A Distributed Layered Architecture for Mobile Robot Coordination:
Application to Space Exploration

Dani Goldberg, Vincent Cicirello, M. Bernardine Dias
Reid Simmons, Stephen Smith, Trey Smith, Anthony Stentz
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
{danig,cicirello,mbdias,reids,sfs,trey,axs} @Qri.cmu.edu

Abstract

This paper presents an architecture that enables mul-
tiple robots to explicitly coordinate actions at multiple
levels of abstraction. In particular, we are developing
an extension to the traditional three-layered robot ar-
chitecture that enables robots to interact directly at
each layer — at the behavioral level, the robots cre-
ate distributed control loops; at the executive level,
they synchronize task execution; at the planning level,
they use market-based techniques to assign tasks, form
teams, and allocate resources. We illustrate these
ideas in the context of a Mars exploration scenario.

Keywords: Multi-robot coordination, robot architec-
ture, task-level control, space exploration.

Introduction

An architecture for multi-robot coordination must be
able to accommodate issues of synchronization and co-
operation under a wide range of conditions and at
various levels of granularity and timescales. At the
concrete, physical level of sensors and actuators, the
robots need to respond quickly to dynamic events (such
as imminent collisions), while at the same time rea-
soning about and executing long-term strategies for
achieving goals. Executing such strategies is likely to
involve establishing and managing a variety of synchro-
nization constraints between robots. For some tasks,
such as distributed search, coordination may be loose
and asynchronous; for others, such as cooperative ma-
nipulation of a heavy object, coordination must be
tightly synchronized.

In designing a multi-robot architecture that allows
flexibility in synchronization and granularity, one must
inevitably negotiate the tension between centralized
and distributed approaches. A centralized system can
make optimal decisions about subtle issues involving
many robots and many tasks. In contrast, a highly
distributed system can quickly respond to problems
involving one, or a few, robots and is more robust to
point failures.

We are developing a multi-robot coordination archi-
tecture that addresses these issues, providing flexibility
in granularity and synchronization, while also attempt-
ing to accommodate the strengths of both distributed
and centralized approaches. The architecture is an
extension of the traditional three-layered approach,
which provides event handling at different levels of ab-
straction through the use of behavioral, executive, and
planning layers. Our approach extends the architec-
ture to multiple robots by allowing robots to interact
directly at each layer (see Figure 2). This provides sev-
eral benefits, including: (1) plans can be constructed
and shared between multiple robots, using a market-
based approach, providing for various degrees of opti-
mization; (2) executive-level, inter-robot synchroniza-
tion constraints can be established and maintained ex-
plicitly; and (3) distributed behavior-level feedback
loops can be established to provide for both loosely-
and tightly-coupled coordination.

Each layer is implemented using representations
and algorithms that are tuned to the granularity,
speed, and types of interactions typically encountered
at each level (symbolic/global, hybrid/reactive, nu-
meric/reflexive). The strengths of this architecture
are its flexibility in establishing interactions between
robots at different levels and its ability to handle tasks
of varying degrees of complexity while maintaining re-
activity to changes and uncertainty in the environ-
ment.

This paper presents the major components of the
architecture together with a space exploration applica-
tion illustrating their use. An initial implementation of
the architecture is nearly complete, with detailed ex-
periments scheduled to begin soon. The status of the
major components of the architecture is also discussed
in the following sections.

Related Work

Our approach blends the advantages of both the cen-
tralized and distributed approaches to multi-robot sys-

tems. In the centralized approach, a centralized plan-
ner plans out detailed actions for each robot. For ex-
ample, a planner might treat two 6 DOF arms as a
single 12 DOF system for the purpose of generating
detailed trajectories that enable the arms to work to-
gether in moving some object, without bumping into
each other (Khatib 1995). While this approach pro-
vides for close coordination, it does so at the expense of
local robot autonomy. In particular, this approach usu-
ally employs centralized monitoring and, if anything
goes wrong, the planner is invoked to re-plan every-
thing. Thus, this approach suffers from single point
failure and lack of local reactivity.

At the other end of the spectrum, in the dis-
tributed approach (Arkin 1992; Balch & Arkin 1994;
Mataric 1992; Parker 1998), each agent is autonomous,
but there is usually no explicit synchronization among
the robots. Coordination (or, more accurately, co-
operation) occurs fortuitously, depending on how the
behaviors of the robots interact with the environ-
ment. For instance, in the ALLIANCE architecture
(Parker 1998), robots decide which tasks to perform
in a behavior-based fashion: They have “motivations”
that rise and fall as they notice that tasks are available
or not. While ALLTANCE can handle heterogeneous
robots (robots can have different motivations for differ-
ent tasks), it does not deal with the problem of explicit
coordination.

