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Abstract

This paper presents experimental results of prelim-

inary research into multi-robot coordination for con-

struction tasks. Experiments demonstrate that an au-

tonomous \roving eye" robot can provide feedback to

a manipulator to align targets from a wider variety of

situations than is possible with �xed cameras, with-

out sacri�cing the accuracy provided by cameras at

close range. The roving eye changes its location au-

tonomously based on current images of the manipu-

lated object and target, always striving for the best view

of the task.

1 Introduction

An important type of cooperation used frequently

in construction projects can be viewed as a remote

sensing operation. When a heavy steel beam needs to

be attached to the structure of a new building, a crane

operator can move it to roughly the correct position,

but does not have the visual acuity (from a long dis-

tance) or the dexterity (through the crane) to do the

�nal placement of the beam. Workers near the beam

provide high acuity visual feedback to the crane oper-

ator and then grab the beam to pull it into the �nal

position.

We are investigating architectures for robot coordi-

nation for use in autonomous assembly of large struc-

tures. A crane robot will provide heavy-lift capabil-

ity while a smaller more dextrous robot manipulator

provides �ne motion control for assembly, and a third

robot acts as an observer, providing visual feedback to

the crane and �ne manipulator. NASA is funding this

research to provide the technology for a multi-robot

construction team for the assembly and maintenance

of a Mars base. Terrestrial applications include con-

struction in hazardous environments and eventually

construction in ordinary building projects.

Figure 1: The manipulator visually aligning a beam

with a �xed structure. Visual feedback comes from

tracking the rectangular �ducials.

As a �rst step, we have implemented a distributed

visual servoing system consisting of a robot arm and a

\roving eye" robot. The roving eye is a mobile robot

with a pair of cameras that provides visual feedback to

the arm controller by tracking bi-colored rectangular

�ducial marks. Mobile cameras can track the �ducials

in a wider variety of situations than is possible with

�xed cameras, without sacri�cing the resolution pro-

vided by cameras at close range. In the initial phase

of this project the assembly task has been simpli�ed

to that of aligning a beam with some existing struc-

ture. Figure 1 shows the robot arm aligning the end

of one beam with another. The desired alignment is

speci�ed by a relative pose between the two �ducials.

Our approach consists of two main servo loops: the

visual servoing of the arm, and the motion of the rov-

ing eye. The visual servoing is an explicitly distributed

task in which one robot sees and the other acts. This

raises issues of synchronization and reference frames



because each robot must stay aligned with the other

in time, plus the position information they exchange

must be meaningful to both of them. The motion of

the roving eye robot serves to keep a good view of the

�ducials. It is coupled to the robot arm indirectly,

through the position and motion of the �ducials.

For simplicity in this initial implementation, syn-

chronization in the visual servoing of the arm is han-

dled with a look-then-move scheme. For each iter-

ation, the vision system on the roving eye looks at

the scene and calculates the error between where the

moving object is and where it should be. It scales this

down by a gain factor and sends it to the manipula-

tor. The manipulator moves the object the amount

indicated, stops, then sends a message to the roving

eye indicating it has �nished the move. The cycle re-

peats until the alignment is complete. This approach

reduces problems caused by failures or delays in the

communication system that could allow the manip-

ulator to damage itself or the task objects. It also

minimizes minimizes the e�ects of arm dynamics in

the control problem.

The reference frame used to communicate position

feedback from the roving eye to the manipulator is

attached to observations of the object being manipu-

lated. This way the position measurements are always

relative to the manipulator, eliminating the need to

calibrate the position of the roving eye.

The roving eye is controlled with three behaviors:

panning to center the �ducials in the images, zoom-

ing to move the cameras as close as possible to the

�ducials, and lateral motion to face the �ducials as

directly as possible. Together these behaviors keep

the roving eye directly in front of the �ducials and as

close as possible without losing them from the �eld of

view.

The remainder of this paper describes the distributed

visual servoing in more detail. Section 2 describes re-

lated work in the �elds of vision and visual servoing

control. The design and implementation of the system

are presented in Section 3. Section 4 presents experi-

mental results, and future work is discussed in section

5.

