
Decentralized Communication Strategies for
Coordinated Multi-Agent Policies

Maayan Roth, Reid Simmons, Manuela Veloso
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

mroth@andrew.cmu.edu, reids@cs.cmu.edu, veloso@cs.cmu.edu

Abstract

Although the presence of free communication reduces the complexity
of multi-agent POMDPs to that of single-agent POMDPs, in practice,
communication is not free and reducing the frequency of communication
is often desirable. We present a novel approach for using centralized
“single-agent” policies in decentralized multi-agent systems by main-
taining and reasoning over the collection of possiblejoint beliefsof the
team. We describe how communication can be used to integrate local
observations into the team belief as needed to improve performance, and
show both experimentally and through a detailed example how our ap-
proach minimizes communication while improving the performance of
distributed execution.

1 Introduction
Multi-agent systems and multi-robot teams can be used to perform tasks that could not be
accomplished by, or would be very difficult with, single agents. Such teams provide ad-
ditional functionality and robustness over single-agent systems, but also create additional
challenges. In any physical system, robots must reason over, and act under, uncertainty
about the state of the environment. However, in many multi-agent systems there is addi-
tional uncertainty about the collective state of the team. If the agents can maintain suffi-
cient collective belief about the state of the world, they can coordinate their joint actions to
achieve high reward. Conversely, uncoordinated actions may prove to be costly.

Just as Partially Observable Markov Decision Problems (POMDPs) have been used to
reason about uncertainty in single-agent systems, there has been recent interest in using
multi-agent POMDPs to address the issues of acting in coordination with a team in an un-
certain environment [1] [2]. Unfortunately, multi-agent POMDPs are known to be highly
intractable. The presence of free communication reduces the computational complexity of
a multi-agent POMDP to that of a single agent. Although single-agent POMDPs are also
computationally challenging, a significant body of research exists that addresses the prob-
lem of efficiently finding near-optimal POMDP policies [3]. However, communication is
generally not free, and forcing agents to communicate at every time step is wasteful of a
potentially limited resource.

In this paper, we introduce an approach that exploits the computational complexity ben-



efits of free communication at policy-generation time, while at run-time maintains agent
coordination and chooses to communicate only when there is a perceived benefit to team
performance. Section 2 of this paper gives an overview of the multi-agent POMDP frame-
work and discusses related work. Section 3 introduces our algorithm for minimizing the
use of communication resources, while maintaining team coordination. Section 4 illus-
trates this algorithm in detail with an example in the tiger domain, and Section 5 presents
experimental results.

2 Background and related work
There are several equivalent multi-agent POMDP formulations (i.e. DEC-POMDP [1],
MTDP [4], POIPSG [5]). In general, a multi-agent POMDP is an extension of a single-
agent POMDP whereα agents take individual actions and receive local observations, but
accumulate a joint team reward. The multi-agent POMDP model consists of the tuple
〈S,A, T ,Ω,O,R, γ〉, whereS is the set ofn world states,{S1 . . .Sn}. A is the set ofm
joint actions available to the team, where each joint action,ai, is comprised ofα individual
actions taken by each teammate. Agents are assumed to take actions simultaneously in
each time step. The transition function,T , depends on joint actions and gives the proba-
bility associated with starting in a particular stateSi and ending in a stateSj after the team
has executed the joint actionak. Although the agents cannot directly observe their current
state,St, they receive information about the state of the world throughΩ, a set of possible
joint observations. Each joint observationωi is comprised ofα individual observations,
〈ωi1 . . . ωiα〉. The observation function,O, gives the probability of observing a joint obser-
vationωi after taking actionAk and ending in stateSj . The reward functionRmaps a start
state and a joint action to a reward. This reward is obtained jointly by all of the agents on
the team, and is discounted by the discount factorγ.

In the absence of communication, solving for the optimal policy of a multi-agent POMDP
is known to be NEXP-complete, making these problems fundamentally harder than single-
agent POMDPs, which are known to be PSPACE-complete [1] [6]. Some recent work has
been done that focuses on finding heuristic solutions that may speed up the computation
of locally optimal multi-agent POMDP policies (i.e. [7] [5]), but these algorithms either
place limitations on the types of policies that can be discovered (e.g. limited-memory finite
state controllers) or may, in the worst case, still have the same complexity as an exhaustive
search for the optimal policy.

