Concurrent Planning and Execution for
Autonomous Robots

The performance of autonomous robots
may be increased significantly by concurrent-
ly planning and executing actions. The Task
Control Architecture (TCA) provides com-
munication and coordination facilities to con-
struct distributed, concurrent robotic systems.
This paper describes the use of TCA in a
system that walks a legged robot through
rugged terrain. The walking system, as
originally implemented, had a sequential
sense-plan-act control cycle. Utilizing TCA
features for task sequencing and monitoring,
the system was modified to concurrently plan
and execute steps. Walking speed improved
by over 30%, with only a relatively modest
conversion effort.

Coordinating Planning and Execution

The coordination of planning and execu-
tion is a significant problem for autonomous
robotic systems. To achieve continuous mo-
tion, the robot must decide what to do next by
the time its previous actions are completed.
This real-time constraint can often be met
through the use of concurrency: while one step
is executing, the system can plan the next
action.

The problem remains that the planning and
execution tasks must be tightly coordinated.
Concurrent processes must be prevented from
temporally interacting, particularly when they
contend for common resources. The Task Con-
trol Architecture (TCA ) has been developed to
facilitate this and other robotic control
problems [1]. TCA provides a general
framework of hierarchical task decomposition
augmented with reactive behaviors, plus
utilities for communication, coordination, and
monitoring of distributed robotic systems. In
particular, explicit temporal constraints be-
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tween subtasks are used to synchronize
processes.

The Task Control Architecture has been
used in conjunction with the Ambler, a six-
legged robot designed for planetary explora-
tion (Fig. 1). TCA integrates perception,
planning, and real-time control to autono-
mously navigate the Ambler over rugged ter-
rain 2], [3]. The control architectlire for the
Ambler is quite deliberative: a host of
geometric and terrain constraints on the
robot’s motion are analyzed in order to maxi-
mize the safety and energy efficiency of
planned moves. In contrast, many walking
systems utilize a more reactive approach, in
which relatively simple rules are used to
choose actions based on the current environ-
ment [4]-[6]. A deliberative architecture was
chosen for the Ambler because reliability and
power consumption are overriding concerns
for planetary missions; it is a feasible architec-
ture because the Ambler is statically stable
(cf, [7].

One result of the Ambler’s deliberative
nature is that planning a step takes an appreci-
able amount of time. In particular, the walking
system was initially developed with a sequen-
tial sense-plan-act cycle, which left the robot
idle for much of the time. In analyzing the
system performance, it was clear that concur-
rent planning and execution could result in
continuous, or nearly continuous, motion of
the mechanism.

Concurrency was achieved by modifying
the original system, using facilities provided
by TCA for specifying, executing, and
monitoring hierarchical plans. The average
walking speed improved by over 30%, with
competence comparable to the sequential sys-
tem. Notably, by using TCA the conversion
effort involved only minor modifications to
the existing software. Specifically, design,
modification, and testing took only a few man-
weeks of effort, compared to the several man-
years needed to implement the original system.

Experience with the Ambler walking sys-
tem supports the general strategy of first
developing competent sequential systems,
then increasing performance by adding con-
currency. Sequential systems are easier to
develop and debug, since temporal interac-
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tions are not a factor. Once developed, TCA
can be used to facilitate conversion to concur-
rent operation. This same methodology has
also been employed for an indoor mobile
manipulator [8].

The next section briefly describes the Task
Control Architecture and its salient features
for supporting concurrency. The following
section introduces the Ambler and the sequen-
tial walking system. The modifications to
produce concurrent operation are then
presented, followed by some empirical perfor-
mance results.

The Task Control Architecture

The Task Control Architecture provides a
general framework for controlling distributed
robot systems [1], [8]. TCA can be thought of
as a high-level robot operating system that
provides common facilities needed by many
robotic applications. In particular, TCA sup-
ports 1) distributed processing, 2) hierarchi-
cal task decomposition, 3) temporal
synchronization of subtasks, 4) execution
monitoring, 5) resource management, and 6)
exception handling.