2 Related work

The literature on visual servoing is extensive, and

is only brie
y discussed here. Hutchinson, Hager, and

Corke [4] provide an excellent tutorial on visual ser-

voing along with an extensive bibliography. In partic-

ular, they describe a taxonomy of visual servo control

architectures with three important distinctions. The

�rst is whether a vision system provides Cartesian set

points for a robot's joint-level controller (called \dy-

namic look-and-move"), or whether it directly com-

putes the joint inputs. Dynamic look-and-move is es-

pecially appropriate for our distributed visual servo-

ing because of possible unpredictable network lag in

the inter-robot communication. Systems of the second

type typically require very high speed vision to ensure

stability and present di�cult coupled dynamics.

The second distinction is whether the error signal

is de�ned in 3D task space coordinates (position-based

control) , or directly in terms of image features (image-

based control). While image-based control is attrac-

tive, we chose position-based control because of the

di�culty of specifying target part alignments at run

time.

The third distinction is between endpoint closed-

loop (ECL) systems that observe both the target ob-

ject and the robot end-e�ector and endpoint open-

loop (EOL) ones that only observe the target object.

EOL may often be simpler to implement because only

one object must be tracked visually. However for the

construction task, ECL seemed more appropriate and

simpler, because the grasp of the beam in the grip-

per may not be known precisely, preventing an EOL

system from properly aligning the beam.

XVision [3] is a C++ class library for computer vi-

sion. It provides two types of objects that were used

directly in the current work: tracking primitives and a

container class that joins multiple objects. The basic

tracking primitives are intensity edge trackers, blob

trackers, and image patch trackers. The container

class is used to build the corner tracker class (provided

with XVision), which combines a pair of edge track-

ers at an angle to each other. The resulting class can

then de�ne constraints between its members, such as

the corner class that constrains one end of each of the

two edges to be at the same point. For visual tracking

of the rectangular targets in the current work, four

corner trackers were combined into a rectangle track-

ing class.

Nelson and Khosla [5] present a method for calcu-

lating \observability ellipsoids" that represent the re-

solving power of geometric con�gurations of cameras.

Ellipsoids are six dimensional, giving resolving power

in each of the 6 degrees of freedom of rigid body mo-

tion in three dimensional space. They describe how

to calculate the ellipsoids and present a method for

choosing camera positions to get the best overall re-

solving power. For our application at this point, we

have available only the two stereo cameras on our rov-

ing eye robot. The observability ellipsoids consistently



show that stereo with a wider baseline relative to the

target produces better resolution in all dimensions,

up to having the cameras looking at the scene from

90

�

apart. This corresponds to our results that the

tracking performance in the camera depth dimension

is better when the roving eye is close to the �ducials,

providing a greater angle between the camera views.

Wang and Wilson [6] describe a system using a

Kalman �lter to track the motion of an object in 3D.

Their system tracks the 3D position, orientation, and

motion of an object seen by a single camera in a se-

quence of images. For best performance it requires

at least 5 observable non-coplanar feature points on

the tracked object. They mention that the nature of

the implemented Kalman �lter requires that values in

the Q matrix be adjusted depending on the speed of

the tracked object, as accelerations of the object were

modelled as noise.

3 Implementation

This section describes details of the �ducial-tracking

visual servoing system and control of the roving eye.

The tracking system was designed to use relative mea-

surements where possible, to reduce the need for ac-

curate calibration. This is especially useful because of

the roving eye: absolute positions of the objects would

require keeping accurate track of the roving eye's pose.

The main measurement calculated is the 6 DOF pose

of the �xed �ducial with respect to the moving �du-

cial. With an appropriate gain setting, this method

can converge to the correct value even when the rel-

ative pose measurements have signi�cant calibration

errors, because each motion merely needs to move the

object in the right general direction.

3.1 Visual Servoing

The �ve components of the vision processing are:

color �ltering, blob �nding, corner tracking, calculat-

ing relative depths, and model �tting. After model

�tting, the relative pose between the �ducials is sent

to the arm controller, and information for moving the

roving eye is sent to the roving eye. Figure 2 shows

the relationships between these components. Commu-

nication between components on a robot is facilitated

by the skill manager component of the 3T architecture

developed at NASA JSC [2]. The communication be-

tween the robots is sent over radio ethernet using the

IPC package developed at Carnegie Mellon for sending

structured data.
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Figure 2: Design of the �ducial tracking system.

