
A Task Description Language for Robot Control

Reid Simmons and David Apfelbaum

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Robot systems must achieve high level goals while
remaining reactive to contingencies and new opportunities.
This typically requires robot systems to coordinate
concurrent activities, monitor the environment, and deal
with exceptions. We have developed a new language to
support such task-level control. The language, TDL, is an
extension of C++ that provides syntactic support for task
decomposition, synchronization, execution monitoring,
and exception handling. A compiler transforms TDL into
pure C++ code that utilizes a platform-independent task
management library. This paper introduces TDL, describes
the task treerepresentation that underlies the language,
and presents some aspects of its implementation and use in
an autonomous mobile robot.

Introduction
Robot systems, such as autonomous mobile robots, need to
achieve high level goals while remaining reactive to
contingencies and new opportunities. They need to recover
gracefully from exceptions and effectively manage their
resources (such as actuators, sensors, and computation).
These capabilities are referred to astask-level control[15],
and they form the basis of theexecutivelayer of modern
three-tiered robot control architectures [1, 3, 4, 10]. In such
architectures (Figure 1), thebehavior (real-time control)
layer interacts with the physical world, controlling
actuators and collecting sensor data. Theplanning layer
specifies, at an abstract level, how to achieve goals and how
to deal with goal interactions. Theexecutivelayer mediates
between the symbolic level of the planner and the
continuous level of the behaviors. It expands abstract goals
into low-level commands, executes the commands,
monitors their execution, and handles exceptions.

Unfortunately, task-level control programs are often
difficult to develop and debug. One problem is that
effective task-level control often requires that the robot do
things concurrently, such as moving and sensing, planning
and executing, manipulating and monitoring, etc. These
concurrent activities often need to be scheduled and
synchronized, either to avoid interactions or to coordinate
activities. Another difficulty is that exception handling

often involves non-local flow of control. For example, if a
robot encounters an unexpected obstacle, it might first try
the move again (the obstacle may have moved). If that fails,
it might replan its path, switch to another goal, etc.

Using conventional programming languages to implement
such task-level control functions would result in highly
non-linear code that is often difficult to understand, debug,
and maintain. To address this, we have designed TDL (Task
Definition Language), an extension of C++ that simplifies
the development of robot control programs by including
explicit syntactic support for task-level control capabilities.
TDL directly supports task decomposition, fine-grained
synchronization of subtasks, execution monitoring, and
exception handling (support for resource management [11]
is planned). We have developed a compiler that transforms
TDL code into efficient, platform-independent C++ code
that invokes a Task Control Management (TCM) library to
manage task-control aspects of the robot system.

The following section presents related research in
languages for task-level control. We then describetask
trees, the semantic construct underlying TDL and TCM.
Task trees encode the hierarchical decomposition of tasks
into subtasks, as well as synchronization constraints
between tasks. We then describe the language itself, and
illustrate it with a simplified example of its use in an
autonomous delivery robot [16]. Finally, we present
overviews of the TDL and TCM implementations, as well
as tools that we are developing to further support the design
and debugging of task-level control programs.

Figure 1: Three-Tiered Control Architecture

Plans
Status

Commands
Perceptual
Data

Executive Layer

Behavior Layer

Planning Layer

Related Work
TDL and the TCM library are both heavily influenced by
our earlier work on the Task Control Architecture (TCA)
[13, 14, 15]. TCA combines task-level control and inter-
process communication, using message passing between
multiple processes to achieve concurrency. Aspects of TCA
that are maintained include the underlying concept of atask
tree (see next section), execution monitors, and the
approach to hierarchical structuring of exception handlers
[14]. TDL and TCM extend the TCA control constructs to
include additional synchronization capabilities, such as not
starting a task until a given time, terminating a task when
another task completes, and terminating a task after a
certain period of time.

Like TCA, the TCM library is a collection of function calls
that can be invoked to build and coordinate task trees. TDL,
on the other hand, is a full-fledged language, with its own
syntax (an extension of C++). Other researchers have also
developed task-level control languages for mobile robots
and other autonomous systems. Like TDL, most include
explicit support for task decomposition, synchronization,
monitoring and exception handling. RAP (Reactive Action
Packages) was designed to support reactive planning and
execution and also to be used as the representation
language for a general-purpose planner [3]. RAP uses a
Lisp-based interpreter to manage atask netand to interface
with behavioralskills. RPL (Reactive Plan Language),
which was influenced by RAP, incorporates a richer set of
control constructs [8]. Like RAP, RPL was designed to be
used by a planner, and runs using a Lisp-based interpreter.

