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Structured Control for Autonomous Robots

Reid G. Simmons

Abstract— To operate in rich, dynamic environments,
autonomous robots must be able to effectively utilize and
coordinate their limited physical and computational resources.
As complexity increases, it becomes necessary to impose explicit
constraints on the control of planning, perception, and action
to ensure that unwanted interactions between behaviors do
not occur,

This paper advocates developing complex robot systems by
layering reactive behaviors onto deliberative components. In
this structured control approach, the deliberative components
handle normal situations and the reactive behaviors, which are
explicitly constrained as to when and how they are activated,
handle exceptional situations.

The Task Control Architecture (TCA) has been developed
to support this approach. TCA provides an integrated set of
control constructs useful for implementing deliberative and
reactive behaviors. The control constructs facilitate modular
and evolutionary system development: they are used to integrate
and coordinate planning, perception, and execution, and to
incrementally improve the efficiency and robustness of the
robot systems. To date, TCA has been used in implementing
a half-dozen mobile robot systems, including an autonomous
six-legged rover and indoor mobile manipulator.

I. INTRODUCTION

O CARRY OUT complex tasks in rich, dynamic envi-

ronments, autonomous robots must decide when to plan
and when to act, how to detect and recover from errors, how
to handle conflicting goals, etc. In short, the robots must
effectively coordinate their limited physical and computational
resources. As the tasks and environments become increasingly
complex, explicit constraints that impose structure on the
control of planning, perception and action are needed to
improve system understandability and to ensure that the robots
will achieve their tasks.

A current methodology is to design robot systems as col-
lections of behaviors that are independent, action-generating
entities. In the reactive approach, systems consist of collections
of local behaviors that are triggered by direct sensing of
the environment {6], [10}, [17]. The global, goal-directed
behaviors of such systems are not explicitly planned: they
typically emerge from interactions between the local entities
[1], [7]. While this approach handles uncertainty and unpre-
dictable changes well, it is unclear how it scales as tasks and
environments increase in diversity.

The problem is that as complexity increases, interactions be-
tween behaviors increase as well, to the point where it becomes
difficult to predict the system’s overall behavior. One way
to limit interactions is to add top-down constraints that take
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advantage of regularities in the domain to coordinate actions.
This strategy is embodied in the deliberative approach, which
hierarchically partitions problems into manageable subtasks
and explicitly controls interactions between them.

A limitation of the deliberative approach is that strict
top-down constraints may prevent the system from being
responsive to changes in the environment. Thus, a combina-
tion of deliberative (“feedforward”) and reactive (“feedback”)
behavior is needed to deal with complex, dynamic domains
[20]. The approach advocated here, which we term structured
control, is to start with basic deliberative components that
handle nominal situations. System reliability is increased by
incrementally layering on reactive behaviors to handle excep-
tions. Explicit temporal and resource constraints delimit the
contexts in which the behaviors are active.

The structured control approach of layering constrained,
reactive behaviors onto a deliberative base provides an engi-
neering basis for designing autonomous robot systems. First,
the separation of nominal and exceptional behaviors increases
system understandability by isolating different concerns: the
robot’s behavior during normal operation is readily apparent,
and strategies for handling exceptions can be developed as
needed. Furthermore, complex interactions are minimized by
constraining the applicability of behaviors to specific situa-
tions, so that only manageable, predictable subsets will be
active at any one time. Finally, the structured control approach
acknowledges that creating complex robotic systems is an
incremental process: designers should be able to add new
behaviors with little or no modification to existing systems.

The Task Control Architecture (TCA) has been developed as
a framework for combining deliberative and reactive behaviors
to control autonomous robots. The term task control refers
to the problem of coordinating perceptual, planning, and
execution components of a robot system to achieve a given
set of goals. Task control problems include noticing that goals
need attention, deciding which goals to attend to, constructing
plans (to some level of detail), monitoring progress, and
dealing with exceptions.

While the Task Control Architecture does not itself provide
behaviors for particular tasks, it does provide designers with
control constructs for developing such behaviors and software
utilities for implementing the necessary control decisions. In
essence, TCA is a high-level robot operating system that
provides an integrated set of commonly needed mechanisms
to support distributed communications, task decomposition, re-
source management, execution monitoring, and error recovery.