The �ducials used for tracking are planar rectan-

gles. Figure 1 shows the pattern of coloration: two

adjacent solid colored squares. There are 4 color �l-

ters, one for each color of each �ducial. Each �lter

looks for pixels with hue between high and low limits

and saturation and intensity above preset thresholds.

Initializing the corner trackers for a �ducial begins by

�nding the largest blob of each color. If the two blobs

are adjacent and square, the corner trackers' locations

are set to the outside corners. This routine is relatively

slow even on subsampled images, so it is used only for

initialization and to recover from corner tracking fail-

ures. Once initialized, the corner tracking primitives

from XVision track the outer 4 corners of the two-

colored rectangles. When the corner trackers are get-

ting good results and the resulting 3D points match

the �ducial models well, the vision processing is quite

fast because only the local areas around the corners

need to be processed.

Once the positions of these corners are found in the

left and right images, they are used to calculate dis-

parities. In order to remove the requirement for pre-

cisely calibrated camera vergence, relative disparities

are used, rather than absolute disparities. This gives

the relative depths between the 3D points, rather than

the absolute depth from the camera. Without abso-

lute depth, information about the size of the objects is

lost. To compensate, the scale of the observed corner

points are modi�ed to match the scale of the corner

points of the models.

The model used for relative disparity is that an ar-

bitrary o�set has been added to every observed dispar-

ity in an image. This is approximately what happens

when the angle between a stereo pair of cameras is

changed. To enable depth calculations, the minimum

disparity is set to a �xed value, and all the other dis-

parities are adjusted by the same amount. The result



is that the angles of the cameras can be moved with

no e�ect on servoing performance. However even with

the scale factor correction the computed relative depth

values are not strictly correct: they are an approxi-

mation valid for fairly small relative disparities and

for a given �xed camera separation. When the stereo

baseline is changed, a parameter in the distance-from-

disparity calculation needs adjusting.

Once the relative depths of the points are found, a

model �tting technique by Arun, Huang, and Blostein

[1] based on SVD is used to �nd the poses of the mod-

els of the two �ducials that �t best with the 3D posi-

tions of the tracked corner points. This model �tting

technique is simple and fast because the correspon-

dences between the model points and the observed

points are already known.

Once the �ducial models have been aligned with

the observed corner positions, the 6D relative pose of

the �xed �ducial relative to the moving �ducial is cal-

culated, time-�ltered (to reduce sensing noise), multi-

plied by a small gain (usually 0.25), and sent to the

arm controller (the new version of the software in-

cludes the gain in the arm controller rather than the

vision code). The arm controller then calculates a new

gripper pose by composing the commanded pose o�-

set with the current gripper pose. When the motion is

complete, it signals the roving eye to request another

o�set.

3.2 Roving Eye Control

Control of the roving eye is accomplished with three

primary behaviors: a panning behavior to keep the

�ducials centered in the images, a zooming behavior

to move the cameras as close as possible to the �du-

cials, and a lateral motion behavior to move to face

the �ducials as directly as possible. Running together,

these behaviors keep the roving eye directly in front

of the �ducials and close enough to see them well, but

not so close that they are in danger of moving outside

the �eld of view of the cameras. The behaviors are

diagrammed in �gure 3a, and the resulting motion is

depicted in �gure 3b.

The roving eye behaviors receive information from

the vision system in the form of \eye motion hints".

These consist of the bounding box of the �ducials

in the images and the average angle of the surface

normals relative to the camera pointing angle. The

bounding box of the �ducials is used by the panning

behavior to keep the edges of the �ducials as far as pos-

sible from the edges of both �elds of view simultane-

ously. This bounding box is also used by the zooming

behavior that drives the roving eye towards or away

Move to face

targets squarely

Zoom to

fill frame Vector sum

Pan to center targets

a. b.

Figure 3: a. The three motion behaviors of the roving

eye robot. b. The resulting motion of the roving eye.

from the �ducials. If any side of the bounding box

is too close to the edge of the frame, the roving eye

backs away. If all sides are too far from the edges of

the frame, it drives forward. There is a dead band in

between to prevent noisy measurements from causing

oscillations.