PRS (Procedural Reasoning System) is based around the
concept of a procedural reasoning expert [6]. PRS
facilitates deciding what actions an agent should be doing
at any given time. Both Lisp-based and C-based
interpreters for PRS have been implemented. PRS, like
RAP, is tightly integrated with a “world model” knowledge
base that is used to identify opportunities, exceptions, and
when to transition between tasks. TDL does not make this
ontological commitment: A separate knowledge base could
be integrated, but is not mandated. We feel that this gives
developers more flexibility in deciding how to design their
systems, without precluding such architectural decisions.

ESL (Executive Support Language) is the language most
closely related to TDL, and TDL is influenced by many of
the ESL design concepts [5]. Like TDL, ESL is an
extension of an existing language (in this case, Lisp). ESL
is implemented as a set of macros that expand into
Common Lisp and invoke Lisp’s multi-tasking library. In
addition to the usual task-level control constructs, ESL
provides for resource management and supports a Prolog-
based data base. ESL is currently being used in the NASA
New Millennium Remote Agent [10].

Colbert has a C-like syntax, but does not support the full C
language [7]. Colbert supports concurrency and iteration,

but does not provide explicit support for exception
handling. It has well-defined semantics based on finite state
automata, which makes it easy to determine how the system
will behave. It has a compiler, but is mainly intended for
interactive use, via an interpreter.

One major difference between TDL and other task-control
languages is that TDL includes a wider range of task
synchronization constructs. For instance, in TDL one can
state that the system should completely expand a task tree
down to its leaf nodes (executable commands) before
beginning to execute any of those commands. While other
languages, notably ESL, can also express such concepts,
the range of control constructs in TDL makes it possible to
state intricate control strategies fairly straightforwardly.

Task Trees
Task treesare the basic representation underlying TDL and
TCM. A task tree (Figure 2) encodes parent/child
relationships and synchronization constraints between
nodes, and associates exception handlers with nodes in the
tree. TDL-based control programs operate by creating and
executing task trees. Each task tree node has anaction
associated with it, which is essentially a parameterized
piece of code. An action can perform computations,
dynamically add child nodes to the task tree, or perform
some physical action in the world, such as “move forward
N meters” or “acquire an image”. In addition, actions can
eithersucceed or fail.

Note that since task trees are generated dynamically, the
actions associated with nodes can use current perception
data to make decisions about what nodes to add to the tree
and how to parameterize their actions. Actions can include
conditional, iterative, and even recursive code. The
resulting task tree, however, is always a simple tree: Each
task tree represents a single execution trace of the control
program. Thus, the same task-control program can
generate widely different task trees from run to run.

Figure 2: Example Task Tree

deliverMail

navigate Speak
ToLocn

center
OnDoor

monitor
Pickup

lookFor
Door

move center
OnDoor

lookFor
Door

Speak

notify
Sender

To increase the types of synchronization constraints that
can be expressed, we distinguish two types of nodes:goals
and commands(two other types of nodes,monitorsand
exceptions,are described later in this section). Command
nodes are intended to be executable behaviors, and are
typically the leaves of a task tree. Goal nodes, on the other
hand, are used to expand the task tree, and represent higher-
level tasks, such as “navigate to location X” or “center on a
doorway”. The action associated with a goal node is
typically a computation that adds children to that node.
While goal nodes can have both goals and commands as
children, commands cannot have goal nodes as children.

The state of an individual task tree node (referred to as its
handling) can be eitherdisabled, enabled, activeor
completed. Thehandlingof a node isdisabledif there are
synchronization constraints (see below) that have not yet
been satisfied. When all such constraints are satisfied, the
handling transitions to enabled. The handling then
transitions toactive and the node’s action is invoked (a
node can beenabledbut notactiveif there are insufficient
computational or physical resources to run the action).
Finally, when the action succeeds or fails, thehandling
transitions tocompleted.

