate-intensity curve in Fig. 9(a). The constants in Eqs. (17) and
(18) are obtained using an MMSE criterion for the sound pres-
sure range between 0 dB (20μPa) and 80 dB (0.2 Pa) from the
linear rate-intensity curve in the upper panel of Fig. 8.

We have also observed experimentally [47] that a power-law
curve with an exponent of 1/15 for sound pressure provides
a reasonably good fit to the physiological data while optimiz-
ing recognition accuracy in the presence of noise. We have
observed that larger values of the pressure exponent such as 1/5
provide better performance in white noise, but they degrade the
recognition accuracy that is obtained for clean speech [47]. We
consider the value 1/15 for the pressure exponent to represent
a pragmatic compromise that provides reasonable accuracy in
white noise without sacrificing recognition accuracy for clean
speech, producing the power-law nonlinearity

V [m, l] = U [m, l]1/15 (19)

where again U [m, l] and V [m, l] have the dimensions of power.
This curve is closely approximated by the equation

spower = 1389.6p0.1264 (20)

which is also plotted in Fig. 9. The exponent of 0.1264 happens
to be the best fit to the data of Heinz et al. as depicted in the
upper panel of Fig. 8. As before, this estimate was developed in
the MMSE sense over the sound pressure range between 0 dB
(20μPa) and 80 dB (0.2 Pa).

The power law function was chosen for PNCC process-
ing for several reasons. First, it is a relationship that is not
affected in form by multiplying the input by a constant. Second,
it has the attractive property that its asymptotic response at
very low intensities is zero rather than negative infinity, which
reduces variance in the response to low-level inputs such as
spectral valleys or silence segments. Finally, the power law
has been demonstrated to provide a good approximation to
the “psychophysical transfer functions” that are observed in
experiments relating the physical intensity of sensation to the
perceived intensity using direct magnitude-estimation proce-
dures (e.g. [68]), although the exponent of the power function,
1/15, that provides the best fit to the onset rates in the model of
Heinz et al. [64] is different from the one that provides the best
fit to the perceptual data [68].

Fig. 10. The effects of the asymmetric noise suppression, temporal masking,
and the rate-level nonlinearity used in PNCC processing. Shown are the outputs
of these stages of processing for clean speech and for speech corrupted by street
noise at an SNR of 5 dB when the logarithmic nonlinearity is used without
ANS processing or temporal masking (upper panel), and when the power-law
nonlinearity is used with ANS processing and temporal masking (lower panel).
In this example, the channel index l is 8.

Figure 10 is a final comparison of the effects of the asymmet-
ric noise suppression, temporal masking, channel weighting,
and power-law nonlinearity modules discussed in Secs. II-C
through II-G. The curves in both panels compare the response
of the system in the channel with center frequency 490 Hz to
clean speech and speech in the presence of street noise at an
SNR of 5 dB. The curves in the upper panel were obtained
using conventional MFCC processing, including the logarith-
mic nonlinearity and without ANS processing or temporal
masking. The curves in the lower panel were obtained using
PNCC processing, which includes the power-law transforma-
tion described in this section, as well as ANS processing and
temporal masking. We note that the difference between the two
curves representing clean and noisy speech is much greater with
MFCC processing (upper panel), especially for times during
which the signal is at a low level.

III. EXPERIMENTAL RESULTS

In this section we present experimental results that are
intended to demonstrate the superiority of PNCC processing
over competing approaches in a wide variety of acoustical
environments. We begin in Sec. III-A with a review of the
experimental procedures that were used. We provide some gen-
eral results for PNCC processing, we assess the contributions of
its various components in PNCC in Sec. III-B, and we compare
PNCC to a small number of other approaches in Sec. III-C.

It should be noted that in general we selected an algorithm
configuration and associated parameter values that provide very
good performance over a wide variety of conditions using a
single set of parameters and settings, without sacrificing word
error rate in clean conditions relative to MFCC processing.
In previous work we had described slightly different feature
extraction algorithms that provide even better performance for
speech recognition in the presence of reverberation [22] and
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in background music [52], but these approaches do not per-
form as well as MFCC processing in clean speech. As noted in
previous studies (e.g. [47], [69]) and above, we have observed
that replacing the triangular frequency-weighting functions
in MFCC processing by the gammatone filter response, and
replacing the log linearity by the power-law nonlinearity, have
provided improved recognition accuracy for virtually all types
of degradation. The asymmetric noise suppression is especially
useful in ameliorating the effects of additive noise, and the tem-
poral masking component of the ANS module is useful for
reducing the effects of reverberation.

We used five standard testing environments in our work: (1)
digitally-added white noise, (2) digitally-added noise that had
been recorded live on urban streets, (3) digitally-added single-
speaker interference, (4) digitally-added background music,
and (5) passage of the signal through simulated reverberation.
The street noise was recorded by us on streets with steady but
moderate traffic. The masking signal used for single-speaker-
interference experiments consisted of other utterances drawn
from the same database as the target speech, and background
music was selected from music segments from the original
DARPA Hub 4 Broadcast News database. The reverbera-
tion simulations were accomplished using the Room Impulse
Response open source software package [70] based on the
image method [71]. The room size used was 3× 4× 5 meters,
the microphone is in the center of the room, the spacing
between the target speaker and the microphone was assumed
to be 3 meters, and reverberation time was manipulated by
changing the assumed absorption coefficients in the room
appropriately. These conditions were selected so that interfering
additive noise sources of progressively greater difficulty were
included, along with basic reverberation effects.