A robot system built using TCA consists of task-specific
modules that communicate by sending messages via a general-
purpose, reusable central control module. The task modules
perform all robot-dependent information processing, while the
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central control module is responsible for routing messages
and maintaining task control information. The task modules
use the TCA control constructs to specify information such as
how to decompose tasks, when subtasks should be planned and
executed, when and how to monitor the environment, and how
to react to exceptional situations (by terminating tasks, adding
new subtasks, reordering tasks, etc). TCA utilizes this control
information, in turn, to schedule and coordinate the actions of
the modules and to respond to change in a context-sensitive
fashion.

Most of the TCA control constructs can be incremen-
tally added with little or no change to existing systems. In
particular, modules can be added that perform new tasks,
temporal constraints can be modified to increase concurrency,
new monitors and exception handlers can be easily added to
existing tasks, and new implementations can replace existing
modules without changing communication protocols. We have
found that these capabilities greatly facilitate the development
of complex systems.

To date, the Task Control Architecture has been used in
over a half-dozen mobile robot systems, including a six-legged
robot [27], an indoor mobile manipulator {29], a coal-mining
robot [23], a system to inspect the tiles of the Space Shuttle
[11], and a NASA robot for space station assembly [14]. The
first two systems will be used as the main examples in this
paper.

The Ambler (Fig. 1) is a six-legged robot, designed for
planetary exploration, that autonomously traverses rugged
terrain [27]. The Ambler system uses TCA to integrate real-
time control, 3D perception, planning algorithms, monitoring,
and error recovery procedures. The deliberative aspects of
TCA are used to plan safe and energy etficient moves, based
on a host of kinematic, pragmatic, and terrain constraints
[28]. The reactive components are used to detect and handle
deviations arising from sensor and actuator uncertainty [25].

The indoor mobile manipulator is based on a Hero 2000, a
wheeled robot with an arm and two-fingered gripper. A ceiling-
mounted camera provides a “satellite” view of our laboratory
(Fig. 2). The Hero operates in a peopled, unmodified office
environment. Its tasks include collecting cups off the floor,
retrieving printer output, delivering objects to workstations,
avoiding static and dynamic obstacles, and recharging itself
when necessary [15], [29].

The next section discusses the issues of deliberation and
reactivity, and how other robot architectures address these
issues. Section HI describes the Task Control Architecture
in some detail, focusing on how it supports the design of
deliberative and reactive behaviors. Section IV describes how
TCA facilitates incremental system development, and Section
V presents conclusions.

II. DELIBERATION AND REACTIVITY

We take the essence of the deliberative approach to be
the top-down decomposition of tasks into subtasks, specify-
ing current and future activities and constraints (temporal,
resource) among them. Reactivity means that the system
detects and makes appropriate responses to changes in its
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Fig. 1. The six-legged Ambler robot.
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Fig. 2. The Hero mobile manipulator.

environment. In short, deliberation is more concerned with the
way subtasks interact, and reactivity is more concerned with
the “here and now.” Note that “reactive” does not necessarily
imply “reflexive” (direct connections between sensors and
effectors)—any computation is allowable as long as the system
is “fast enough” to respond to the given situation.

Both approaches have strengths and weaknesses as frame-
works for robot architectures. The deliberative approach can
handle complex tasks by breaking them into more manageable
subproblems. Planning and search can help the robot avoid
local traps in the environment, which can decrease risk and
increase reliability. It is more difficult for reactive architectures
to deal with behavioral interactions, unless they are known
and specified in advance. On the other hand, the task decom-
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position is only as good as the models and information the
robot has. Often, decisions must be deferred until the robot
has access to the required information.

The reactive approach provides for robot safety by enabling
the system to be responsive to the environment. This can be
invaluable if the environment is uncertain or unpredictable.
Also, response time can often be guaranteed for reactive archi-
tectures—this is more difficult for deliberative architectures,
particularly if the depth of the task decomposition can be
unbounded.

In many cases, different architectures can be used for
the same tasks. For example, both reactive and deliberative
architectures have been used for retrieving objects [10], [29]
and for controlling walking robots [6], [27], albeit using
very different control structures. Typically, the differences
between architectures are the ease with which systems can
be developed and the efficiency with which tasks can be
achieved. We contend that for robots with complex tasks in
rich environments, the structured control approach simplifies
development because behaviors can be separated and inter-
actions constrained. This can lead to more predictable and
maintainable systems.