While thehandlingrefers just to the state of an individual
node, it is often useful to refer to the state of its whole
subtree. Theexpansionof a node refers to the aggregate
state of all goal nodes in the subtree, including the node
itself (“deliverMail”, “navigateToLocn”, “centerOnDoor”,
and “monitorPickup” in Figure 2). Theexecutionof a node
refers to all command nodes in the subtree (“lookForDoor”,
“speak”,, “move” and “notifySender” in Figure 2). As with
a node’shandling, the state of a node’sexpansionand
executioncan be exactly one ofdisabled, enabled, active,
or completed (and state transitions occur in that order).

The various states correspond to the intuitive notion that a
subtree is expanded by handling all the goal nodes in the
tree, and that a node is executed when all its commands
have been handled. For instance, if a node’sexpansionis
completed, that implies that thehandlingof all goal nodes
in the tree rooted at that node arecompleted. Similarly, if a
node’sexecutionis disabled, that implies that thehandling
of all commands in the tree aredisabled. Figure 3 presents
formal relationships between theexpansionandexecution
of a node and thehandling of the nodes in its subtree.1

While the task tree imposes constraints between parent and
children nodes, by default there are no constraints between
children nodes themselves (i.e., by default they are all
handled concurrently). Often, however, additional
synchronization constraints are needed to coordinate robot
behaviors in appropriate ways. For example, the task of

delivering mail to some location may involve 1) navigating
to that location, 2) centering on the doorway, 3) announcing
one’s presence, and 4) waiting for the mail to be taken. The
first three of these should be done sequentially, while the
last two can be done concurrently.

TCM and TDL provide bothenablementand termination
synchronization constraints. Enablement constraints
indicate that some aspect of a node (itshandling, expansion
or execution) cannot becomeenableduntil some other
event occurs. The event can be either the passage of time, a
specific state transition of another node, or some external
event (e.g., triggered by a button push in a GUI). For
instance, one can state that theexecutionof nodeA cannot
become enabled until theexecutionof nodeB is completed
(i.e., sequential execution). Similarly, one can state that the
handlingof some node is disabled until 1PM. Termination
constraints are similar. Here, the constraints indicate that a
node and all its children are to be terminated when some
event occurs, such as if the task takes too long to complete,
or some other task has begun execution.

Allowing for enablement and termination constraints to be
specified in relationship to each of thehandling, expansion
and executionof nodes facilitates very fine-grained task-
level control. For instance, suppose two tasks must occur
sequentially, but expanding the second task is
computationally expensive. Then, one might want to

1. For completeness, theexpansionof a command node is defined to
always be in thecompleted state.

Figure 3: Expansion and Execution Semantics

N:node()∀ Tree N() N{ } Tree c()
c children N()∈

∪≡()

N:goal()∀ Expansion N Disabled,() ⇒
n Tree N()∈()∀ goal n() Handling n Disabled,()⇒[]

N:goal()∀ n Tree N()∈()∃ goal n() Handling n Enabled,()∧
Expansion N Enabled,() Expansion N Active,()∨()⇒

N:goal()∀ Expansion N Active,() ⇒
n Tree N()∈()∃ goal n() ∧[

Handling n Active,() Handling n Completed,()∨()] ∧
Expansion N Completed,()¬

N:goal()∀ Expansion N Completed,() ⇒
n Tree N()∈()∀ goal n() Handling n Completed,()⇒[]

N:node()∀ Execution N Disabled,() ⇒
n Tree N()∈()∀ command n() Handling n Disabled,()⇒[]

N:node()∀ n Tree N()∈()∃ command n() ∧[
Handling n Enabled,()]

Expansion N Enabled,() Expansion N Active,()∨()⇒

N:node()∀ Execution N Active,() ⇒
n Tree N()∈()∃ command n() ∧[

Handling n Active,() Handling n Completed,()∨()] ∧
Execution N Completed,()¬

N:node()∀ Execution N Completed,() ⇒
n Tree N()∈()∀ Handling n Completed,()[]

constrain theexecutionof the second task to be sequential,
but allow it to be expanded concurrently, so that it is ready
for execution when the first task completes. Similarly, one
might want to expand one task before another, but execute
them in the opposite order. For instance, in making plans
for air travel, one typically determines what flight to take
before deciding how to get to the airport, but clearly the
execution is in the opposite order. One might even need to
place constraints between nodes on different levels of the
tree [13]. All these types of control decisions are easily
expressible using the task tree synchronization constraints.

