
Visualization Tools for Validating Software
of Autonomous Spacecraft

Reid Simmons and Gregory Whelan

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

(reids@cs.cmu.edu, whelan@cs.cmu.edu)

ABSTRACT

Spacecraft autonomy is becoming an increasingly

important technology. Yet the very nature of

autonomy − on-board decision making and largely

unattended operation − makes it important that

such systems be thoroughly tested and validated.

We are developing software visualization tools to

assist in the validation process. The tools, which are

designed to facilitate human problem solving,

combine graphical layout and color to present

“gestalt” views of system execution, together with

interactive facilities for browsing, searching, and

tracking down potential problems. This paper

describes two tools being developed in conjunction

with the NASA New Millennium Program − one for

visualizing inter-process comm-unication and one

for visualizing plan execution.

1. INTRODUCTION

To meet the needs of future inter-planetary and

near-earth space exploration, designers are

increasingly interested in making spacecraft more

autonomous. The rationale for this includes

enabling more complex missions, such as small

body encounters and landings and reducing ground

operations cost by making decisions on board.

Creating highly autonomous spacecraft is a high

priority of the NASA New Millennium Program,

which seeks to flight validate cutting-edge

technologies. In particular, the autonomous Remote

Agent [2] is being developed as part of the Deep

Space One mission (an asteroid and comet flyby),

anticipated to launch in July 1998.

Typically, such spacecraft use a concurrent,

distributed software architecture that coordinates

actions and exchanges information via message

passing [9]. From a software-engineering

perspective, such an architecture has great

advantages in terms of independent development of

modules, data abstraction and data hiding, and

software reuse. Validating and debugging such

large, concurrent systems can be a nightmare,

however. For example, subtle flaws in the design of

module interfaces often manifest themselves only

during system integration.

In the case of autonomous spacecraft, a critical

validation test is whether the system responds to

stimuli (both internal and external) appropriately,

and in time. The system can fail due to faulty

algorithms (leading to inappropriate or missing

responses) or due to limited computational

resources (leading to delays and bottlenecks). Such

problems can manifest themselves at various levels

of abstraction − from low-level servo control,

through high planning and plan execution.

To aid software developers in the New

Millennium Program, we have created tools for

visualizing the execution of such autonomous,

concurrent systems. The tools parse log files

produced during system execution and present the

data in intuitively understandable formats. One

tool, called comview, displays patterns of inter-

process communication. It can help answer

questions such as when messages are sent and to

whom, and where bottlenecks are occurring.

Another tool, called planview, visualizes the

execution of plans (command sequences). It

propagates temporal constraints between plan

segments in order to detect constraint violations

that signal potential plan failures.

Unlike other visualization tools for concurrent

systems that focus primarily on automated analysis

[4, 5, 6], comview and planview are geared towards

human analysis. This influenced several design

decisions. First, emphasis was placed on graphical

layout and use of color. We felt that the overall

visual structure should facilitate a “gestalt” view of

system execution, in order to aid users in homing in

on a given problem. Second, great emphasis has

been placed on the interactivity of the tools. We felt

that the ability to flexibly browse, search, and trace

through patterns of system execution is important in

the detailed work needed to pinpoint the source of

problems. Finally, as we become more familiar with

how these tools are used in practice, we intend to

focus on automating the detection of common types

of problems.



Figure 1. The comview Tool

2. VISUALIZING MESSAGE TRAFFIC

While careful up-front interface design can help

simplify system integration, our experience has been

that integration remains one of the key problems in

developing and validating autonomous systems.

Often, due to the complex system interactions,

problems can be detected only by running the system

and analyzing the patterns of inter-process message

traffic. Important validation questions with respect to

message traffic include determining where

bottlenecks occur and determining whether modules

are responding to their inputs appropriately.

The comview tool works with a message passing

substrate, adapted from the Task Control Architecture

[10], that provides both publish/subscribe (broadcast)

and client/server (query) type messages. The inter-

process communications package can log message

traffic, indicating source and destination modules,

when the message was sent, the data sent with the

message, how long it was queued (if at all), and how

long the destination module took to handle the

message. comview operates by parsing the (human

readable) log files and displaying them in various

ways. The logs files are typically processed after a run

is completed, but comview can also run in real time,

parsing the log file as it is being generated.

For portability, maintainability, and ease of

development, comview (and planview) are

implemented using standard software packages. The

graphical user interface and the interactive facilities

are implemented with Tcl/Tk library [8]. The log file

parser is written using lex and yacc [7]. Only a

relatively small portion of the tools needed to be

written directly in C.