Several primarily deliberative architectures have been pro-
posed. The work of Albus [2] and Meystel [18] promote
the idea of top-down, hierarchical controllers, each executing
a sense-plan-act feedback loop. The NASREM architecture
[3], in particular, is a strict hierarchical framework for task
decomposition, perception and world modeling. The hierarchy
is based on temporal abstraction—each level deals with events
that characteristically occur an order of magnitude slower
than those of the level below. With TCA, in contrast, task
decomposition is based on the functionality needed and the
degree of interaction between subtasks: in TCA-based systems,
the width and depth of the decomposition depends largely on
task complexity. In addition, TCA provides more guidance
for determining how to design and combine deliberative and
reactive behaviors.

The BB1 blackboard architecture [16] provides many of the
same advantages as TCA in terms of decomposing, coordinat-
ing and scheduling subtasks. Its use of a control plan facilitates
placing temporal and resource constraints on subtasks, setting
up monitors, and controlling the interleaving of planning and
execution. The centralized blackboard and “whiteboard” [22]
representations of such architectures, however, are potential
performance bottlenecks [7], [10]. While TCA does maintain
control information centrally, the actual data needed to solve
problems is distributed amongst the system’s processes. This
separation makes sense because control decisions are made
relatively infrequently, while centralized data would be more
of a bottleneck due to the higher bandwidth of communication
required.

Primarily reactive architectures are exemplified by Brooks’
Subsumption architecture [5], [10] and other behavior-based
approaches [4], [17], [21]. In these architectures, the overall
system behavior emerges from the interactions of local, often
reflexive, behaviors. The architectures differ primarily in how
behaviors are combined and interact. In the Subsumption
architecture, for example, behaviors can directly inhibit the

actions of others. While such a fixed priority scheme is simple,
it is often difficult to determine how to prioritize competing
behaviors. Most other behavior-based architectures use a more
general arbitration scheme, in which the recommendations of
all competing behaviors are taken into account—either by
choosing a single action [17] or combining them [4].

The difficulty with such approaches is that as the number
of behaviors and their degree of interaction grow, it becomes
increasingly difficult to design good arbitration schemes or
even to understand how the system will behave in general. One
approach is to add more structure to the reactive behaviors. For
instance, a deliberative component can be used to partition
behaviors into subsets that are activated in certain situations
[13], [21]. While this is similar to the structured control
approach we are advocating, TCA provides control constructs
that not only structure the interactions between behavior sets,
but within them as well.

The RAPs (Reactive Action Packages) architecture [12] is
probably most similar to TCA in concept. In RAPs, task
decomposition, monitors, and error recovery procedures are
packaged into discrete units. A RAP defines methods for
decomposing tasks into subtasks, how to detect the success-
ful achievement of the task, and methods for responding
to changes. The main differences are that RAPs is more
concerned with reactive behaviors and real-time response,
while TCA is more concemed with structuring interactions
to handle complex tasks. In addition, reactive behaviors are
more fully integrated into RAPs, while TCA cleanly separates
the various aspects of robot control, enabling plan formation
and execution to be developed independently of monitoring
and error recovery. In general, on the reactive/deliberative
spectrum, systems using TCA tend to be more deliberative
than those using RAPs.

III. THE TASK CONTROL ARCHITECTURE

The Task Control Architecture provides a comprehensive set
of control constructs for developing deliberative and reactive
robot behaviors. The constructs are designed to integrate
smoothly in order to provide predictable aggregate behavior.
The control constructs include support for:

1) Distributed inter-process communication

2) Task decomposition and temporal constraints between

subtasks

3) Resource allocation and management

4) Execution monitoring

5) Exception handling

At the basic level, TCA supports distributed processing and
communication. A robot system utilizing TCA consists of a
number of robot-specific modules (C and/or Lisp processes),
and a central control module, which is common to all systems
that use TCA (Fig. 3). Modules communicate by passing
coarse-grained messages to the central control, which routes
them to be handled by the appropriate modules. Message
routing information is determined dynamically when modules
connect with the central control: modules register message
names, formats of the data structures associated with the
messages, and message handling procedures.
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Fig. 3. Modules for the Ambler walking system.