A monitor is a type of task tree node whose action can be
invoked repeatedly. After a monitor isenabled, events can
activateit, which cause a separate invocation of its action.
After a (user-specified) number of activations, the
monitor’s handling becomescompleted. Events that can
activate a monitor include the passage of time, a state
transition of some other node, or an external event. A
monitor’s action can issue atrigger event (which roughly
corresponds to some condition being observed), which can
be used to determine when to complete the monitor. For
instance, suppose we want the robot to travel down a
hallway until it sees a specified landmark. We could have
monitor that is activated every 200 milliseconds running
concurrently with a “navigate down corridor” task that is
constrained to terminate upon completion of the monitor.
When the monitor sees the landmark it issues a trigger
event, which causes it to complete and the “navigate” task
to terminate.

Exceptionsare treated as described in [15]. Exception
handlers are associated with a given node in the task tree
and a specificreason(some user-defined string). When an
action fails (e.g., because a motor overheats, or a planner
cannot find a valid path), it specifies the reason for the
failure. TCM then conducts a search up the tree for the first
exception handler that matches the given reason. The
exception handler is then invoked, and it can try to recover
from the problem by adding new nodes or terminating
existing nodes. Alternately, it can issue abypass, which
indicates that it is unable to handle the exception. In this
case, the search for a matching exception handler continues
up the tree. This hierarchical structuring of exceptions is
similar to “catch and throw” mechanisms used in languages
such as C++, Lisp and Ada. A key difference is that here the
control stack is not popped when an exception handler is
invoked. The task tree remains intact, and it is up to the
exception handler to decide what parts of the task tree to
modify in order to recover from the exception.

TDL
TDL is an extension of C++ that facilitates the creation,
synchronization, and manipulation of task trees. Tasks are
defined in a manner similar to C++ functions: The name of

a task is preceded by a class identifier (Goal, Command,
Monitor, Exception) and followed by its arguments,
optional top-level constraints, and the task body (Figure 4).
Unlike C++ functions, tasks do not have a return value.

The task body can contain arbitrary C++ code, with certain
restrictions. First, tasks must be globally scoped (they
cannot be defined inside C++ classes). Similarly, functions
and class methods cannot be defined inside a task body,
although the same TDL file may contain both task and
function definitions. Finally, non-local, non-continuous
transfer of control is not permitted, prohibiting the use of
“goto” and similar functionality such as “longjmp”.

The “spawn” statement (Figure 4) is used to add a child
node to the task tree. “spawn” is non-blocking, in that the
child subtask may not actually be handled by the time
control returns to the parent task. Spawned tasks can be
synchronized using the “with” clause. Figure 5 presents
the syntax for the currently defined set of constraints. Most
correspond directly to the synchronization constraints
described in the previous section, and their meanings
should be fairly obvious. The “wait” constraint makes
“spawn” blocking, so that control is not returned until the
spawned task, and all of its descendants, have been handled.

Figure 4: Sample Task Definitions (Simplified)

Goal deliverMail (int room)
{

double x, y;
getRoomCoordinates(room, &x, &y);
spawn navigateToLocn(x, y);
spawn centerOnDoor(x, y)

with sequential execution previous,
terminate in 0:0:30.0;

spawn speak(“Xavier here with your mail”)
with sequential execution centerOnDoor,

terminate at monitorPickup completed;
spawn monitorPickup()

with sequential execution centerOnDoor;
}

Goal centerOnDoor (double x, double y)
delay expansion

{
int whichSide;
spawn lookForDoor(&whichSide) with wait;
if (whichSide != 0) {

if (whichSide < 0)
spawn move(-10); // move left

else
spawn move(10); // move right

spawn centerOnDoor(x, y)
with disable execution until

 previous execution completed;
}

}

TDL defines some shorthands for commonly used
constraints. For instance, “sequential execution
<node>” is equivalent to “disable execution
until <node> execution completed”. Since the
“expand first” (do not enable execution until
expansion is completed) and “delay expansion” (do
not enable expansion until execution is enabled) shorthands
refer only to the node being spawned, they can also appear
as top-level task constraints. This is illustrated in the
definition of “centerOnDoor” in Figure 4. Note that
combining “delay expansion” and “sequential
execution” constraints produces totally serial behavior.