Although free communication transforms a multi-agent POMDP into a large single agent
POMDP, in the general case where communication is not free, adding communication does
not reduce the overall computational complexity of optimal policy generation for a multi-
agent POMDP [4]. Unfortunately, for most systems, communication is not free, and com-
municating at every time step may be unnecessary and costly. However, it has been shown
empirically that adding communication to a multi-agent POMDP may not only improve
team performance, but may also shorten the time needed to generate policies [8].

In the following section, we introduce an algorithm that takes as input a single-agent
POMDP policy, computed as if for a team with free communication, and at run-time, main-
tains team coordination and chooses instances of communication only when they are neces-
sary for improving team performance. This algorithm makes two trade-offs. First, it trades
off the need to perform computations at run-time in order to enable the generation of an
infinite-horizon policy for the team that would otherwise be highly intractable to compute.
Secondly, it conserves communication resources, at the potential cost of a small amount of
team performance.

3 Dec-Comm algorithm
Policies for multi-agent POMDPs are computationally difficult to generate because agents,
observing only their own local observations, must still reason about the possible observa-



tions and actions of their teammates. Single-agent POMDP policies are mappings from
beliefs to actions (π : B → A), where a belief,b ∈ B, is a probability distribution over
world states. An individual agent in a multi-agent system cannot calculate this belief be-
cause it sees only its own local observations. Even if an agent wished to calculate a belief
based only on its own observations, it could not, because the transition and observation
functions depend on knowing the joint action of the team. Some work has been done
exploring transition-independent systems, that is multi-agent systems in which the local
state transitions and observations of each agent are independent of the actions of the other
agents on the team, and the team is linked only through a joint reward function, but this
independence does not hold in general [9].

As discussed in the previous section, a multi-agent POMDP can be transformed into a
single-agent POMDP by communicating at every time step. A standard POMDP solver
can be used to generate a policy that operates over joint observations and returns joint ac-
tions, ignoring the fact that these joint observations and actions are comprised of individual
observations and actions. Assuming the agents start at a knownsynchronized belief, mean-
ing that the agents have the same probability distribution over the possible states of the
world, each agent can construct the joint observation of the team by listening to the indi-
vidual observations communicated to it, and can therefore calculate both the joint action
that is indicated by the policy and the resulting belief of the team. This belief, which is
calculated identically by each member of the team, is henceforth referred to as thejoint
belief.

Creating and executing a policy over joint beliefs is equivalent to creating a centralized
controller for the team and requires agents to communicate their observations at each time
step. Because we wish to minimize the use of communication resources, we introduce the
Dec-Comm algorithm that, in a decentralized fashion, selects actions based on the possible
joint beliefs of the team and chooses to communicate when an agent’s local observations
indicate that sharing information would lead to an increase in expected reward.

3.1 Reasoning over possible joint beliefs
The Q-MDP method was introduced by Littmanet al. as an approach for finding ap-
proximate solutions to large POMDPs by using the value functions (Va(s) is the value of
taking actiona in states and henceforth acting optimally) that are easily obtainable for the
systems’ underlying MDPs [10]. In Q-MDP, the best action for a particular belief is cho-
sen according to Q-MDP(b) = arg maxa

∑
s∈S b(s) × Va(s), which averages the values

of taking each action in every state, weighted by the likelihood of being in that state as
estimated by the belief.

Likewise, we introduce the Q-POMDP method for approximating the best joint action
for a multi-agent POMDP by reasoning over the values of the possible joint beliefs in the
underlying centralized POMDP. In our approach, a joint policy is created for the system, as
described above. During execution, each agent calculates a tree of possible joint beliefs of
the team. These joint beliefs represent all of the possible observation histories that could
have been observed by the team members. We defineLt to be the set of possible joint
beliefs of the team at timet. EachLti is a tuple consisting of〈bt,pt, ~ωt〉, where~ωt is the
joint observation history that would lead toLti, bt is the joint belief at that observation
history, andpt is the probability of the team observing that history.