Modules send messages by name. This facilitate the use of
“plug compatible” modules, since the sender need not know
which modules will handle the messages. For example, the
Ambler planning modules are developed using a graphics
simulator that has the same interface as the real-time controller.
Once developed, the planners can run the actual robot without
any change.

An expressive data description language enables TCA to
pass fairly complex data, including structures, pointers, ar-
rays, strings, etc. TCA automatically converts the data into
a byte stream, passes it via sockets over the Ethernet to
the central control module, determines which module has
registered a handler for the message, forwards the mes-
sage to the module, reassembles the data, and invokes the
appropriate message handling procedure. Even though mes-
sages are centrally routed, message passing is fairly effi-
cient since the data is not actually interpreted by the central
control module. For messages up to several kilobytes, the
round-trip message passing time is typically less than 100
ms.

TCA provides several classes of messages, each with some-
what different semantics:

1) Inform messages are one-way communications, used to
asynchronously pass information from one module to
another.

2) Query messages are two-way, returning a reply to the
sending module. Query messages are blocking, pending
receipt of the reply.

3) Goal messages are used to decompose tasks into sub-
tasks. They are non-blocking, to enable planning and
plan execution to occur concurrently.

4) Command messages are similar to goal messages, but
they represent executable actions of the robot system.

5) Monitor messages are used to set up execution monitors.

6) Exception messages are used for handling exceptional
situations.

The effects of the last four message classes will be described
in more detail in subsequent sections. In the next section, we
present an example of how TCA is used in the control of an
autonomous mobile robot.
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A. An Example

A TCA-based system consists of the central control module
and a number of modules, running on one or more computers,
written specifically for the particular robot. To run the system,
one invokes the central control process, indicating how many
modules will be running and where to log the message traffic,
if desired. Each robot-specific module is then started. The
modules communicate with the central control using a library
of function calls [26]. Modules first connect to the central
control module, and register which messages they handle, their
formats, and other relevant information, such as the monitors
and exception handlers used by the system. Modules then call
a function that waits to receive messages and dispatches them
to the appropriate handlers.

For the Ambler system (Fig. 3), walking is initiated by
entering a series of waypoints at a graphical user interface.
When a route is determined, the user interface module sends a
series of “Traverse Arc” goal messages, one for each waypoint
(Fig. 4). The central control forwards the first “Traverse Arc”
message to the gait planner module, queuing the remaining
ones. Within the gait planner, TCA decodes the message data
and invokes the appropriate message handling procedure. This
procedure issues a query message, requesting the Ambler’s
current position. TCA forwards the request to the controller
module, and routes the response back to the gait planner. The
gait planner calculates an arc that passes from the current
location to the goal location, and issues a “Take Steps” goal
message, passing the current position and desired arc to follow.
When the message handler completes, the central control is
notified that the gait planner is no longer busy.

When the gait planner is free, TCA forwards it the “Take
Steps” message, invoking the appropriate procedure. This
handler first checks whether the robot is at the goal location.
If so, it returns immediately; if not, it calculates a body
move that maximizes forward progress. It then issues a query
to determine the best place to move the leg. The footfall
planner handles this message by querying for an elevation
map (handled by the local terrain mapper) and computing the
desired information. Once the calculations are completed, the
gait planner issues a “Place Leg” goal message, a “Move
Body” command, a monitor to ensure that the move was
executed correctly, and another “Take Steps” message (Fig.
4). TCA immediately forwards the “Place Leg” message to
the leg recovery planner, which obtains an elevation map and
uses it to compute an energy-efficient path for the leg to follow.
The leg recovery planner then issues a “Move Leg” command,
which is routed to the controller. Concurrently, TCA sends
the pending “Take Steps” message to the gait planner, which
begins to plan out the next step.

After the controller finishes handling the “Move Leg”
command, it is forwarded the “Move Body” command. When
the body move completes, the central control activates the
monitor, sending a query to see if the desired move was
achieved. If not, an exception is raised and the gait planner is
invoked to replan from the current position. Otherwise, TCA
waits for the next “Move Leg” message to be issued, and for-
wards that to the controller, beginning another walking cycle.
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Fig. 4. Task tree for autonomous walking.