The<tag> part of a constraint (Figure 5) can be the name
of a spawned task that appears within the task body, or the
keywords “self”, “ parent”, or “previous”. If
multiple tasks of the same name are spawned, the
referential ambiguity is resolved by using explicit labels:2

t1: spawn a(1);
t2: spawn a(2);
spawn b(3) with

disable until t1 execution completed,
disable expansion until t2 handling active;

The tag “self” refers to the task that is being spawned and
the tag “parent” refers to the enclosing task. The tag
“previous” is more complex to interpret. Spawned tasks
may be embedded within iterative or conditional code,
making it impossible to determine the previous task
statically, at compile time. Therefore, this determination is
made dynamically, at run time, using code added by the

TDL compiler. While being able to refer to the
“previous” spawned task is often useful, in some cases
it may lead to hard-to-understand, unpredictable code. In
such situations, one should use explicitly named tags.

Sometimes, the same synchronization constraint must be
applied to a number of tasks. TDL supports this through the
“with (<constraint>) do {<body>}” syntax.
The constraints of a “with/do” statement are applied to
each spawned task in the<body>. For nested “with/do”
statements, the constraints of the outer “with/do” are
applied to the inner “with/do” as a single entity, as if the
inner “with/do” were itself a separate task. For instance,
the “deliverMail” task in Figure 4 could be written as:

getRoomCoordinates(room, &x, &y);
with (sequential execution) do {

spawn navigateToLocn(x, y);
spawn centerOnDoor(x, y)

with terminate in 0:0:30.0;
with (parallel) do {

spawn speak(“Xavier here with your mail”)
with terminate at monitorPickup completed;

spawn monitorPickup();
}

}
which indicates that the “speak” and “monitor-
Pickup” tasks can execute concurrently, and that both
execute sequentially after task “centerOnDoor”, which
in turn executes sequentially after “navigateToLocn”.

A task body can also contain the statements “succeed”
and “fail <reason>”. Both cause the task to complete
handling, with the “fail” statement raising an exception.
Exception handlers are defined analogously to goal and
command tasks. Only exception handlers, however, can
include the “bypass” statement, which indicates that
another exception handler should be found to handle the
current exception. Exception handlers are associated with
task tree nodes using the “with exception
(<reason>: <handler> ...) do { <body> }”
statement. For instance:

Goal navigateToLocn (double x, double y)
{

with exception
(“Overheating”: handleOverheating(x, y),
 “no path”: handlePlannerFailure()) do {

...
}

}

provides the navigation task with handlers for both the
“Overheating” and “no path” exceptions.

Monitors are defined and spawned in much the same way
as goal and command tasks. Monitors, however, can
specify additional top-level task constraints, including
“max triggers = <num>”, “ max activations
= <num>”, and “period = <time>”. Within the body2. TDL also includes syntax for referring to a specific task, or set of tasks,

that are spawned within an iterative (for, while, ordo) statement.

Figure 5: TDL Synchronization Constraints

<simple-constraint>:
expand first | delay expansion

<constraint>:
<constraint> , <constraint> | <simple-constraint>
| sequential <constraint-option> [<tag>]
| serial [<tag>] |parallel | wait
| disable [<constraint-option>]until <event>
| disable[<constraint-option>]until <absolute-time>
| disable [<constraint-option>]

for <relative-time> [after <event>]
| terminate at <event>
| terminate at <absolute-time>
| terminate in <relative-time> [after <event>]

<event>:
<tag> [<constraint-option>] <state>

<tag>:
<task name> |self | parent | previous

<constraint-option>:
handling | expansion | execution

<state>:
enabled | active | completed

of a monitor task, the statement “trigger” can be used to
signal a trigger event (Figure 6).

Implementation
TDL is implemented using a compiler that transforms the
task definitions into pure C++ code that include calls to the
TCM library. This code can then be compiled using any
standard C++ compiler and linked with the TCM library.
This approach has several advantages. First, we can take
advantage of widespread, highly optimized C++ compilers
to produce platform-independent, efficient task-level
control code. Second, this enables TDL code to easily
interface with existing C and C++ code, including
functions that use the TCM library directly.