Arobot system built using TCA consists of
a number of task-specific modules (process-
es), and a general-purpose central control
module (Fig. 2). The modules communicate
with one another (and with the central control)
by passing messages. The modules register
message formats and message handling pro-
cedures with TCA, and the central control has
responsibility for routing messages to the ap-
propriate modules.

TCA provides several classes of messages.
Query messages enable modules to obtain in-
formation from other modules. They are
blocking, pending receipt of a reply. Goal,
command, and monitor messages are used to
create hierarchical plans and to react to plan
failures. These messages are non-blocking,
and the TCA central control takes responsi-
bility for scheduling and executing the mes-
sages, and preempting them in case of plan
failures.

TCA has several mechanisms for
coordinating messages: resources, hierarchi-
cal task trees, and temporal constraints. ATCA
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Fig. 1. The Ambler.

resource is defined by a set of message han-
dling procedures and a capacity. By default,
all messages handled by a module are grouped
as a resource of unit capacity. This permits
TCA to send only one message to a module at
atime, with additional messages queued pend-
ing resource availability. A module can also
reserve a resource, giving it exclusive access
and preventing other modules from utilizing
the resource until the reservation is released.
This facility can be used to synchronize
resources: a perception module might reserve
the real-time controller module, for instance,
to prevent the robot from moving while im-
ages are being acquired.

TCA directly supports the creation and
execution of hierarchical plans. For each mes-
sage sent, TCA records the relationship be-
tween sender (goal) and receiver
(subgoal/command) in a hierarchical task tree.
In Fig. 3., query messages are indicated by
double-headed shaded arrows, while single-
headed shaded arrows indicate task decom-
position. These task trees are created
dynamically, and can grow to arbitrary width
and depth. Task trees also explicitly represent
temporal constraints on the planning and ex-
ecution of tasks (indicated by the thick
horizontal arrows). These constraints indicate
which tasks to schedule, with TCA queuing
subtasks until temporally prior ones have
completed.

A sequential-achievement constraint be-
tween two nodes is interpreted by TCA to
mean that all the command and monitor mes-
sages under the first node (the leaves of its
subtree) must be handled before any of those
under the second node. For example, in the
Ambler task tree (Fig. 3), the sequential-
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achievement constraint between the placeLeg
goal and the moveBody command implies that
the commands to move a leg must complete
before the body can begin to propel forward.

Adelay-planning temporal constraint indi-
cates that TCA should delay handling a goal
message (i.e., expanding it) until all com-
mands and monitors under the previous node
have been executed. Without this constraint,
TCA would allow the goal message to proceed
and create a plan, although, if a sequential-
achievement constraint has been added, that
plan will not actually be executed until the
previous subtree has completed. For example,
the delay-planning constraint between the
traverseArc goals in Fig. 3 indicates that the
steps for traversing the second arc should not
be planned out until the robot has successfully
navigated the first arc. (The Appendix
presents a formalization of TCA’s temporal
constraints; TCA represents them using an
arithmetic reasoning system called the Quan-
tity Lattice [9].)

When advance planning is performed, ex-
ecution monitoring and error recovery be-
come necessary. TCA provides several
different constructs for monitoring progress of
aplan and for raising exceptions. In particular,
apoint monitor (Fig. 4) consists of a condition
message (a query) and an action message (a
goal orcommand). When the appropriate tem-
poral constraints are met, the condition query
is sent. If the condition holds, the action mes-
sage is sent, which can replan by modifying
parts of the task tree.

To facilitate error recovery, TCA provides
utilities for modules to trace through and
modify task trees. For example, a module can
find the parent or children of anode in the tree.
A module can also terminate execution of a
subtree, and can insert new nodes and tem-
poral constraints into the tree. Once added, the

new nodes are expanded (i.e., planned out)
and executed using the normal TCA
mechanisms.