The algorithm for expanding a single leaf in a tree of possible joint beliefs can be found
in Table 1. Each leaf has a child leaf for every possible joint observation. For each
observation,Pr(ωi|a,bt), the probability of receiving that observation while in belief
statebt and having taken actiona, is calculated. The resulting belief,bt+1, is calcu-
lated using a standard Bayesian update. The child leaf is composed of this new be-
lief, bt+1, the probability of reaching that belief, which is equivalent to the probabil-
ity of receiving this particular observation in the parent leaf times the probability of



reaching the parent leaf, and the corresponding observation history. Note that this al-
gorithm entirely ignores the actual observations seen by each agent. This enables the
agents to compute identical trees in a decentralized fashion. The Q-POMDP heuris-

Table 1: Algorithm to grow the children of one leaf in a tree of possible beliefs

GROWTREE(Lti, a)
bt ← b(Lti)
Lt+1 ← ∅

for eachωi ∈ Ω
bt+1 ← ∅
Pr(ωi|a,bt)←

∑
s′∈S O(s′,a, ωi)

∑
s∈S T (s,a, s′)bt(s)

for eachs’ ∈ S

bt+1(s′)← O(s′,a, ωi)
∑

s∈ST (s,a, s′)bt(s)
Pr(ωi|a,bt)

pt+1 ← p(Lti)× Pr(ωi|a,bt)
~ωt+1 ← ~ω(Lti) ◦ 〈ωi〉
Lt+1 ← Lt+1 ∪ [bt+1,pt+1, ~ωt+1]

return Lt+1

tic, Q-POMDP(Lt) = arg maxa
∑
Li ∈Lt p(Li) × Q(b(Li),a), selects a single action

that maximizes expected reward over all of the possible joint beliefs. Because this reward
is a weighted average over several beliefs, there may exist domains for which an action that
is strictly dominated in any single belief, and therefore does not appear in the policy, may
be the optimal action when there is uncertainty about the belief. We define theQ function,
Q(bt,a) =

∑
s∈S R(s,a)bt(s) + γ

∑
ω∈Ω Pr(ω|a,bt)Vπ(bt+1), in order to take these ac-

tions into account. The value function,Vπ(b), gives the maximum attainable value at the
belief b, but is only defined over those actions which appear in the single-agent policyπ.
TheQ function returns expected reward for any action and belief.bt+1 is the belief that
results from taking actiona in belief statebt and receiving the joint observationω. bt+1

andPr(ω|a,bt) are calculated as in Table 1.

Since all of the agents on a team generate identical trees of possible joint beliefs, and
because Q-POMDP selects actions based only on this tree, ignoring the actual local obser-
vations of the agents, agents are guaranteed to execute the same joint action at each time
step. However, this clearly leads to very conservative action choice, as agents are forced to
select an action that takes into account all possible contingencies. The DEC-COMM algo-
rithm utilizes communication to allow agents to integrate their actual observations into the
possible joint beliefs, while still maintaining team synchronization.

3.2 Using communication to improve performance

An agent using the DEC-COMM algorithm chooses to communicate when it sees that inte-
grating its own observation history into the joint belief would cause a change in the joint
action that would be selected. To decide whether or not to communicate, the agent com-
putesaNC , the joint action selected by the Q-POMDP heuristic based on its current tree
of possible joint beliefs. It then prunes the tree by removing all beliefs that are inconsistent
with its own observation history and computesaC , the action selected by Q-POMDP based
on this pruned tree. If the actions are the same, the agent chooses not to communicate. If the
actions are different, this indicates that there is a potential gain in expected reward through
communication, and the agent broadcasts its observation history to its teammates. When an
agent receives a communication from one of its teammates, it prunes its tree of joint beliefs
to be consistent with the observations communicated to it, and recurses to see if this new



information would lead it to choose to communicate. Because there may be multiple in-
stances of communication in each time step, agents must wait a fixed period of time for the
system to quiesce before acting. Table 2 provides the details of the DEC-COMM algorithm.

Table 2: One time step of the DEC-COMM algorithm for an agentj

DEC-COMM(Lt, ~ωtj)
aNC ← Q-POMDP(Lt)
L′ ← prune leafs inconsistent with~ωtj fromLt
aC ← Q-POMDP(L′)
if aNC 6= aC

communicate~ωtj to the other agents
return DEC-COMM(L′, ∅)

else
if communication~ωtk was received from another agentk

Lt ← prune leafs inconsistent with~ωtk fromLt
return DEC-COMM(Lt, ~ωtj)

else
take actionaNC
receive observationωt+1

j

~ωt+1
i ← ~ωtj ◦ 〈ω

t+1
j 〉

Lt+1 ← ∅
for eachLti ∈ Lt
Lt+1 ← Lt+1 ∪ GROWTREE(Lti,aNC)

return [Lt+1, ~ωt+1
j ]