TDLC, the program that transforms TDL code, is written in
Java, with the parser written in JavaCC. As a TDL file is
parsed, a network of Java data-objects are created that have
a direct one-to-one correspondence with TDL task
definitions, TDL statements, C++ code, and even the file
itself. Each data-object is capable of printing itself out,
either in the original TDL format or translated C++ code.

The translation to C++ is trivial for the parts of the task
definition that are already C++ statements. TDL-specific
statements, such as task definition headers,spawns, and
with/dos, are somewhat more complex. Task spawns and
synchronization constraints are translated directly into C++
code that invokes the corresponding TCM functions. Each
TDL task definition is translated into a C++ class. The class
includes variables for each formal argument of the task and
a method to invoke the body of the task (which becomes the
task tree node’saction). In addition, header files and
functions are generated for allocating a new task tree node
of that type, creating the node’s action, and invoking the
task as if it were a standard C function.

Several specialized classes are used to help manage task
tree nodes and synchronization constraints. In particular,
the _TDL_HandleManager object is used to map
between task names (such as “navigateToLocn”) and
references to the corresponding task tree nodes. This same
object is also used to keep track ofwith/do nesting and

when task tree nodes are allocated, so as to determine
which node(s) are considered to be “previous”.

The TCM library is written in C++. A hierarchy of classes
is defined for the various types of task tree nodes. Each
node specifies its parent, children, associated action,
associated exceptions, current state of itshandling,
expansionandexecution, and lists of the synchronization
constraints it depends on and those that are dependent upon
it. When a task tree node changes state, it signals all nodes
that are waiting for that transition, as specified by the
“disable” and “terminate” constraints (Figure 5).
An agenda managerqueues and dispatches these signals,
invokes the actions of enabled nodes, and signals nodes that
are waiting on a given time. TCM can also be instructed to
log all state transitions, for use in debugging.

We have also integrated the TCM library with ControlShell
(produced by Real-Time Innovations), which provides for
real-time control [12]. The two packages communicate via
message passing, using RTI’s NDDS system [9]. Together,
these packages form the bottom two layers of a standard
three-tiered control architecture (Figure 1).

Currently, the TCM implementation does not support true
multi-tasking. While this makes the TCM library fairly
portable, it also limits the amount of true concurrency the
system can support. Once the basic concepts have been
proven, we intend to create tailored implementations of the
TCM library that take advantage of multi-tasking
capabilities provided by various operating systems.

Tool Support and Future Work
We are developing several tools to support the design and
debugging of task-level control programs. VDT (Visual
Design Tool) is a graphical programming environment,
written in Java, that supports the design of TDL code. VDT
enables programmers to define TDL tasks using a mixed
textual/graphical interface (Figure 7). VDT can also
produce HTML documents from TDL code, to facilitate
browsing for existing task definitions.

To facilitate debugging, we are developing visualization
tools that use the log files produced by TCM. These tools
will enable users to view the hierarchical structure of task
trees, to see the changes in node state over time, and to
identify constraints between nodes that are not yet satisfied.
We are also using temporal logic to model state transitions
and synchronization constraints between task tree nodes.
The goal is to use model checking [2] to formally validate
properties of task-level control programs, such as liveness
and safety, and possibly to verify the implementation of the
TCM library itself.

Other research includes integrating TDL and TCM with
resource management capabilities [11], another important
aspect of task-level control. We are also looking at
transforming other existing task-level control languages

Figure 6: Monitor for Delivery Task (Simplified)

Monitor monitorPickup ()
max triggers = 1, max activations = 15,
period = 0:0:1.5

{
if (mailIsGone()) {

trigger;
with (parallel) do {

spawn speak(“Thank you”);
spawn notifySender();

}
}

}

into TDL, both to demonstrate the expressive power of
TDL and to provide compiled, C++-based implementations
of those languages. Our initial exploration, which focuses
on the RAP [3] language, shows promising early results.

Conclusions
This paper has presented TDL, a new language for
specifying task-level robot control. TDL is an extension of
C++ that includes explicit synchronization constructs to
support task decomposition, synchronization, execution
monitoring and exception handling. We have described in
detail the concept of task trees, which underlies all of TDL,
including how it supports fine-grained control over task
synchronization. We introduced the syntax of TDL,
illustrated it with a simplified mobile robot example, and
briefly described how TDL code is transformed into pure
C++ code that utilizes calls to our task management library.