The Ambler

We have built and are currently testing the
Ambler, a six-legged robot designed for
planetary exploration [2]. The 4-mtall Ambler
has been designed to stably traverse a 30°
slope while crossing meter-sized surface fea-
tures. The robot is configured with six legs,
arranged in two stacks on central shafts (Fig.
1). Each leg is an orthogonal mechanism that
decouples horizontal and vertical motions,
thereby increasing walking efficiency and
simplifying control. The stacked legs and
large body cavity enable the Ambler to exhibit
aunique circulating gait,in which trailing legs
recover through the body cavity and past the
other legs to become new leading legs. The use
of a circulating gait enables the Ambler to use
approximately one-half to one-third the
footsteps of a follow-the-leader type walker,
such as the ASV [10].

The Ambler utilizes a number of sensors to
monitor its progress and safety. A scanning
laser rangefinder on top of the robot provides
accurate perception of the terrain. All joints
have absolute and incremental (optical) en-
coders for servo control and dead-reckoning.
Six-axis force/torque sensors mounted on
each foot are used to detect terrain contact.
Two inclinometers on the body indicate tilt
and roll from the horizontal plane.

We have developed a software system in-
tegrating perception, planning, and real-time
control that enables the Ambler to
autonomously navigate over hills, boulders,
and trenches [3], [11]. The walking system
consists of a number of modules connected via
the TCA central control module (Fig. 2).
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Fig. 2. Modules for the Ambler walking system.
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To begin walking, a series of arcs is input
by the user. TCA forwards the first arc to the
Gait Planner, which issues a takeStep message
to begin the planning process (Fig. 3). The
Gait Planner analyzes geometric constraints
on the Ambler’s motion to find a body move
that maximizes progress while keeping the
body stable. Based on this move, the planner
constructs a region of geometrically feasible
footfalls. The Gait Planner then queries the
Footfall Planner to provide evaluations of
footfall quality within that region. The Foot-
fall Planner requests an elevation map from
the Local Terrain Map module, which in turn
obtains scanner subimages from the Image
Queue Manager (the Scanner Interface
module acquires images and asynchronously
sends them to the Image Queue Manager fol-
lowing each body move).

Upon receiving the footfall evaluations,
the Gait Planner chooses the best move and
sends the chosen footfall and body move to the
TCA central control. If the Ambler has not
reached the end of the current arc, the planner
also sends a message to take the next step. The
Leg Recovery Planner is invoked to determine
an efficient path for the leg that avoids terrain
collisions, and the trajectory is executed by the
Controller. After a successful leg move, TCA
forwards the body move to the Controller,
which actuates the horizontal joints to simul-
taneously translate and rotate the body. Be-
cause of the rigidity and accuracy of the
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mechanism, joint conflict is negligible, even
with powering all twelve horizontal joints.
Finally, TCAforwardsthenexttakeStep mes-
sage to the Gait Planner to plan another step.

The planning and execution of steps are
coordinated via the TCA temporal constraints.
For one, all goals and commands are con-
strained to be achieved sequentially (Fig. 3).
In addition, a delay-planning constraint be-
tween the moveBody and takeStep goals forces
the planning of one step to wait until the

previous step is completed. This yields a se-
quential plan-act cycle.

Concurrency

In analyzing the performance of the
sequential Ambler walking system, it became
clear that performance could be increased
significantly by executing one step while plan-
ning the next. In fact, timing studies indicated
that continuous walking could be attained
since the execution time of the Controller is
greater than the sum of the planning and per-
ception times.

There are two main concerns in specifying
concurrent operation for autonomous robotic
systems. One is indicating which tasks may
occur in parallel. The other is constraining the
concurrency sufficiently so that unexpected
temporal interactions (e.g., resource conten-
tion) do not occur. This section describes how
TCA was used to specify concurrent operation
for the Ambler.

The first step in converting to concurrent
operation was to specify that planning and
execution may occur in parallel. This merely
involved removing a single line of code in the
original system that added the delay-planning
temporal constraint (Fig. 3). With that con-
straint removed, TCA is free to forward a
takeStep message as soon as itis issued. Thus,
the takeStep subtree is expanded (although not
executed) while the previous leg and body
moves are being executed (Fig. 4).

