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Abstract This paper presents an architecture that enables multiple robots to explicitly co-
ordinate actions at multiple levels of abstraction. In particular, we are developing
an extension to the traditional three-layered robot architecture that enables robots
to interact directly at each layer – at the behavioral level, the robots create dis-
tributed control loops; at the executive level, they synchronize task execution;
at the planning level, they use market-based techniques to assign tasks, form
teams, and allocate resources. We illustrate these ideas through applications in
multi-robot assembly, multi-robot deployment, and multi-robot mapping.

Keywords: Multi-robot coordination, robot architecture, task-level control.
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An architecture for multi-robot coordination must be able to accommodate
issues of synchronization and cooperation under a wide range of conditions
and at various levels of granularity and timescales. At the concrete, physical
level of sensors and actuators, the robots need to respond quickly to dynamic
events (such as imminent collisions), while at the same time reasoning about
and executing long-term strategies for achieving goals. Executing such strate-
gies is likely to involve establishing and managing a variety of synchroniza-
tion constraints between robots. For some tasks, such as distributed search,
coordination may be loose and asynchronous; for others, such as cooperative
manipulation of a heavy object, coordination must be tightly synchronized.

In designing a multi-robot architecture that allows flexibility in synchro-
nization and granularity, one must inevitably negotiate the tension between
centralized and distributed approaches. A centralized system can make opti-
mal decisions about subtle issues involving many robots and many tasks. In
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contrast, a highly distributed system can quickly respond to problems involv-
ing one, or a few, robots and is more robust to point failures.

We are developing a multi-robot coordination architecture that addresses
these issues, providing flexibility in granularity and synchronization, while
also attempting to accommodate the strengths of both distributed and cen-
tralized approaches. The architecture is an extension of the traditional three-
layered approach, which provides event handling at different levels of abstrac-
tion through the use of behavioral, executive, and planning layers. Our ap-
proach extends the architecture to multiple robots by allowing robots to in-
teract directly at each layer (see Figure 1). This provides several benefits,
including (1) plans can be constructed and shared between multiple robots, us-
ing a market-based approach, providing for various degrees of optimization;
(2) executive-level, inter-robot synchronization constraints can be established
and maintained explicitly; and (3) distributed behavior-level feedback loops
can be established to provide for both loosely- and closely-coupled coordina-
tion.

Each layer is implemented using representations and algorithms that are
tuned to the granularity, speed, and types of interactions typically encoun-
tered at each level (symbolic/global, hybrid/reactive, numeric/reflexive). The
strengths of this architecture are its flexibility in establishing interactions be-
tween robots at different levels and its ability to handle tasks of varying degrees
of complexity while maintaining reactivity to changes and uncertainty in the
environment. This paper presents the major components of the architecture,
together with case studies that illustrate their use in multi-robot applications.
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Our approach blends the advantages of both the centralized and distributed
approaches to multi-robot systems. In the centralized approach, a centralized
planner plans out detailed actions for each robot. For example, a planner might
treat two 6 DOF arms as a single 12 DOF system for the purpose of generat-
ing detailed trajectories that enable the arms to work together in moving some
object, without bumping into each other (Khatib, 1995). While this approach
provides for close coordination, it does so at the expense of local robot auton-
omy. In particular, this approach usually employs centralized monitoring and,
if anything goes wrong, the planner is invoked to replan everything. Thus, this
approach suffers from single point failure and lack of local reactivity.

At the other end of the spectrum, in the distributed approach (Arkin, 1992;
Balch and Arkin, 1994; Mataric, 1992; Parker, 1998) each agent is autonomous,
but there is usually no explicit synchronization among the robots. Coordina-
tion (or, more accurately, cooperation) occurs fortuitously, depending on how
the behaviors of the robots interact with the environment. For instance, in the
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ALLIANCE architecture (Parker, 1998), robots decide which tasks to perform
in a behavior-based fashion: They have “motivations” that rise and fall as they
notice that tasks are available or not. While ALLIANCE can handle heteroge-
neous robots (robots can have different motivations for different tasks), it does
not deal with the problem of explicit coordination.

(Jennings and Kirkwood-Watts, 1998) have developed a distributed execu-
tive for multi-robot coordination. The executive, based on a distributed dialect
of Scheme, is similar to our executive language in the types of synchroniza-
tion constructs it supports. As with our work, this enables robots to solve local
coordination problems without having to invoke a high-level planner.