A. Experimental Configuration

The PNCC features described in this paper were evaluated by
comparing the recognition accuracy obtained with PNCC intro-
duced in this paper to that obtained using MFCC and RASTA-
PLP processing. We used the version of conventional MFCC
processing implemented as part of sphinx_fe in sphinxbase
0.4.1, both from the CMU Sphinx open source codebase [72].
We used the PLP-RASTA implementation that is available at
[73]. In all cases decoding was performed using the publicly-
available CMU Sphinx 3.8 system [72] using training from
SphinxTrain 1.0. We also compared PNCC with the vector
Taylor series (VTS) noise compensation algorithm [4] and the
ETSI Advanced Front End (AFE) which has several noise sup-
pression algorithms included [8]. In the case of the ETSI AFE,
we excluded the log energy element because this resulted in bet-
ter results in our experiments. A bigram language model was
used in all the experiments. We used feature vectors of length
of 39 including delta and delta-delta features. For experiments
using the DARPA Resource Management (RM1) database we
used subsets of 1600 utterances of clean speech for training
and 600 utterances of clean or degraded speech for testing.
For experiments based on the DARPA Wall Street Journal
(WSJ) 5000-word database we trained the system using the
WSJ0 SI-84 training set and tested it on the WSJ0 5K test set.

We typically plot word recognition accuracy, which is 100
percent minus the word error rate (WER), using the standard
definition for WER of the number of insertions, deletions, and
substitutions divided by the number of words spoken.

B. General Performance of PNCC in Noise and Reverberation

In this section we describe the recognition accuracy obtained
using PNCC processing in the presence of various types of
degradation of the incoming speech signals. Figures 11 and
12 describe the recognition accuracy obtained with PNCC
processing in the presence of white noise, street noise, back-
ground music, and speech from a single interfering speaker as
a function of SNR, as well as in the simulated reverberant envi-
ronment as a function of reverberation time. These results are
plotted for the DARPA RM database in Fig. 11 and for the
DARPA WSJ database in Fig. 12. For the experiments con-
ducted in noise we prefer to characterize the improvement in
recognition accuracy by the amount of lateral shift of the curves
provided by the processing, which corresponds to an increase of
the effective SNR. For white noise using the RM task, PNCC
provides an improvement of about 12 dB to 13 dB compared
to MFCC processing, as shown in Fig. 11. In the presence
of street noise, background music, and interfering speech,
PNCC provides improvements of approximately 8 dB, 3.5 dB,
and 3.5 dB, respectively. We also note that PNCC process-
ing provides considerable improvement in reverberation, espe-
cially for longer reverberation times. PNCC processing exhibits
similar performance trends for speech from the DARPA
WSJ0 database in similar environments, as seen in Fig. 12,
although the magnitude of the improvement is diminished
somewhat, which is commonly observed as we move to larger
databases.

The curves in Figs. 11 and 12 are also organized in a
way that highlights the various contributions of the major
components. Beginning with baseline MFCC processing the
remaining curves show the effects of adding in sequence (1)
the power-law nonlinearity (along with mean power normaliza-
tion and the gammatone frequency integration), (2) the ANS
processing including spectral smoothing, and finally (3) tempo-
ral masking. It can be seen from the curves that a substantial
improvement can be obtained by simply replacing the loga-
rithmic nonlinearity of MFCC processing by the power-law
rate-intensity function described in Sec. II-G. The addition of
the ANS processing provides a substantial further improvement
for recognition accuracy in noise. Although it is not explic-
itly shown in Figs. 11 and 12, temporal masking is particularly
helpful in improving accuracy for reverberated speech and for
speech in the presence of interfering speech.

C. Comparison With Other Algorithms

Figures 13 and 14 provide comparisons of PNCC processing
to the baseline MFCC processing with cepstral mean normal-
ization, MFCC processing combined with the vector Taylor
series (VTS) algorithm for noise robustness [4], as well as
RASTA-PLP feature extraction [24] and the ETSI Advanced
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Fig. 11. Recognition accuracy obtained using PNCC processing in various
types of additive noise and reverberation. Curves are plotted separately to
indicate the contributions of the power-law nonlinearity, asymmetric noise sup-
pression, and temporal masking. Results are described for the DARPA RM1
database in the presence of (a) white noise, (b) street noise, (c) background
music, (d) interfering speech, and (e) artificial reverberation.