(Jennings & Kirkwood-Watts 1998) have devel-
oped a distributed executive for multi-robot coordi-
nation. The executive, based on a distributed dialect
of Scheme, is similar to our executive language in the
types of synchronization constructs it supports. As
with our work, this enables robots to solve local coordi-
nation problems without having to invoke a high-level
planner.

Several researchers have investigated economy-based
architectures applied to multi-agents systems (Sand-
holm & Lesser 1995; Sycara & Zeng 1996; Wellman &
Wurman 1998), beginning with work on the Contract
Net (Smith 1980). (Golfarelli, Maio, & Rizzi 1997)
proposed a negotiation protocol for multi-robot co-
ordination that restricted negotiations to task-swaps.
(Stentz & Dias 1999) proposed a more capable market-
based approach that aims to opportunistically intro-
duce pockets of centralized planning into a distributed
system, thereby exploiting the desirable properties of
both distributed and centralized approaches. (Thayer
et al. 2000), (Gerkey & Matari¢ 2001), and (Zlot et al.
2002) have since presented market-based multi-robot
coordination results. (Musliner & Krebsbach 2001)
described MASA-CIRCA, a distributed Contract Net-
based architecture with an emphasis on hard real-time

execution.

Before presenting the details of our approach in Sec-
tion , we first motivate the discussion with a descrip-
tion of our experimental scenario.

Mars Exploration Scenario

Our Mars exploration scenario is premised on the no-
tion of scientific return, i.e., that a group of robots
would be sent to Mars for the (potentially) valuable
information they gather and return to Earth. We envi-
sion a scenario where a colony of heterogeneous robots
is deployed on Mars. Scientists on Earth communi-
cate high-level task descriptions to the colony (e.g.,
"find and gather data on several carbonate rocks”).
We assume that the tasks given to robots may far ex-
ceed what can be accomplished during the lifetime of
the mission. In addition, communications limitations
(bandwidth, delays, blackouts) necessitate highly au-
tonomous robots, and preclude effective tele-operation
of the robots or micro-managing of task execution by
the scientists. The robots are therefore responsible
for deciding which/how tasks are to be accomplished,
based on, among other things, the tasks’ relative pri-
orities. The goal for the robots is to utilize their time,
resources, and capabilities efficiently so as to provide
the highest possible scientific return on the tasks they
are given. Our distributed, layered architecture is de-
signed to facilitate this goal.

In terms of the development and testing of our cur-
rent system, we have focussed on a characterize-region
task that will fit within a broader exploration scenario.
In this task, a user/scientist specifies a region on the
Mars surface, indicating that rocks within that region
are to be characterized with an appropriate sensing
instrument. The scientist may also specify the loca-
tions and types of rocks, if known. In our current
implementation of the task, there are three types of
rocks (RockA, RockB, and RockAB) and three types
of rock characterizing sensors (SensorA, able to fully
characterize RockA and partially characterize RockAB;
SensorB, able to fully characterize RockB and partially
characterize RockAB; and SensorAB, able to fully char-
acterize all three rock types). Each robot has at most
one rock characterizing sensor, requiring, for example,
a robot with SensorA and one with SensorB to coordi-
nate in order to fully characterize a RockAB-type rock,
but allowing a robot with SensorAB to fully charac-
terize the rock by itself. While relatively simple con-
ceptually, this scenario has many possible variations
that make it a nice testing ground for our architec-
ture. With respect to testing, a 3D graphical simu-
lator developed for the project currently provides the
“physical” robots and environment required (Figure 1),

Figure 1: Simulated Mars environment with multiple
rovers and rocks.

though, in the future, we plan to use real robots as well.

Approach

Our multi-robot architecture is based on the layered
approach that has been adopted for many single-
agent autonomous systems (Bonasso et al. 1997;
Muscettola et al. 1998; Simmons et al. 1997). These
architectures typically consist of a planning layer that
decides how to achieve high-level goals, an executive
layer that sequences tasks and monitors task execution,
and a behavioral layer that interfaces to the robot’s
sensors and effectors.

Typically, information and control flows up and
down between layers. The planning layer sends plans
to the executive, which further decomposes tasks into
subtasks and dispatches them based on the temporal
constraints imposed by the plan. Dispatching a task
often involves enabling or disabling various behaviors.
The behaviors interact to control the robot, sending
back sensor data and status information. The execu-
tive informs the planner when tasks are completed, and
may further abstract sensor data for use by the plan-
ner. The executive also monitors task execution: In
case of failure, it can try to recover or it can terminate
the task and request a new plan from the planner.