3.3 Synchronization

In addition to the communication discussed above, which allows agents to choose to com-
municate independently of the communication decisions of the other agents, there may also
arise a need for a joint communication action that we call synchronization. In a particular
domain, if communication is not frequently necessary, the tree of joint beliefs may grow
intractably large. Periodic synchronization, a communication action in which all of the
agents transmit their observation histories to each other simultaneously, reduces the tree
of possible joint beliefs to a single belief. We distinguish synchronization from commu-
nication because it is performed solely for the purpose of reducing the size of the tree of
possible joint beliefs, independent of whether or not communication at that point in time
would be beneficial for the performance of the team.

4 Example

To illustrate the details of our algorithm, we present an example in the two-agent tiger
domain introduced by Nairet al. [7]. We use the tiger domain because it is small and clear
enough to be easily understood, and also because it is a problem that requires coordinated
behavior between the agents. The tiger problem consists of two doors, LEFT and RIGHT.
Behind one door is a tiger, and behind the other is a treasure.S consists of two states, SL
and SR, indicating respectively that the tiger is behind the left door or the right door. The
agents start out with a uniform distribution over these states (P(SR) = 0.5).

Each agent has three individual actions available to it: OPENL, which opens the left
door, OPENR, which opens the right door, and LISTEN, an information-gathering action
that provides an observation about the location of the tiger. Together, the team may



perform any combination of these individual actions. A joint action of〈L ISTEN, L IS-
TEN〉 keeps the world in its current state (T (si, 〈L ISTEN, L ISTEN〉, si) = 1.0∀si); if ei-
ther agent opens a door, the world is randomly and uniformly reset to a new state (i.e.
T (si, 〈OPENR, ∗〉, sj) = 0.5∀si, sj). The agents receive two observations, HL and HR,
corresponding to hearing the tiger behind the left of right door. For the purposes of our
example, we modify the observation function from the one given in Nairet al. If a door
is opened, the observation is still uniformly chosen (i.e.O(si, 〈OPENR, ∗〉, ∗) = 0.5∀si);
the probability of an individual agent hearing the correct observation if both agents LIS-
TEN is 0.7 (i.e.O(SR, 〈L ISTEN, L ISTEN〉,HR) = 0.7). This change makes it such that
the optimal policy is to hear two consistent observations (i.e. HR, HR) before opening a
door. Table 3 gives the joint observation function for the case in which the agents perform
〈L ISTEN, L ISTEN〉.

Table 3: Joint observation function for the action〈L ISTEN, L ISTEN〉
State/Observation HL,HL HL, HR HR,HL HR,HR

SL 0.49 0.21 0.21 0.09
SR 0.09 0.21 0.21 0.49

The reward function for this problem is structured to create an explicit coordination prob-
lem between the agents. The highest reward is achieved when both agents open the
same door, and that door does not contain the tiger (i.eR(SR, 〈OPENL,OPENL〉) =
+20). A slightly lower reward is received when both agents open the incorrect door
(i.e R(SL, 〈OPENL,OPENL〉) = −50). The worst case is when the agents open oppo-
site doors, or when one agent opens the incorrect door while the other agent listens (i.e
R(SL, 〈OPENL,OPENR〉) = −100). The cost of〈L ISTEN, L ISTEN〉 is -2. We generated
a joint policy for this problem with Cassandra’s POMDP solver, using a discount factor of
γ = 0.9 [11]. Note that although there are eight possible joint actions, all actions other than
〈OPENL, OPENL〉, 〈OPENR, OPENR〉, and〈L ISTEN, L ISTEN〉 are strictly dominated, and
we do not need to consider them.

4.1 Time step 0

In this example, the agents start out with a synchronized joint belief of P(SR) = 0.5. Ac-
cording to the policy, the optimal joint action at this belief is〈L ISTEN, L ISTEN〉, with an
expected reward of 18.199738. Because their observation histories are empty, there is no
need for the agents to communicate.