Several researchers have investigated economy-based architectures applied
to multi-agents systems (Sandholm and Lesser, 1995; Sycara and Zeng, 1996;
Wellman and Wurman, 1998), beginning with work on the Contract Net (Smith,
1980). (Golfarelli et al., 1997) proposed a negotiation protocol for multi-robot
coordination that restricted negotiations to task-swaps. (Stentz and Dias, 1999)
proposed a more capable market-based approach that aims to opportunistically
introduce pockets of centralized planning into a distributed system, thereby ex-
ploiting the desirable properties of both distributed and centralized approaches.
(Thayer et al., 2000; Gerkey and Matarić, 2001; Zlot et al., 2002) have since
presented market-based multi-robot coordination results.
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Our multi-robot architecture is based on the layered approach that has been
adopted for many single-agent autonomous systems (Bonasso et al., 1997;
Muscettola et al., 1998; Simmons et al., 1997). These architectures typically
consist of a planning layer that decides how to achieve high-level goals, an
executive layer that sequences tasks and monitors task execution, and a behav-
ioral layer that interfaces to the robot’s sensors and effectors.

Typically, information and control flows up and down between layers. The
planning layer sends plans to the executive, which further decomposes tasks
into subtasks and dispatches them based on the temporal constraints imposed
by the plan. Dispatching a task often involves enabling or disabling various
behaviors. The behaviors interact to control the robot, sending back sensor
data and status information. The executive informs the planner when tasks are
completed, and may further abstract sensor data for use by the planner. The
executive also monitors task execution: In case of failure, it can try to recover
or it can terminate the task and request a new plan from the planner.

We extend this architectural concept to multiple robots in a relatively straight-
forward way. Each robot is composed of a complete three-layered architecture.
In addition, each of the three layers can interact directly with the same layer
of the other robots (Figure 1). Thus, each robot can act autonomously at all
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times, but can coordinate (at multiple levels) with other agents, when needed.
By allowing each layer to interact directly with its peers, we can essentially
form distributed feedback loops, operating at different levels of abstraction
and at different timescales. In particular, the behavioral layer coordinates be-
haviors, the executive layer coordinates tasks, and the planning layer coordi-
nates/schedules resources. In this way, problems arising can be dealt with at
the appropriate level, without having to involve higher layers. This decreases
latency and may increase robustness (since lower layers typically operate with
higher-fidelity models).

The following sections describe each of the layers of the architecture in
more detail. For each, we also provide a case study illustrating how interaction
at that level can be used for multi-robot coordination.
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The behavioral layer consists of real-time sensor/effector feedback loops.
By connecting the sensor behaviors of one robot to the effector behaviors of
another, we can create efficient distributed servo loops (Simmons et al., 2000b).
Similarly, by connecting effector behaviors together, we can create tightly co-
ordinated controllers. For instance, two robots could coordinate their arm and
navigation behaviors to jointly carry a heavy piece of equipment (Pirjanian
et al., 2001).

A multi-robot behavioral layer that can support such capabilities needs sev-
eral critical features. First, it must be possible to connect behaviors to one
another, enabling sensor data and status information to flow between behav-
iors on different robots. The architecture should not place restrictions on the
type of data that can pass between distributed behaviors. Also, it should be
possible to connect behaviors transparently on different robots, in the same
way that one connects them on the same robot. Finally, high-bandwidth, low-
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latency communications is needed to achieve good performance in interacting,
multi-robot behaviors.

Our implementation extends the Skill Manager of (Bonasso et al., 1997)
to provide for both intra- and inter-robot connections. Skills are connected
via input/output ports and operate in a data-flow fashion: When a new input
value arrives on a port, the skill runs an action code that (optionally) produces
outputs. For skills on the same robot, the connection is via function call; for
inter-robot connections, data flows using a transparent message-passing proto-
col. Certain aspects of the skills, such as the action code and number and types
of ports, are statically determined at compile time. Most aspects, however, can
be dynamically configured at run time (either from the executive layer, or from
a skill’s action code). These include the ability to enable and disable a behav-
ior, set the value of an input, set parameters of the skill, and create or destroy
the connections between ports. The executive layer can also subscribe to skill
outputs.