As mentioned, we feel it is important to present a

“gestalt” view of the message traffic to facilitate

finding potential trouble spots. comview does this

primarily through its graphical layout, which takes

advantage of the human capacity for processing

spatial information. Information is laid out in a Gantt

chart format (Figure 1), where each module (process

or task) is displayed on a separate row, and each

rectangle on a row indicates that a message was

received by that module (the width of the rectangle

being proportional to the time spent by the module in

handling the message). The message rectangles are

color-coded to indicate message status (e.g., whether

the module is sending or receiving messages, or

waiting for a response), and thin orange bars above

the message rectangles indicate when messages are

being queued (while the corresponding module is

busy handling other messages).

This layout makes it easy to spot modules that are

over (or under) utilized, and to spot where bottlenecks

occur (indicated by queued messages, as illustrated

by the ds1_sc_ipc module in Figure 1). Also, if there

are regular patterns to the messages, as is often the

Figure 2. An Anomaly in a Pattern of Messages



case, then anomalies tend to stand out. For instance,

in Figure 2, the top module begins with a regular

pattern of two short messages followed by one very

short message, but then the pattern changes abruptly

in the middle of the run.

Another useful way to view message flow is

hierarchically − when a module receives a message, it

often sends additional messages in response, which in

turn get handled and cause other messages to be sent,

etc. With information viewed this way, as an

invocation tree (Figure 3), other types of message

flow patterns become visually apparent, again making

it easy to spot deviations from regular patterns.

While such “gestalt” views are useful for quickly

spotting the general areas where problems exist, it

still usually takes a bit of detective work to pinpoint

the exact cause of a problem. In particular, the root

cause may lie somewhere along a chain of messages,

and the validation problem is to determine exactly

where the message flow differs from expectations.

To facilitate this mode of problem solving,

comview includes many facilities for interactively

examining message flow. For example, when a

message rectangle is selected (Figure 4), comview

displays the flow of communication graphically (an

arrow from sender to receiver), as well as textually

(the corresponding line in the log file is highlighted).

If a message is queued, one sees graphically when it

was first sent and then when it was eventually handled

(Figure 5). One can search for a message by name, by

source or destination module, by time of the message,

even by the content of the message data itself. Other

useful interactive features of comview include the

ability to rearrange rows, to ignore displaying subsets

of messages, to zoom and scroll, and to change the

mappings between message status and colors.

We now present two examples where comview

was used to help solve problems in the Deep Space

One software system. The symptom in both cases was

an unstable control loop, caused by a module making

decisions based on old data. While the problems were

clearly caused by delays somewhere, the problem was

to figure out where (and why). The first case was

largely solved with the “gestalt” view: A cursory

examination of the display showed that one module

had a large number of queued messages (Figure 1).

By highlighting messages handled by that module

(Figure 5), it became apparent that the queueing

(delay) time was increasing with each successive

message. A closer examination of the individual

messages confirmed that new messages were being

generated faster than it took the module to handle

those types of messages. While, in theory, this could

have been caused by a bug in either the sender

(generating too fast) or the receiver (handling too

slowly), in this case it turned out to be a problem with

the receiver.

The other example illustrates the use of the

browsing facilities. Again, the symptom was a delay

in propagating current data. In this case, the “gestalt”

view revealed little. Instead, we had to trace the flow

of individual messages back through to their original

sources. As a result of doing this for several instances

of a key message type, we began to infer a pattern. We

also noted that the pattern was broken in several

instances. It turned out (by bringing in the developer

Figure 3. A Hierarchical View

Figure 4. Connection From Sender to Receiver

Figure 5. Visualizing a Queued Message



Figure 6. The planview Tool

of the module in question) that that module was

keeping an internal queue of data, and that it was not

flushing the queue, but rather sending out only the

first (oldest) element each cycle. The developer had

assumed that only one new datum would be received

each cycle. Using comview, we were easily able to

document times when that assumption was violated.

An obvious extension to comview would be the

ability to specify such types of message patterns and

to detect them (or, more specifically, to detect

violations of the patterns) automatically. We are

currently starting to address this, and intend to

integrate it into the comview framework.

3. VISUALIZING PLAN EXECUTION

Nowadays, many autonomous systems are

designed with a three-layer architecture, consisting of

a behavioral/real-time layer, an executive/sequencing

layer, and a planning layer [3, 9]. The executive layer

is responsible for executing plans produced by the

planner, monitoring plan execution, and recovering

from exceptional situations. As such, validating this

component is essential to ensure the successful

operation of the overall system.