4.2 Time step 1

The agents execute〈L ISTEN, L ISTEN〉, and both agents observe HL. Each agent indepen-
dently executesGROWTREE. Figure 1 shows the tree of possible joint beliefs calculated
by each agent. Table 4 shows the expected value of taking each possible joint action at the
possible beliefs. This table shows that, using the Q-POMDP heuristic, the best possible
joint action is〈L ISTEN, L ISTEN〉.
When deciding whether or not to communicate, agent 1 prunes all of the joint beliefs that
are not consistent with its having heard HL. The circled nodes in Figure 1 and the bold-ed
entries in Table 4 indicate those nodes which are not pruned. Running Q-POMDP on the
pruned tree shows that the best joint action is still〈L ISTEN, L ISTEN〉, so agent 1 decides
not to communicate. It is important to note that at this point, a centralized controller would
have observed two consistent observations of HL and would decide to perform〈OPENR,
OPENR〉. This is an instance in which our algorithm, because it does not yet have sufficient



HR HR
HL HL

HL H
R HR HL

<LISTEN, LISTEN>0.5

0.5 0.5 0.8448280.155172
p = 0.29

p = 1.0

p = 0.29 p = 0.21 p = 0.21

Figure 1: Joint beliefs after a single action

Table 4: Values of the joint beliefs inL1

b(L1
i ) p(L1

i ) <OpenL,OpenL> <OpenR,OpenR> <Listen,Listen>
*1* 0.155 0.29 -22.758196 25.517725 21.532808
*2* 0.5 0.21 1.379765 1.379765 18.199738
3 0.5 0.21 1.379765 1.379765 18.199738
4 0.845 0.29 25.517725 -22.758196 21.532808

reason to believe that there will be a gain in expected reward through communication,
performs worse than a centralized controller.

4.3 Time step 2

After performing another〈L ISTEN, L ISTEN〉 action, each agent again observes HL. Fig-
ure 2 shows the output ofGROWTREEafter the second action. Due to space constraints, we
do not enumerate all of the resulting joint beliefs. The Q-POMDP heuristic again indicates
that the best joint action is〈L ISTEN, L ISTEN〉.

0.155172
p = 0.29

0.5
p = 0.21

0.5
p = 0.21

0.844828
p = 0.29

0.5
p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

2 3 4 5 7 11 12 13 14 151 8 10

HL HL
HL HL

HL HL
HL HL

HL H
R

HL H
R

HL H
R

HL H
RH

R H
L

H
R H

L

H
R H

L

H
R H

L

HR HR

HR HR

HR HR

HR HR

<LISTEN, LISTEN>

96 16

Figure 2: Joint beliefs after the second action

Agent 1 reasons about its communication decision by pruning all of the joint beliefs that
are not consistent with its entire observation history (hearing HL twice). This leaves only
the nodes that are circled in Figure 2. Table 5 shows the beliefs and probabilities for
the remaining nodes in agent 1’s tree of possible joint beliefs, as well as the values of
the joint actions in each belief. For the pruned tree, Q-POMDP indicates that the best



action is〈OPENR, OPENR〉. Because the pre-communication action,aNC , differs from
the action that would be chosen post-communication,aC , agent 1 chooses to communicate
its observation history to its teammate.

Table 5: Values of the pruned joint beliefs inL2′

b(L2′

i ) p(L2′

i ) <OpenL,OpenL> <OpenR,OpenR> <Listen,Listen>
1 0.032635 0.428 -31.335785 34.095314 23.311438
2 0.155172 0.21 -22.758196 25.517725 21.532808
5 0.155172 0.21 -22.758196 25.517725 21.532808
6 0.5 0.152 1.379765 1.379765 18.199738

In the meantime, agent 2 has been performing an identical computation (since it too ob-
served two instances of HL) and also decides to communicate. After pruning their trees
of possible joint beliefs, there is only a single belief that is consistent with the observation
histories of both agents, P(SR) = 0.032635. The optimal action for this belief is〈OPENR,
OPENR〉, which is now performed by the agents.

This example shows a situation in which both agents decide to communicate their obser-
vation histories. It is easy to construct situations in which one agent would choose to
communicate but the other agent would nor, or examples in which the agents would de-
cide not to communicate, possibly for many time steps (e.g. the agents observe alternating
instances of HL and HR). From the figures, it is also clear that the tree of possible joint
beliefs grows rapidly when communication is not chosen. In cases where the agents do not
communicate for a long period of time, it may be necessary to introduce a synchronization
to re-shrink the tree to a tractable size.