These ideas have been demonstrated in the context of distributed visual ser-
voing for large-scale assembly using multiple, heterogeneous robots (Simmons
et al., 2000b). The task, which is to move the end of a large beam into a verti-
cal stanchion, uses three robots (Figure 2) – an observer (a mobile robot with
stereo vision) and two controllers (an automated crane and a mobile manipu-
lator).

The observer robot tries to maintain the best view of the fiducials on the
beam, stanchion, and manipulator arm. It move the cameras and drives around
the workspace to keep those fiducials it is currently tracking centered in the
image and filling most of the cameras’ fields of view. The observer uses stereo
vision to compute the 6 DOF pose of the fiducials and outputs the differences
between the poses to one of the controller robots, depending on which skill it is
connected to at the time. In particular, the observer’s visual tracking behavior
(Figure 3) first helps direct the crane to move the beam near the stanchion, then
aids the mobile manipulator in grabbing the beam, and finally helps the mobile
manipulator to place the beam in the stanchion (5mm clearance).

  � ��´ ´ ³8µ ¹�° � ± � µ�� � 	 ����� �!¸r·¶±<¹�´²°

The executive layer has responsibility for hierarchically decomposing tasks
into subtasks, enforcing synchronization constraints between tasks (both those
imposed by the planner and those added during task decomposition), monitor-
ing task execution, and recovering from exceptions (Simmons, 1994).

For coordinated multi-robot task execution, it should be possible to synchro-
nize tasks transparently on two different agents, in the same way as if they were
performed by a single agent. For instance, we may want to state that a robot
should not start analyzing a rock until two other rovers have moved into place
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to provide assistance. In addition, a distributed executive should facilitate one
robot monitoring the execution of another robot and helping it recover from
faults. Finally, it is desirable for one robot to be able to directly request that
another robot perform a task (such as assisting it to perform visual servoing).

Our interface between planner and executive is based on PRL, a plan repre-
sentation language that was developed for an earlier project (Simmons et al.,
2000a). PRL represents plans as a hierarchy of tasks, with each task defined
in terms of parameters, subtasks, and temporal constraints between the sub-
tasks. We have recently extended PRL to enable specification of the resource
utilization of a task and which agent should be executing it.

The executive is implemented using the Task Description Language. TDL
is an extension of C++ that contains explicit syntax to support hierarchical
task decomposition, task synchronization, execution monitoring, and excep-
tion handling (Simmons and Apfelbaum, 1998). Recently, we have extended
TDL to handle task-level coordination between robots and to enable one robot
to spawn or terminate a task on another. TDL transparently handles passing
task data (function parameters) and synchronization signals between robots,
using message passing.

We have used these ideas to perform coordinated deployment of multiple,
heterogeneous robots (Simmons et al., 2000a). The executive receives a plan
consisting of a set of deployments, where each deployment is an ordered list of
locations, the robots that should to deploy to those locations, and a deployment
“style.” For instance, in the “group” deployment style all the robots navigate
concurrently to the first deployment location, one stays behind while the others
continue to the next location, and so on. The executive has procedures for
decomposing each deployment style into primitive navigation behaviors. It is
then responsible for coordinating the tasks, to ensure that robots do not move
until others are in position. Figure 4 presents a simplified version of the TDL
code for deploying the robots shown in Figure 5.
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Goal GroupDeploy (DEPLOY PTR deployList) �
with (serial) �

for (int i=0; i � length(deployList); i++) �
spawn GroupDeploySub(i, deployList)�����

Goal GroupDeploySub (int phase,
DEPLOY PTR deployList) �

with (parallel) �
for (int j=phase; j � length(deployList); j++) �

spawn Navigate(deployList[i].location)
with on deployList[j].robot;�����

�<l�~?x:}jy�� �
TDL code (simplified) for “group” de-

ployment strategy
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Our approach to task allocation and planning is based on a market econ-
omy. An economy is essentially a population of agents coordinating with each
other to produce an aggregate set of goods. Market economies are those gen-
erally unencumbered by centralized planning, instead leaving individuals free
to exchange goods and services and enter into contracts as they see fit. De-
spite the fact that individuals in the economy act only to advance their own
self-interests, the aggregate effect is a highly productive society.