In the original sequential system, the Gait
Planner queried the Controller for the
Ambler’s current position before planning a
move. To plan in advance, the takeStep mes-
sage format was augmented to include the
expected position of the Ambler. This change
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Fig. 4. Task tree for the concurrent walking system.
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Fig. 5. Timing chart for the concurrent walking system.

was straightforward using the TCA message
passing utilities.

In enabling concurrent planning, percep-
tion, and execution, undesirable temporal
interactions between modules have to be
avoided. For the Ambler system, there are
several potential interactions in operating
concurrently: 1) a planned body move that
fails would invalidate assumptions made in
planning the next step; 2) planning could ex-
ceed the perception horizon; 3) the robot
might be moving when images are acquired.

With concurrent planning and execution,
the plan for one step is based on the assump-
tion that execution of the previous step suc-
ceeds as planned (as described above, the
planned position is passed in the augmented
takeStep message). In particular, if a body
move fails the next planned moves might not
be achievable. To handle this, a TCA point
monitor is inserted in the task tree after the
moveBody command and preceding the next
gait planning cycle (Fig. 4). The condition
query of the monitor checks whether the
planned and actual body positions differ by
some threshold. The action message uses TCA
facilities to find and terminate the takeStep
node (and its subtree) that follows the
monitor. A new takeStep message is then
issued with the correct current body position,
which is subsequently planned out and ex-
ecuted, as per usual.

Another temporal interaction stems from
the fact that the walking system plans steps
significantly faster than it executes them.
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Thus, if not controlled, the planning would
soon get several steps ahead of the execution
and would be operating at the limits of the
perceived terrain (where the scanner’s resolu-
tion is low). To prevent this, we limit the
system to plan only one step ahead. This is
accomplished by adding delay-planning con-
straints between fakeStep messages and the
monitor messages one level up the tree from
them (Fig. 4). While this method could be
easily used to provide multi-step lookahead,
for the Ambler one step lookahead provides an
appropriate balance between performance and
accuracy.

The third potential interaction is that the
Scanner Interface might try to acquire a range
image while the mechanism is moving. This
could lead to both image blurring and inac-
curate determination of the scanner position at
the time of image acquisition. Thus, it is
desirable for the Ambler to be stationary while
the laser scanner is operating. The necessary
synchronization was easily achieved using
TCA’s resource mechanisms. The Scanner In-
terface issues a message to reserve the Con-
troller module, queries for the current body
position, acquires the image, and then releases
the reservation. TCA ensures that 1) the
reservation is not granted until the Controller
is available (i.e., the Ambler is idle), and 2)
subsequent commands are queued while the
reservation is in effect.

The modifications to produce concurrent
walking took only a few man-weeks of effort,
including the time to analyze, design, code,

and test the concurrent system. Most of the
modifications were initially developed and
tested using a graphical simulator. Testing on
the Ambler itself revealed the need to
synchronize the Scanner Interface and Con-
troller modules.

Results

The competence of the concurrent system
is comparable to the sequential system: al-
though neither are perfect, both can reliably
navigate through rough terrain.

The performance of the system increased
substantially with concurrency, in many cases
achieving nearly continuous walking. Fig. 5
presents a timing chart for a typical walk,
produced from TCA log files. The darkly
shaded areas of the chart are times when
modules are computing; lightly shaded areas
are when they are awaiting replies from other
modules. The chart indicates that the Ambler
took 20 steps in 23.5 min, averaging 35
cm/min. This is 34% faster than the sequential
system in navigating the same terrain (Fig. 1).
The only nontrivial idle times of the Controller
are while the first step of each arc is being
planned (since the traverseArc goals are con-
strained to operate in delay-planning mode).
Overall, the Controller is active about 84% of
the time and, discounting the first step of each
arc, is active 95% of the time, which represents
nearly continuous walking.