Designing a new language is tricky. A good language
should embody enough constraints so as to guide
developers along the “correct” path, without mandating
decisions that may be unwarranted. Simple robot behavior
should be simple to state in the language, while complex
behaviors should still be expressible, in some manner. It is
difficult to make these trade-offs correctlya priori. Our
extensive experience with TCA, coupled with our
familiarity with other task-level control languages,
especially ESL and RAP, has provided a good basis for
justifying our choices. The real proof, however, is in the
use. To this end, we are starting to use TDL in various
applications, including the Xavier mobile robot [16].
Through this experience, we expect to refine and extend
TDL, the TCM library, and the various support tools. Our
aim is to make developing complex robot control programs
as easy as conventional software. The payoff is cheaper,
more reliable, and more effective robot systems.

Acknowledgments
G.R. Srinivasan and Greg Whelan have contributed to this
effort. Erann Gat provided many insightful comments on
an earlier draft. This research has been partially supported
by NASA, under grant NAGW-5113.

References
[1] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and

M. Slack. A Proven Three-Tiered Architecture for Program-
ming Autonomous Robots,Journal of Experimental and The-
oretical Artificial Intelligence, 9:2, 1997.

[2] E. Clarke, E. Emerson and A. Sistla. Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic
Specifications,ACM Transactions on Programming Lan-
guages and Systems, 8:2, pp 244-263, 1986.

[3] R. James Firby. An Investigation into Reactive Planning in
Complex Domains. Proc. National Conference on Artificial
Intelligence, pp 202-206, Seattle, WA, July, 1987

[4] E. Gat. Integrating Planning and Reacting in a Heterogeneous
Asynchronous Architecture for Controlling Real-World
Mobile Robots, Proc. National Conference on Artificial Intel-
ligence, pp 809-815, San Jose, CA, July 1992.

[5] E. Gat. ESL: A Language for Supporting Robust Plan Execu-
tion in Embedded Autonomous Agents, Proc. AAAI Fall
Symposium on Plan Execution, Boston MA, October 1996.

[6] M. Georgeoff and A. Lansky. Reactive Reasoning and Plan-
ning. Proc. National Conference on Artificial Intelligence, pp
972-978, Seattle, WA, July, 1987.

[7] K. Konolige. “COLBERT: A Language for Reactive Control
in Saphira”, Proc. German Conference on Artificial Intelli-
gence, Freiburg, Germany, 1997.

[8] D. McDermott. Transformational Planning of Reactive
Behavior, Tech Report YALEU/DCS/RR-941, Yale Univer-
sity, 1994.

[9] G. Pardo-Castellote, S. Schneider and M. Hamilton. Publish-
Subscribe “Push” Technologies for Real-Time Applications,
Proc. Real-Time Systems Symposium, December 1997.

[10]D. Bernard and B. Pell. Designed for Autonomy: Remote
Agent for the New Millennium Program. Proc. i-SAIRAS ‘97,
Tokyo Japan, October 1997.

[11]B. Pell, G. Dorais, C. Plaunt and R. Washington, “The Remote
Agent Executive: Capabilities to Support Integrated Robotic
Agents”, Proc. AAAI Spring Symposium on Integrated
Robotic Architectures, Palo Alto, CA, March 1998.

[12]S. Schneider, V. Chen, G. Pardo-Castellote. ControlShell: A
Real-Time Software Framework, Proc. International Confer-
ence on Robotics and Automation, San Diego CA, May 1994.

[13]R. Simmons. Concurrent Planning and Execution for Auton-
omous Robots,IEEE Control Systems, 12:1, pp 46-50, 1992.

[14]R. Simmons. Monitoring and Error Recovery for Autono-
mous Walking, Proc. IEEE International Workshop on Intel-
ligent Robots and Systems, pp 1407-1412, July 1992.

[15]R. Simmons. Structured Control for Autonomous Robots.
IEEE Transactions on Robotics and Automation, 10:1, Feb.
1994.

[16]R. Simmons, R. Goodwin, K. Zita Haigh, S. Koenig and J.
O’Sullivan. A Layered Architecture for Office Delivery
Robots, Proc. Autonomous Agents ‘97, pp 245-252, Marina
del Rey, CA, February 1997.

Figure 7: Visual Design Tool (VDT)