The Ambler modules instruct TCA to perform several other
tasks during walking. The scanner interface module indicates
that it should be notified after each “Move Body” message
completes, in order to acquire a new laser range image. The
error recovery module instructs TCA to invoke a stability
monitor prior to executing each leg and body move; if the
planned move is found to be potentially unstable, the monitor
aborts the walking task and the system comes to a graceful
halt. Additional mechanisms used to increase the reliability of
the Ambler system are described in Section III-C.

B. Mechanisms for Deliberation

At the heart of TCA is a hierarchical representation of
task/subtask relationships. This representation, called a task
tree, has goal messages as non-terminal nodes, and exe-
cutable command and monitor messages at the leaves (Fig.
4). TCA constructs task trees automatically: whenever a goal,
command, or monitor message is issued, the central control
creates a node and adds it as a child of the node that issued
the message. Temporal constraints between nodes (illustrated
using heavy horizontal arrows) are used to schedule task
planning and execution: messages are queued until their tem-
poral constraints are satisfied. This combination of hierarchical
task decomposition and temporal constraints form TCA’s
representation of plans.

As Fig. 4 illustrates, TCA task trees may be arbitrarily
deep and subtrees may be expanded to different depths. This
contrasts with other architectures, such as NASREM [3], in
which the hierarchical structure is fixed. Our experience with
the Ambler and Hero robots indicates that this increased
flexibility far outweighs the run-time overhead of maintaining
the task tree representation.

When modules send messages, they may include temporal
constraints to inform TCA when to dispatch the messages.
The temporal constraints indicate relationships between sub-
tasks within a task tree. A sequential-achievement constraint
between two nodes implies that all command and monitor
messages under the first node (the leaves of its subtree) must
be handled before any of those under the second node. For
example, the sequential-achievement constraint between the
“Traverse Arc” nodes in Fig. 4 indicates that the arcs must

be traversed in order. Partially ordered plans are denoted
by the absence of sequential-achievement constraints between
nodes.

A delay-planning constraint implies that a goal message
should not be handled (decomposed into subgoals) until
the previous task has been completely achieved. The delay-
planning constraint between the “Traverse Arc” nodes indicate
that the system should not begin planning how to follow
one arc until the previous arc has been negotiated. On the
other hand, the lack of an explicit delay-planning constraint
between the “Achieve Position?” monitor and the subsequent
“Take Steps” goal indicates to TCA that the gait planner
can concurrently plan one step while the previous leg and
body moves are being executed (although the sequential-
achievement constraint between them indicates that the steps
must still be executed in order).

The temporal constraints are implemented by associating
several time intervals with each task tree node. A handling
interval denotes the period during which the node’s message
is actually processed by a module. An achievement interval
denotes the execution time of a task: the time taken by all
command and monitor messages in the subtree. For goal
nodes, an additional planning interval is defined as the time
taken to handle all the goal nodes in the tree; intuitively, this
represents the time needed to completely expand the subtree
to its executable primitives.

Temporal constraints are expressed in terms of the start and
end points of these intervals (a formalization is found in [24]).
For example, the delay-planning constraint between nodes nl
and n2 is defined as: Achievement,,.end < Planning,s.start.
TCA dispatches a message only when all temporally preceding
messages have been handled. Temporal precedence holds
between subtasks and supertasks, so that the end of the
achievement (and planning) of subtasks precedes the end of
their parent task. For example, if the “Move Body” command
in Fig. 4 is being handled, TCA can infer that the second
“Traverse Arc” goal is not yet ready to be dispatched.

Another deliberative method for controlling tasks is to
explicitty manage the robot’s physical and computational
resources. A TCA resource is a set of message handling
procedures and a capacity. TCA ensures that a resource’s
capacity is never exceeded, queuing messages if necessary
until the resource becomes available. By default, TCA groups
all message handlers registered by a module into a resource
of unit capacity. For example, the Ambler’s gait planner
handles the “Traverse Arc” and “Take Steps” messages, among
others. TCA ensures that the module will receive only one of
these messages at a time. Modules may also define additional
resources, enabling them to handle multiple messages con-
currently. The Hero controller module, for example, defines
one resource for its actuator commands and one for its sensor
queries, enabling the robot’s position to be tracked while it
is moving.