The lateral motion behavior uses the average of the

two �ducial surface normal angles projected onto the

horizontal plane. It tries to move the robot to the left

or right relative to the view direction of the cameras

in order to be most directly in front of the �ducials.

This is important since the �ducials are planar and

one-sided. When viewed from an angle that is too

steep, the corner tracking and blob-�nding algorithms

fail.

The three roving eye behaviors combine to pro-

duce smooth motion when the vision updates are fast

enough relative to the driving speed of the roving eye.

Figure 3a shows how the lateral motion and zoom-

ing behaviors' outputs are combined in a vector sum.

These vectors are de�ned relative to the orientation

of the cameras so that when the panning behavior

turns the cameras, the directions of the vectors from

the other behaviors change accordingly. Lateral robot

motion moves the �ducials o�-center in the images,

triggering the panning behavior. Together these two

e�ects generate smooth motion in a spiral arc.

4 Experimental Results

This section presents the setup and results of three

experiments characterizing the performance of the sys-



tem. The �rst experiment demonstrates the superior

servoing accuracy available from the system when used

with moving cameras compared to the same system

with �xed cameras. The second experiment shows the

repeatability of the motion of the roving eye robot.

The third tests the upper limit of visual servoing and

roving eye speeds. For all these experiments, the ser-

voing of the arm was run in a 4 DOF space of control

but the target �ducial was only ever situated vertically

on the surface of the manipulator's table. The exper-

imental data therefore only measures x, y and yaw.

Separate experiments highlighting the manipulator's

z axis motion are not critical: the z axis performance

is similar to the y axis performance because both are

largely parallel to the cameras' image planes.

The experiments were performed at NASA JSC us-

ing a Nomad 200 for the roving eye with two Sony

990 cameras mounted on top approximately 20 cm

apart. The manipulator is a 5-axis roll-pitch-pitch-

pitch-roll arm developed at Metrica, Inc. and deliv-

ered to NASA under SBIR number NAS9-97009 with

an Eshed parallel jaw gripper. The actual motion of

the arm was limited to 4 DOF in which it has dextrous

control: x, y, z, and yaw (rotation about z, which is

vertical). Independent instances of 3T [2] were used as

the software architecture for all three agents (vision,

roving eye platform, manipulator), and run on three

pentium PCs running Linux.

Figure 4 shows the layout of the servoing accuracy

experiment. All the target �ducial poses are located

within a small area because of the need to allow the

system to work with �xed cameras for comparison

with the roving eye version. The target �ducial was

moved from pose 1 through pose 10 sequentially, with

the actual servoed positions recorded from the arm's

joint angles. 10 seconds were given for the arm to

come to rest at each location, which was more than

enough in most cases. The set of 10 poses were run

5 times each for the �xed eye case and the roving eye

case. The tracking software for the �xed eye case was

exactly the same as that for the roving eye, but with

the roving eye motion turned o�.

The �xed eye system was never able to see target

pose 6 (the most steeply angled pose), and missed oth-

ers occasionally as well, leaving a total of 43 successful

servoing trials. The roving eye system missed pose 6

once, for a total of 49 successful trials. The accuracy

results are summarized in table 1. The smaller stan-

dard deviations of the roving eye version demonstrate

the increased precision available when the cameras are

closer to the �ducials. The Wilcoxon rank sum test on

the absolute values of the x and y dimension position-
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Figure 4: Layout of experiment. The right half of the

manipulator's workspace is shown in gray on the left.

The target �ducial poses are shown within this, and

the �nal poses of the roving eye robot for each �ducial

pose are on the right.

ing errors gives a 98.5% and 93.9% probability respec-

tively that the errors came fromdi�erent distributions,

demonstrating that these results are statistically sig-

ni�cant. The same test gives only a 6.5% probability

for yaw. This small di�erentiation may be due to a

systematic error a�ecting both systems: a small drift

in the yaw control of the manipulator was discovered

later.

The closest approach that the roving eye came to

the �ducials was roughly half the distance at which

the cameras were positioned for the �xed eye trials.

This closer approach gives better video resolution of

the �ducials, but since the cameras can move, it does

not sacri�ce the size of the workspace like moving the

�xed cameras closer would. The increased error bias

in x for the roving eye is likely due to inaccuracies in

the relative depth calculation that show up at close

range (a more recent version of the system uses abso-

lute depth, which eliminates this problem).