One important aspect in validating an executive is

demonstrating that it executes plan segments at the

appropriate time and in the appropriate sequence. The

planview tool is designed to provide that capability for

the New Millennium Remote Agent executive. This

executive layer uses a plan representation based on

timelines and tokens [9]. A timeline represents the

evolution over time of a state variable of the system

(e.g., the state of the main engine). Each timeline

consists of a contiguous sequence of tokens, where a

token represents the value of the state variable over

some time interval (e.g., the main engine is thrusting).

A token has an expected duration, and start and end

time timepoints. Uncertainty in the duration and the

time point windows is represented using ranges of

time values. In addition, tokens may have temporal

constraints between them (e.g., token VAL-1586

must end before token VAL-2414 begins; token VAL-

1586 must end after token VAL-1881 starts).

The task of the Remote Agent executive is to

achieve the state values associated with the tokens,

while respecting their temporal constraints and time

windows. Faults occur when the executive cannot

achieve a token within its specified temporal window.

The task of the planview tool is to detect violated

constraints and help users track down the root causes

of those faults.

As with comview, planview operates by parsing

log files. The log files, produced by the executive,

contain a description of the plan being executed

(timelines, tokens, and constraints) and an indication

of when each token begins and ends execution. As

with comview, planview provides both “gestalt” views

and interactive modes of operation. In fact, much of

the user interface is shared by both tools (which also

makes it easier for users to learn the new tools).

Each row in the planview display represents one

timeline, and each rectangle is a token (Figure 6). The

position and size of a token represents when it started

and ended (or when it is expected to start and end, if

that is in the future). The color of a token represents



its status (active, completed, violated, etc.). When a

token rectangle is selected, more detailed information

about the token is displayed textually in separate

windows (Figure 7). Selecting a temporal constraint

in the text window (Figure 7) causes the constraint to

be displayed in the graphical window (Figure 8).

As planview processes a log file, token rectangles

change in color, size, and location. More importantly,

the tool automatically propagates the temporal

constraints through the token structure. For example,

if the executive starts to achieve token A at time 150

and the expected duration of the token is the range

[50, 100] seconds, then planview determines that the

token must end in the range [150, 200]. Similarly, if

token B is constrained to start after token A ends, then

planview can determine that token B must start after

time 150. By propagating these constraints as tokens

begin and end, planview can detect faults, such as

cases where a constraint is actually violated (e.g., if

for some reason the executive were to begin token B

at time 125), or cases where the start or end timepoint

is projected to fall outside its respective window.

Faults are flagged by changing the color of the

affected tokens in the graphical display and by

highlighting the affected constraints and/or time

windows in the textual display.

Detecting a constraint violation is only the first

step, however. The root cause of the problem must

still be determined. For instance, one token ending

late may have a ripple effect that eventually forces a

subsequent token to begin late. While the interactive

browsing facilities of planview enable users to follow

the chain of constraints manually, we have

implemented a facility that reduces the need for this

by automatically generating English-language

explanations for why a given constraint is violated

(Figure 9). By selecting a line in the explanation

window, the appropriate constraint and tokens are

highlighted in the graphical display. Briefly, planview

generates an explanation by annotating which

constraints were used for propagation, and then uses

those annotations to form a tree of dependencies

between tokens. The process is dynamic, so that when

information changes and new constraint propagations

occur, the explanation is automatically updated (for

instance, if a different constraint causes the projected

start time of a token to be even later than initially

expected).

4. RELATED WORK

The ParaGraph tool [4] provides a variety of

visualizations of different aspects of a parallel system.

ParaGraph animates trace information from actual

runs to display behavior and provide graphical

performance summaries. A task Gantt chart depicts

the activity of processors with horizontal segments

resembling the graphical display of comview.

Together with the space-time diagram, showing

interprocessor-communication, much of the

functionality of comview can be duplicated. The

primary differences between the tools are that

comview integrates the two ParaGraph displays into a

single display, and it provides extensive interactive

features. These features allow the user to step through

and closely examine individual communication and

task events (and various aspects of those events) and

correlate the events with their record in the log file.

The combination of the Mach Kernel Monitor and

the PIE tool [6] demonstrates the visualization of

parallel and distributed algorithms and their

interaction with the operating system. Specifically,

the tools enabled the authors to examine various

kernel scheduling algorithms and observe the

resulting performance of a matrix multiplication. The

work clearly demonstrates the usefulness of a

Figure 7. Token and Constraint Descriptions

Figure 8. Visualizing Constraints Between Tokens

Figure 9. Automatically Generated Explanation



timeline-style visual tool for monitoring, debugging,

and performance analysis of a concurrent system.

tnfview [5] is a tool designed for visualizing

threads under Solaris 2 that are traced using logs

written in Trace Normal Format. The display shows

activities that include thread state transitions and

context switching in a timeline-style format. It is

intended to allow visual relation of concurrent thread

activity such as examining the timing of thread

switching as they interact via a condition variable.