Front End (AFE) [8]. We compare PNCC processing to MFCC
and RASTA-PLP processing because these features are most
widely used in baseline systems, even though neither MFCC

Fig. 12. Recognition accuracy obtained using PNCC processing in various
types of additive noise and reverberation. Curves are plotted separately to
indicate the contributions of the power-law nonlinearity, asymmetric noise sup-
pression, and temporal masking. Results are described for the DARPA WSJ0
database in the presence of (a) white noise, (b) street noise, (c) background
music, (d) interfering speech, and (e) artificial reverberation.

nor PLP features were designed to be robust in the presence of
additive noise. The experimental conditions used were the same
as those used to produce Figs. 11 and 12.
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Fig. 13. Comparison of recognition accuracy for PNCC with processing using
MFCC features, the ETSI AFE, MFCC with VTS, and RASTA-PLP fea-
tures using the DARPA RM1 corpus. Environmental conditions are (a) white
noise, (b) street noise, (c) background music, (d) interfering speech, and
(e) reverberation.

We note in Figs. 13 and 14 that PNCC provides substantially
better recognition accuracy than both MFCC and RASTA-PLP
processing for all conditions examined. (We remind the reader
that neither MFCC nor PLP coefficients had been developed

Fig. 14. Comparison of recognition accuracy for PNCC with processing using
MFCC features, ETSI AFE, MFCC with VTS, and RASTA-PLP features
using the DARPA WSJ0 corpus. Environmental conditions are (a) white
noise, (b) street noise, (c) background music, (d) interfering speech, and
(e) reverberation.

with the goal of robustness in the presence of noise or rever-
beration.) PNCC coefficients also provide recognition accuracy
that is better than the combination of MFCC with VTS, and
at a substantially lower computational cost than is incurred
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TABLE I
NUMBER OF MULTIPLICATIONS AND DIVISIONS IN EACH FRAME

in implementing VTS. We also note that the VTS algorithm
provides little or no improvement over the baseline MFCC
performance in difficult environments like background music
noise, single-channel interfering speaker, or reverberation.

The ETSI Advanced Front End (AFE) [8] generally pro-
vides slightly better recognition accuracy than VTS in noisy
environments, but the accuracy obtained with the AFE does
not approach that obtained with PNCC processing in the
most difficult noise conditions. Neither the ETSI AFE nor
VTS improve recognition accuracy in reverberant environments
compared to MFCC features, while PNCC provides measurable
improvements in reverberation, and the closely-related SSF
algorithm [52] provides even greater recognition accuracy in
reverberation (at the expense of somewhat worse performance
in clean speech).

IV. COMPUTATIONAL COMPLEXITY

Table I provides estimates of the computational demands
MFCC, PLP, and PNCC feature extraction. (RASTA process-
ing is not included in these tabulations.) As before, we use the
standard open source Sphinx code in sphinx_fe [72] for the
implementation of MFCC, and the implementation in [73] for
PLP. We assume that the window length is 25.6 ms and that the
interval between successive windows is 10 ms. The sampling
rate is assumed to be 16 kHz, and we use a 1024-pt FFT for
each analysis frame.

It can be seen in Table I that because all three algorithms
use 1024-point FFTs, the greatest difference from algorithm
to algorithm in the amount of computation required is asso-
ciated with the spectral integration component. Specifically,
the triangular weighting used in the MFCC calculation encom-
passes a narrower range of frequencies than the trapezoids
used in PLP processing, which is in turn considerably narrower
than the gammatone filter shapes, and the amount of compu-
tation needed for spectral integration is directly proportional
to the effective bandwidth of the channels. For this reason,
as mentioned in Sec. II-A, we limited the gammatone filter
computation to those frequencies for which the filter transfer

function is 0.5 percent or more of the maximum filter gain. In
the interest in obtaining the most direct comparisons in Table I,
we limited the spectral computation of the weight functions for
MFCC and PLP processing in the same fashion.

As can be seen in Table I, PLP processing by this tabulation is
about 32.9 percent more costly than baseline MFCC processing.
PNCC processing is approximately 34.6 percent more costly
than MFCC processing and 1.31 percent more costly than PLP
processing.

V. SUMMARY

In this paper we introduce power-normalized cepstral coef-
ficients (PNCC), which we characterize as a feature set that
provides better recognition accuracy than MFCC and RASTA-
PLP processing in the presence of common types of additive
noise and reverberation. PNCC processing is motivated by the
desire to develop computationally efficient feature extraction
for automatic speech recognition that is based on a prag-
matic abstraction of various attributes of auditory processing
including the rate-level nonlinearity, temporal and spectral inte-
gration, and temporal masking. The processing also includes
a component that implements suppression of various types of
common additive noise. PNCC processing requires only about
33 percent more computation compared to MFCC.

Further details about the motivation for and implementa-
tion of PNCC processing are available in [47]. This paper also
includes additional relevant experimental findings including
results obtained for PNCC processing using multi-style training
and in combination with speaker-by-speaker MLLR.

Open Source MATLAB code for PNCC may be found
at http://www.cs.cmu.edu/~robust/archive/algorithms/PNCC_
IEEETran. The code in this directory was used for obtaining the
results for this paper. Prof. Kazumasa Yamamoto more recently
re-implemented PNCC in C; this code may be obtained at
http://www.cs.cmu.edu/~robust/archive/algorithms/PNCC_C.
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