The second experiment demonstrates that the mo-

tion behaviors of the roving eye generate repeatable

motions when given the same �ducial poses. The tar-

get �ducial was cycled 10 times between poses 4 and

5 (from �gure 4), and each time the roving eye and

manipulator were allowed 10 seconds to come to rest.

The results presented in �gure 5 show the roving eye

returning to within roughly 2cm of its original posi-



cameras �

x

�

y

�

yaw

Fixed 9.6mm 6.5mm 4:5

�

Roving 5.5mm 4.4mm 2:7

�

mean x mean y mean yaw

error error error

Fixed 0.3mm 3.6mm �3:6

�

Roving 1.1mm 3.2mm �3:7

�

Table 1: Servoing accuracy comparison. The � values

are the standard deviations of the pose errors. The

mean errors show the bias of the errors for each di-

mension.
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Figure 5: Plots showing the distribution of �nal loca-

tions of the roving eye for target �ducial poses 4 and

5. Units are centimeters from the centroid.

tion each time after moving to a location roughly 60cm

away.

To determine roughly how fast the system can re-

spond to �ducial motion, a third experiment was run

in which the target �ducial was moved in an arc around

the workspace of the manipulator at di�erent speeds.

The arc had a 50cm radius centered around the base

of the manipulator, with the target �ducial moved in

increments of 10

�

(about 8cm along the arc). With

10 seconds between each move, the manipulator and

the roving eye were both able to keep up through 150

�

of arc, limited only by the available space around the

manipulator table in the lab. With 7 seconds between

each move, the visual servoing of the manipulator was

unable to keep up, thus separating the �ducials farther

and farther. The separating �ducials drove the roving

eye to back away farther and farther to keep them in

its �eld of view, eventually losing sight of them.

Achieving high servoing frequency was not a pri-

mary goal of this research, especially with a wireless

network as part of the main servo loop. Without care-

ful optimization of the code, the vision system ran at

about 4 Hz. When the time for the arm to complete

one commanded motion is included, the total servo

loop speed is about 0.5 Hz. This is slow for a servo

system, but because the arm currently stops in be-

tween each commanded motion (as compared to a ve-

locity control scheme), it is safe from overshooting due

to lost messages. Given a higher performance vision

system and a visual servo loop that yields continuous

motion, the system would likely be able to keep up

with much faster target motion.

5 Future work

Continuing work is under way to expand the system

to control both a robotic crane and a mobile manip-

ulator, such that the crane provides heavy lift capa-

bility, the mobile arm provides precise motion con-

trol, and the roving eye provides visual feedback to

both. Figure 6 shows a simulation from this ongoing

work. Another extension will add more cameras, and

incorporate the additional information to improve the

servoing accuracy and increase the visible workspace

volume. It will sometimes be the case that �ducials

will be far enough apart that they cannot be tracked

in the same camera frame. An attention mechanism

may solve this by taking turns tracking one and then

the other until they approach each other. An impor-

tant practical concern is to integrate the roving eye

behaviors with an obstacle avoidance behavior. There

was some di�culty keeping the existing behavior from

disrupting the visual tracking, which requires small

careful movements near obstacles.

Another important area of future work on this project

is that of coordination of the several real robots planned,

plus a larger number of simulated robots. Issues such

as how teams are created and disbanded and how

jobs are allocated to teams and individuals will be

addressed once more robots are involved, both in sim-

ulation and with the real robots.

6 Conclusions

This paper presents work toward enabling multi-

robot construction projects for NASA Mars missions

and terrestrial applications. The implemented system

uses relative poses in task space to make performance

independent of relative robot positions, requiring little

sensor calibration. The roving eye motion behaviors

allow operation in a wider variety of situations than

is possible with �xed cameras, without sacri�cing the

high resolution provided by cameras at close range.

The same basic system has been implemented on three



Figure 6: A simulation of the robocrane, mobile ma-

nipulator, and roving eye.

di�erent robot platforms now, including a pair of mo-

bile robots, the mobile robot and �xed arm system

described here, and a simulation of a robotic crane

and mobile robot. Continuing work will expand the

system to groups of three or more robots cooperating

to assemble large structures.
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