5 Results and analysis

We demonstrate the performance of our approach experimentally by comparing the reward
achieved by a team that communicates at every time step (i.e. a centralized controller) to a
team that uses the DEC-COMM algorithm to select actions and make communication deci-
sions. We ran our experiment on the two-agent tiger domain as described in the previous
section. In each experiment, the world state was initialized randomly, and the agents were
allowed to act for 8 time steps. We ran 30000 trials of this experiment. Table 6 summarizes
the results of these trials.

Table 6: Experimental results

µReward σReward µComm σComm
Full Comm. 17.0 37.9 30 0
DEC-COMM 8.9 28.9 2.9 1.1

It may appear at first glance as though the performance of the DEC-COMM algorithm is sub-
stantially worse than the centralized controller. However, as the high standard deviations
indicate, the performance of even the centralized controller varies widely, and DEC-COMM
under-performs the fully communicating system by far less than one standard deviation.
Additionally, it achieves this performance by using less than a third as much communica-
tion as the fully communicating system.

We are currently working on comparing the performance of our approach to COMMUNICA -
TIVE JESP, a recent approach that also uses communication to improve the computational



tractability and performance of multi-agent POMDPs [8]. However, this comparison is
difficult for several reasons. First of all, the COMMUNICATIVE JESP approach treats com-
munication as an action that can replace other domain-level actions in the policy. Thus, in
their model, if an agent chooses to communicate in a particular time step, it cannot take
an action. Secondly, their approach can only plan for finite-horizon problems, whereas our
system uses an infinite-horizon policy as the solution for the underlying POMDP. Most sig-
nificantly, however, their approach deals only with synchronized communications, meaning
that if one agent on a team chooses to communicate, it also forces all its other teammates
to communicate at that time step.

6 Conclusion

We present in this paper an approach for trading off the benefits of assuming free commu-
nication at policy-generation time, allowing us to use single-agent POMDP solvers to gen-
erate infinite-horizon policies for multi-agent POMDPs, with the cost of maintaining agent
synchronization and reasoning about necessary instances of communication at execution-
time. We introduce the novel approach of maintaining a tree of possible joint beliefs of the
team, and describe a heuristic, Q-POMDP, that allows agents to, in a decentralized fash-
ion, select the best action over the possible beliefs. We show through a detailed example
and experimentally that our DEC-COMM algorithm makes communication decisions that
improve team performance while mimimizing the instances of communication.

In this work, we explicitly maintain the entire tree of possible joint beliefs until it is pruned
by communication. Although we describe how synchronization actions can be used to
reduce the size of the tree, we believe that there may be other methods for improving the
tractability, as well as the performance, of our algorithm. One idea for more efficiently
storing the possible joint beliefs is to encode them in a directed acyclic graph instead of
a tree, allowing for the compression of identical (or possibly similar) beliefs into a single
node. We are also interested in looking at factored representations that may reveal structural
relationships between state variables, as opposed to single states. Other areas for future
work include reasoning about communicating onlypart of the observation history, and
exploring the possibility of agentsaskingtheir teammates for information instead of only
telling what they know.

References

[1] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control of
Markov Decision Processes. InUncertainty in Artificial Intelligence, 2000.

[2] P. Xuan and V. Lesser. Multi-agent policies: From centralized ones to decentralized ones. In
International Joint Conference on Autonomous Agents and Multi-agent Systems, 2002.

[3] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
domains.Artificial Intelligence, 1998.

[4] D. V. Pynadath and M. Tambe. The communicative Multiagent Team Decision Problem: Ana-
lyzing teamwork theories and models.Journal of AI Research, 2002.

[5] L. Peshkin, K-E Kim, N Meuleau, and L. P. Kaelbling. Learning to cooperate via policy search.
In Uncertainty in Artificial Intelligence, 2000.

[6] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov Decision Processes.Math-
ematics of Operations Research, 1987.

[7] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming decentralized POMDPs:
Towards efficient policy computation for multiagent settings. InInternational Joint Conference
on Artificial Intelligence, 2003.



[8] R. Nair, M. Roth, M. Yokoo, and M. Tambe. Communication for improving policy computation
in distributed POMDPs. InInternational Joint Conference on Autonomous Agents and Multi-
agent Systems, 2004.

[9] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-independent decentralized
Markov Decision Processes. InInternational Joint Conference on Autonomous Agents and
Multi-agent Systems, 2003.

[10] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: Scaling up. InInternational Conference on Machine Learning, 1995.

[11] A. R. Cassandra. POMDP solver software. http://www.cassandra.org/pomdp/code/index.shtml.