For finer control, a module can lock a resource, preventing
other modules from accessing the resource uniil it is unlocked.
While this raises the possibility of deadlock, judicious use
of resource locking can increase overall resource utilization
and system predictability. The Hero system, for instance,
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uses resource locking to enable the planners to gain high-
priority access to the overhead camera. To prevent blurring,
the Ambler’s scanner interface module locks the resource of
the controller module to preclude movement during image
acquisition.

Using the task tree, temporal constraint, and resource mech-
anisms, complex robot systems can be developed that integrate
concurrent, distributed planning, perception and real-time con-
trol. The mechanisms enable behaviors to be scheduled so as
not to interfere with one another. The next section describes
how reactive behaviors can be added to make systems more
reliable.

C. Mechanisms for Reactivity

To operate in uncertain, dynamic environments, autonomous
robots must be reactive to change. TCA provides several
constructs for monitoring changes in the environment. A TCA
monitor is a message that performs some action when a
specified condition is triggered. A point monitor, which tests
its condition just once, is useful for determining whether tasks
have been executed according to plan. For example, the point
monitor in Fig. 4 compares the actual Ambler position against
its planned position. If the difference exceeds a given threshold
(e.g., if the robot slipped), the monitor’s action is triggered to
replan subsequent steps.

Point monitors can be combined with TCA’s task tree and
temporal constraint mechanisms to create high-level feedback
loops: to achieve a goal, the robot performs some action,
monitors to see if the goal is achieved and, if not, recursively
tries to achieve the goal. In picking up a cup, for instance,
the Hero robot first aligns itself with the cup. This involves
turning and moving (Fig. 5), followed by monitoring the
results to determine whether the motion was accurate enough
for grasping to succeed. If not, the monitor simply terminates,
which enables the succeeding “Line Up” goal to be handled,
recursively planning out the next sequence of moves. If the
robot position is acceptable, the monitor’s action message
deletes the next “Line Up” goal from the task tree, effectively
terminating the servo loop.

Polling and interrupt-driven monitors, which are used to
detect unexpected changes, operate concurrently with planned
actions. Both types of monitors test their conditions repeatedly,
continuing either for a given duration or until a specified
event occurs. For polling monitors, the central control mod-
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ule issues the condition message at a fixed frequency. For
interrupt-driven monitors, TCA informs modules when to set
up new monitors and when to cancel them. The modules
have responsibility for informing the central control when-
ever the monitor’s condition holds, at which point TCA
issues the associated action message. Polling and interrupt-
driven monitors provide different run-time and design-time
advantages: while interrupt-driven monitors are often more
efficient in their demands on perception, it is typically easier to
implement polling monitors since TCA handles their activation
and scheduling.

An important aspect of the structured control approach is
that the context in which reactive behaviors are applicable
should be constrained to minimize both unexpected interac-
tions and the load on perception [8]. For example, the Hero
system uses a polling monitor to check its battery once a
minute, inserting a “recharge” task if the level is low. The
monitor is activated only when the Hero is off its charger, and
it is deactivated as soon as the monitored condition is met.
Similarly, when a cup-collection task is initiated, an interrupt-
driven monitor is activated that lasts until the cup is grasped.
Whenever an overhead image is acquired, the monitor checks
whether the cup is still visible, cancelling the collection task
if the object disappears from view (e.g., someone else picked
it up).

In TCA, monitors can be added without modifying existing
deliberative components. A module can associate a monitor
with a class of messages and constrain the monitor to be
triggered either before, during, or after the associated message
is handled. This is called the “wiretap” mechanism because
whenever a message of the specified class is handled, by
whichever module, TCA invokes the monitor, sending it a
copy of the message data. For example, before every Ambler
move a stability monitor is invoked to verify that the move
will not cause the robot to tip over, and after every leg move
a footfall monitor analyzes the force sensor data to detect
possibly unstable footholds (Fig. 6).

Monitors are one way that exceptional conditions can be
detected through TCA. Message handlers can also detect
execution errors or plan failures directly, which they signal
by raising exceptions. For example, a controller module may
sense that a motor is stuck, or a planning module may not
be able to find a clear path to a goal. Exception messages
can be associated with task tree nodes to deal with such
conditions. Exception handling is structured hierarchically:
when an exception is raised, TCA searches up the task tree
to find and dispatch a message designated to handle that
exception. If the message handler determines it cannot actually
fix the problem, it reissues the exception and the search
continues up the tree. If the root node is reached, TCA simply
terminates the task.