The utilization of the TCA central control
module is about 3%. While some researchers
have warned about the potential bottleneck
inherent in centralized control (e.g., [12]),em-
pirical evidence with the Ambler walking sys-
tem indicates otherwise. This observation is
also supported by our experience using TCA
to control an indoor mobile manipulator [8].

The timings presented in Fig. 5 are typical
of runs where everything happens according
to plan. Sometimes, however, a leg will unex-
pectedly collide with an obstacle, or a body
move will fail to achieve the requested posi-
tion. When this occurs, the TCA point monitor
acts to initiate replanning from the actual
Ambler position, ensuring that the com-
petence of the system to navigate rugged ter-
rain is not impaired. While the motion is no
longer continuous, the time performance is
still no worse than the sequential system (and
since failures occur only rarely, the overail
performance is usually still much better).

Conclusions
The primary conclusion from this work is
how relatively simple it was to convert from

sequential to concurrent operation by using
TCA. This compares favorably with the often
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significant effort needed to achieve concurrent
operation [13], [14]. We demonstrated a sig-
nificant increase in performance with no discern-
ible impact on competence, and with relatively
modest effort to modify the existing code.

Much of the power in using TCA comes
from its explicit representation of hierarchical
task trees and temporal constraints. Only
recently was explicit temporal information in-
cluded in Al planners (e.g., [15], [16]), and it
is still fairly uncommon in mobile robot sys-
tems. We believe that the ability to concisely
specify, reason about, and manipulate tem-
poral constraints on tasks is crucial in building
complex robotic systems. To this end, we are
beginning to investigate the use of formal
methods (e.g., [17]) to verify the temporal
consistency of robot designs.

The results also indicate TCA’s usefulness
in evolving systems to be faster (through con-
currency) and more robust (by adding
monitors and exception handlers). Our ex-
perience with the mobile manipulator also
bears out the utility of TCA in evolving com-
plex robot systems [8], but this is our first
quantitative assessment of the gain in perfor-
mance and incremental development time
needed.

We have recently extended the Amblersys-
tem to include concurrent perception as well
as planning and execution [11]. We intend to
further parallelize and robustify the system as
our timing analyses point out other perfor-
mance bottlenecks and temporal interactions.

Appendix
TCA Temporal Constraints

Each node in a TCA task tree is associated
with a message and a set of children nodes
(denoted Chy) issued in handling that mes-
sage. A node has several temporal intervals,
defined by their start and end points (I.start
and I.end, with Lstart < I.end). Every node has
a handling interval (Hnd,) which denotes the
time when its associated message is being
handled.

Nodes associated with goal, command,
and monitor messages also have an achieve-
ment interval (Achn). For command and
monitor nodes, the achievement interval con-
tains the handling interval of the node:

Achy.start = Hndp.start A

Achp.end 2 Hndp.end.

For goals, achievement and handling inter-
vals overlap:

Achg.start = Hndg.start

Achg.end 2 Hndgend.

In addition, the achievement interval of a
node contains the achievement intervals of all
its children:
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V(ce Chy) [Achn.start < Ache.start A
Achn.end 2 Ache.end).

Finally, nodes have a planning interval
(Piny). For commands and monitors, the plan-
ning and handling intervals are identical. For
goals, the planning interval contains the han-
dling interval of the node, and contains the
planning intervals of all its children
(analogously to the above formulae).

In handling messages, TCA keeps track of
the special time point *now*, which moves in
relationship to the handling intervals of the
nodes. When the message for a node is being
handled, TCA asserts that:

Hndp.start < *now* < Hndp.end.

After a message has been handled, TCA
retracts the above assertions and instead as-
serts that *now* > Hndn.end.

Finally, TCA schedules a node to be hand-
led whenever, given the existing temporal
constraints, it cannot be proven that
*now* < Hndp.start.

Using these intervals, TCA defines the se-
quential-achievement constraint between two
nodes as Achni.end < Achpa.start.

Similarly, the delay-planning constraint is
defined as Achpi.end < Plnpy.start.
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