We have developed a market-based architecture in which tasks are allocated
based on exchanges of single tasks between pairs of robots. A robot that needs
a task performed announces that it will auction off the task as a buyer. Each
seller capable of performing the task for a cost c, bids to do so for c � ε. The
buyer accepts the lowest bid, as long as it is cheaper than doing the task itself.
If a bid is accepted, the seller performs the task and pockets ε as profit.

This approach has been demonstrated in several simulated and actual robot
applications. (Zlot et al., 2002) reports on multi-robot exploration of an un-
known environment. Each robot generates a list of target points to visit, and
orders them into a tour (using an approximate TSP algorithm). Next, the robots
try to auction off tasks, one at a time (sequentially along the tour). When all
its auctions close, the robot navigates to its first target point, incorporates map
information, and generates new target points. Note that the robots are able to
share map information via trades on the market, and that all communication is
asynchronous and not assumed to be reliable. Figure 6 shows a map built by
four robots in a highbay, and Figure 7 shows the paths they took.

More recently, our market-based architecture has been extended to support
leader agents that engage in multi-agent, multi-task exchanges. This can lead
to task allocations that outperform those produced by repeatedly exchanging
one task at a time. A leader agent opens a combinatorial exchange in which
agents can bid to buy or sell combinations of tasks. The leader chooses which
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bids to accept and pockets the difference between the total revenue and cost of
all the transactions. In order to earn a good profit, however, it must perform
the computationally difficult problem of choosing which bids to accept in or-
der to maximize efficiency. A leader opportunistically announces exchanges
for those pockets of the overall problem that will net a good return on its com-
putational investment (those that can produce the largest efficiency gain from
its optimization).
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A mechanism for providing up-to-date information on robots and their ca-
pabilities is necessary for highly dynamic multi-robot systems, where robot at-
trition, accession, and modification are common. The Agent Capability Server
(ACS) is designed to handle this by providing a distributed facility for auto-
matically disseminating agent information. The idea is that each robot in the
system has its own local ACS that it can quickly query for the capabilities
and status of other robots. This information can then be used in determining
which robots can perform which tasks, planning efficient multi-robot strate-
gies for a task, establishing the appropriate executive-level and behavior-level
coordination mechanisms between robots, and accommodating non-responsive
(possibly failed) robots. Our ACS is similar in purpose, though specialized by
comparison, to middle agents that map capabilities to particular agents, and
agent naming services that map agents to locations (Sycara et al., 2001).

Maintaining the consistency of information among the various Agent Capa-
bility Servers is a key concern, especially since communications range may be
limited and influenced by geographic features. Thus, it cannot be assumed that
a broadcast of new information will reach all robots. One method for boost-
ing consistency in the face of uncertain communication is to have each ACS
broadcast its data periodically. Thus, new information will eventually prop-
agate throughout the group by transparently using robots as communication
relays.
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Each ACS monitors the periodic updates from the other servers. When a
server has failed to provide an update for a sufficiently long interval, the robot
is assumed to have failed or be completely out of communications range. In
either case, its entry is removed from the ACS. If and when the missing robot
is heard from again, it will be seamlessly re-incorporated.

�* �¶·���� �®³ 	 � °_µ�� ·¶±<·_³ � 
 ´²³�

This paper describes a multi-robot extension to the traditional three-layered
architecture, where each layer can communicate directly with its peer layers on
other robots. This gives the robots the ability to coordinate at multiple levels of
abstraction with minimal overhead in terms of inter- and intra-agent commu-
nication. We have described criteria and design decisions for each layer, and
have presented case studies showing how layer-to-layer interaction enables re-
liable multi-robot coordination.

Much work still remains on the architecture. We need to integrate the plan-
ning and executive layers more fully. We need to generalize the market-based
planning framework, especially by adding leader agents and their more sophis-
ticated bidding structures. We need to have all levels of the architecture deal
more fully with the loss of agents. We need to complete design and imple-
mentation of the Agent Capability Server. And, we need to demonstrate the
architecture in rich domains.

Multi-robot coordination promises huge benefits in terms of increased ca-
pability and reliability. The price, however, is often added complexity. We
believe that a well-structured, flexible architecture will facilitate the develop-
ment of such systems, at reasonable cost.
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