The motivation behind invoking lower-level exception han-
dlers first is the expectation that they will produce specific,
minimal patches to the plan. To illustrate, Fig. 6 shows
various exception handlers layered onto the nominal Ambler
walking plan. If a leg or body move command fails, the
first strategy employed is to just retry the move. If this
fails, the system tries replanning the move, since the Ambler
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Fig. 6. Ambler task tree with monitors and exception handlers.

configuration might have changed between the planning and
execution of the move. Failing this, the next strategy is
to shuffle the legs, moving them into a standard stance,
and then to replan from the new configuration. If the legs
cannot be shuffled (e.g., moving legs would cause the Am-
bler to become unstable), the walking task is terminated
altogether.

Whichever way an exceptional situation is detected, the
response often involves altering the plan being executed.
TCA provides facilities that enable modules to examine and
modify task trees. Examination facilities include finding par-
ent, children, and sibling nodes, querying for the status of a
node, and retrieving the data associated with messages in the
task tree. Task tree modifications include resending messages,
terminating tasks (and their subtrees), inserting new nodes,
and adding additional temporal constraints. These mechanisms
provide fairly general capabilities for repairing and patching
faulty plans.

The monitoring and exception handling facilities have been
used to make the Ambler system reliable enough to au-
tonomously walk hundreds of meters in rough terrain. In
one set of experiments [25], the Ambler took over 700
steps, covering some 300 meters in boulder-strewn, sandy
terrain. Exceptional situations were detected in about 18%
of the steps, and the system recovered autonomously in
all but two situations. More recently, the Ambler walked
outdoors 500 meters contiguously. The terrain was somewhat
more benign—hilly, but not rock-strewn-—and the exceptional,
reactive behaviors were needed in only about 8% of the 1200
moves.

For some errors, the message-passing delay of TCA (50-100
ms) provides insufficient response time. In such cases, reflex-
ive behaviors are used that quickly stabilize the robot and then
invoke the hierarchical exception-handling mechanism of TCA
to provide a reasoned response to the problem. For example,
the Ambler’s controller module monitors force sensors in the
feet to detect terrain contact, halting the robot’s motion (within
5 ms) and signaling TCA when an unexpected collision occurs.
While these reflexive behaviors are currently implemented
outside of TCA, we are investigating ways to integrate them
into the framework.

Traverse Arc ) ....... s\ Traverse Arc E\\\\
Dp DP
'
Take Steps

Fig. 7. Concurrent planning and execution.

IV. INCREMENTAL DEVELOPMENT OF ROBOT SYSTEMS

Design of any complex system is an iterative process. This
is especially true for robot systems, since the nature of their
environment (including real-time requirements) may not be
well understood from the start. The structured control approach
facilitates this by enabling new behaviors, both deliberative
and reactive, to be added incrementally, with minimal impact
to the existing software system.

In particular, monitors and exception handlers can be added
without modifying existing components. The wiretap mecha-
nism is used to associate monitors with specific messages, so
that the monitor is activated whenever the associated message
is handled. Similarly, a module can associate an exception
handler with a class of messages handled by another module,
so that whenever a message is issued and added to the task
tree, the exception handler is automatically added to that node.

One difficulty is to prevent harmful interactions between
behaviors that are developed independently. A useful method-
ology is to initially overconstrain the system, then slowly
relax constraints until the desired performance is obtained.
The Ambler system, for instance, was originally developed
with a sequential sense-plan-act cycle. After sufficiently testing
the sequential version, temporal constraints were removed,
enabling one step to be planned concurrently with the achieve-
ment of the previous step [24].

This modification, by itself, led to problems: since the
planning algorithms are fast relative to the robot’s motions,
we found that the planner soon got several steps ahead,
operating near the Ambler’s perceptual horizon where the
data is very uncertain. To prevent this, a delay-planning
constraint is added between one “Take Steps” node and the
node directly preceding its parent (Fig. 7). This yields one
step lookahead planning; for two step lookahead, we would
use the grandparent node, etc.