The tool is part of a suite of tools that can be used for

debugging and performance analysis of multi-

threaded programs.

A broader discussion of program visualization

techniques for parallel and distributed programs is

provided in [1].

5. CONCLUSIONS AND FUTURE WORK

This paper has presented two visualization tools

that aid in the validation of concurrent, distributed

autonomous systems. The tools embody a mixed-

initiative approach to problem solving: The tools

automate what machines do best (massaging large

amounts of data, presenting them in easily understood

forms, and maintaining relationships between data)

and facilitate what humans do best (spotting patterns

and tracking down root causes of problems). The

combination results in a powerful and flexible

framework for software validation.

The comview tool, which is used to find timing,

bottleneck, and interface problems, works with a

fairly general message passing architecture, including

both publish/subscribe (broadcast) and client/server

(query) type messages. As such, it should be easy to

use the tool with other message passing systems by

instrumenting them and providing a log file parser. On

the other hand, the planview tool, which is used to

detect problems in plan execution, is fairly specific to

the NASA Remote Agent executive. It presumes a

plan representation based on timelines, tokens and

temporal constraints. It is not clear how widespread

this type of plan representation is, or how easy it

would be to adapt planview to work with other types

of plan representations (such as the hierarchical task

decomposition used by the Task Control Architecture

[10]).

Our current work is in making the tools even more

useful, both by extending their range of interactive

options and by incorporating analysis algorithms that

can detect some classes of problems automatically. In

particular, in conjunction with NASA, we are

exploring methods for representing complex patterns

and automatically detecting violations of those

patterns in the log files. We are also interested in

making the tools more suitable for real-time

monitoring of system execution, which primarily

involves speeding up the graphics (or finding more

selective ways of displaying them).

Although these tools are just beginning to be

used, they have already elicited a fair amount of

support among developers. As currently fashioned,

they take much of the drudge work out of analyzing

the message and executive log files to find both simple

and subtle bugs in the software system. Although

visualization tools are not a panacea, we believe that

good tool support will significantly aid developers in

achieving the goal of “faster, better, cheaper,” and

more autonomous, spacecraft.

Acknowledgments

This research was sponsored by NASA, under

contract 960322. We gratefully thank the members of

the DS1 software team for their support and feedback.

References

[1] W. Appelbe, J. Stasko, E. Kraemer. Applying Program
Visualization Techniques to Aid Parallel and Distrib-
uted Program Development. TR GIT-GVU-91-08,
Graphics Visualization and Usability Center, Georgia
Institute of Technology, July 1991.

[2] D. Bernard and B. Pell. Designed for Autonomy:
Remote Agent for the New Millennium Program. In
Proc. i-SAIRAS ‘97, Tokyo Japan (this volume).

[3] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp,D.
Miller, and M. Slack. A Proven Three-tiered Architec-
ture for Programming Autonomous Robots. Journal of
Experimental and Theoretical Artificial Intelligence,
9:2, 1997.

[4] M. Heath, J. Etheridge. Visualizing the Performance of
Parallel Programs. IEEE Software, 8(5):29-39, Sep.
1991.

[5] S. Kleiman, D. Shah, B. Smaalders. Programming with
Threads. SunSoft Press, Mountain View, Ca., 1996.

[6] T. Lehr, D. Black, Z. Segall, D. Vrsalovic. MKM:
Mach Kernel Monitor Description, Examples and Mea-
surements. TR CMU-CS-89-131, Computer Science
Department, Carnegie Mellon University. Mar. 1989.

[7] T. Mason and D. Brown. lex & yacc. O’Reilly and
Associates, Sebastopol, CA, 1990.

[8] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley
Publishing Company, Reading, MA, 1994.

[9] B. Pell, E. Gat, R. Keesing, N. Muscettola, B. Smith.
Plan Execution for Autonomous Spacecraft. in 1996
AAAI Fall Symposium on Plan Execution: Problems
and Issues, TR FS-96-01, AAAI Press.

[10]R. Simmons. Structured Control for Autonomous
Robots. IEEE Transactions on Robotics and Automa-
tion, 10:1, Feb. 1994.