The addition of concurrency increased average walking
speed by over 30%, with only minor modifications to the
existing system [24]. Fig. 8 presents a graph, produced by
a program that analyzes TCA log files, of module utilization
for the concurrent system. The darkly shaded areas indicate
when modules are computing; lightly shaded areas are when
they are awaiting replies from other modules. As can be seen,
this produces nearly continuous motion of the machine: the
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Fig. 8. Module utilization for Ambler walking.

controller module is active about 80% of the time, while
planning and perception take about half that time to produce
suitable gaits.

Often, decisions about how far to plan in advance, and to
what level of detail, depend on the uncertainty in the robot’s
current knowledge and its expectations about the future. To
the extent that the world is predictable and stable, advance
planning is warranted. In unpredictable domains, however,
more reflexive behavior is appropriate. While TCA itself does
not address these knowledge-level issues, its task trees and
temporal constraint mechanisms provide the necessary frame-
work for expressing and acting upon such decisions. In effect,
TCA treats planning as a computational activity that must
be scheduled along with other actions, such as robot motion
and sensing. By suitably constraining the achievement and
planning intervals of task tree nodes, modules can implement
a wide variety of strategies for interleaving planning and
execution [19].

As an example, Fig. 9 presents a simplified version of the
task tree created by the Hero system for collecting a cup. It
turns out that the Hero cannot plan in advance how to pick
up the cup because it does not know what kind of cup it will
encounter until it gets close enough. This is expressed using a
delay-planning constraint between the “Navigate to Cup” and
“Pick Up” nodes. On the other hand, when the Hero begins

Collect Cup

Navigate

0 Bin e
P

Navigate to
Cop_ /g
um e

B

Fig. 9. Task tree for Hero cup collection.

the cup-collection task it has enough information (using its
overhead camera) to plan how to get from the cup to the
trashbin. The decision that advance planning can occur here is
indicated by the absence of any planning constraints between
the “Navigate to Bin” and other nodes. Thus, the system can
plan the path while moving to the cup; once it has grasped
the cup it can immediately begin executing the planned path,
without having to wait for the time-consuming path planning
process.

Since perception algorithms are typically computationally
expensive, use of concurrent perception can markedly improve
response time. The Ambler system was incrementally modified
from acquiring images on demand to acquiring them asyn-
chronously. In particular, the wiretap mechanism is used to
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notify the perception subsystem to acquire a laser range image
whenever the Ambler has moved. A similar modification to the
Hero—asynchronously processing overhead images—nearly
halved the average time needed to accomplish cup-collection
tasks [29].

V. CONCLUSIONS

The Task Control Architecture provides a framework for
developing and controlling autonomous robot systems. The un-
derlying philosophy is that the control of planning, perception,
and action must be well-structured for general-purpose robots
to succeed in rich and uncertain environments. While reflexive
control strategies may suffice for simple tasks, robots with
complex tasks and environments need to effectively manage
their limited resources and intelligently coordinate their actions
to eliminate unwanted interactions.

To facilitate development of both deliberative and reactive
behaviors, the Task Control Architecture provides common
control constructs, including distributed communications, hier-
archical task decomposition, temporal constraints to coordinate
subtasks, resource management, monitoring, and exception
handling. The constructs are designed to support the struc-
tured control approach, in which deliberative components that
handle nominal situations are layered with reactive behaviors,
constrained to limit their potential for unwanted interaction.
TCA and the structured control methodology have been used
in over a half-dozen robot systems, including a six-legged
robot that autonomously walks over rugged terrain and an
indoor mobile manipulator operating in a peopled environ-
ment.

It is clear from experience with TCA that using formal
methods to analyze the constraints on behavior would greatly
facilitate development of robot systems. We are moving in
that direction, starting by formally defining the various control
constructs [24]. We intend to utilize temporal verification sys-
tems [9] to ensure that the constraints imposed are sufficient to
meet the robot’s functional specifications. Preliminary results
indicate that the types of control constructs provided by TCA
are directly amenable to such analysis.

We contend that the use of structured control facilitates
the development of complex robots. The explicit use of
constraints provides a basis for precisely characterizing, de-
signing, and analyzing interactions between behaviors. Imple-
mentation is facilitated by providing mechanisms that map
directly from design decisions to methods of communication,
task coordination, and reactivity. Finally, systems can be
developed incrementally by layering on new behaviors and
new constraints. These contribute to producing autonomous
robot systems that are competent, reliable, and understand-
able.
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