We extend this architectural concept to multiple
robots in a relatively straightforward way. Each robot
is composed of a complete three-layered architecture.
In addition, each of the three layers can interact di-
rectly with the same layer of other robots (Figure 2).
Thus, each robot can act autonomously at all times,
but can coordinate (at multiple levels) with other
agents, when needed. By allowing each layer to in-
teract directly with its peers, we can form distributed
feedback loops, operating at different levels of abstrac-
tion and at different timescales. In particular, the
behavioral layer coordinates behaviors, the executive
layer coordinates tasks, and the planning layer coordi-
nates/schedules resources. In this way, problems aris-

Market & . plans [N ‘ [- ‘
Scheduler planning ‘ | planning] | planning P

plans
(PRL)

status/data

’ executive } ::t: {

\ [

executive] | executive ‘

granularity
=
S,

configuration| status/data

M::l;er behavior ‘ :};Lf; { behavior } { behavior ‘
1 Robot 1 Robot 2 Robot 3

synchronization/coordination

Figure 2: Layered multi-robot architecture

ing can be dealt with at the appropriate level, without
having to involve higher layers. This decreases latency
and may increase robustness (since lower layers typi-
cally operate with higher-fidelity models).

The following sections describe each of the layers
of the architecture in more detail, and how they have
been applied to our exploration scenario.

Coordinated Behaviors

The behavioral layer consists of real-time sen-
sor/effector feedback loops. By connecting the sensor
behaviors of one robot to the effector behaviors of an-
other, we can create efficient distributed servo loops
(Simmons et al. 2000b). Similarly, by connecting ef-
fector behaviors together, we can create tightly coor-
dinated controllers. For instance, two robots could co-
ordinate their arm and navigation behaviors to jointly
carry a heavy piece of equipment (Pirjanian, Hunts-
berger, & Barrett 2001).

A multi-robot behavioral layer that can support such
capabilities needs several critical features. First, it
must be possible to connect behaviors to one another,
enabling sensor data and status information to flow
between behaviors on different robots. The architec-
ture should not place restrictions on the type of data
that can pass between distributed behaviors. Also, it
should be possible to connect behaviors transparently
on different robots, in the same way that one connects
them on the same robot. Finally, high-bandwidth, low-
latency communications is needed to achieve good per-
formance in interacting, multi-robot behaviors.

Our implementation extends the Skill Manager of
(Bonasso et al. 1997) to provide for both intra- and
inter-robot connections. Skills are connected via in-
put/output ports and operate in a data-flow fashion:
When a new input value arrives on a port, the skill runs
an action code that (optionally) produces outputs. For
skills on the same robot, the connection is via func-
tion call; for inter-robot connections, data flows using
a transparent message-passing protocol. Certain as-

pects of the skills, such as the action code and number
and types of ports, are statically determined at com-
pile time. Most aspects, however, can be dynamically
configured at run time (either from the executive layer,
or from a skill’s action code). These include the abil-
ity to enable and disable a behavior, set the value of
an input, set parameters of the skill, and create or de-
stroy the connections between ports. The executive
layer can also subscribe to skill outputs.

These ideas have been demonstrated in the context
of distributed visual servoing for large-scale assembly
using multiple, heterogeneous robots (Simmons et al.
2000b). The task, which is to move the end of a large
beam into a vertical stanchion, uses three robots (Fig-
ure 3) — an observer (a mobile robot with stereo vision)
and two controllers (an automated crane and a mobile
manipulator). A similar form of tightly-coupled visual
servoing could be applied to our Mars rock character-
ization task if, for example, the characterization sen-
sor required extremely precise placement not possible
without an observer robot. In our current implemen-
tation, tightly-coupled behavior-level interactions are
not required, and consequently neither are intra-robot
connections, though future scenarios will make use of
both.

The executive layer does make extensive use the dy-
namic configuration capability of the behavioral layer.
Suppose the executive layer wishes to execute the task
of characterizing a rock at a give location. It first es-
tablishes the proper inter-robot behavioral connections
for navigating to the rock and awaits the skill output
signaling completion of the task, at which point it de-
stroys the current connections and establishes those
required for characterizing the rock. Behavior con-
nections are “established” and “destroyed” using a
publish/subscribe mechanism provided by our inter-
process communications package.

We have developed a flexible, efficient inter-process
communications package, called IPC (Simmons &
Whelan 1997), that is based on TCP/IP and runs un-
der most operating systems in C, C++, Java, and Lisp.
It features both publish/subscribe and client/server
types of message passing. In particular, publishers can
broadcast messages and all processes that subscribe
to that message will receive a copy. When messages
are received, callbacks are automatically invoked. IPC
includes features for automatically marshaling and un-
marshaling arbitrary types of data. Programs that use
IPC indicate the message format using a string-based
language, and IPC parses the format string and uses it
to convert user data into byte streams, and vice versa,
taking into account network byte ordering and struc-
ture packing conventions.

Figure 4: Coordinated deployment of heterogeneous
robots

In our architecture, IPC is used both for communi-
cating between layers in a single agent and between
layers in different agents. Processes can subscribe,
and unsubscribe, to messages at any time. In the be-
havioral layer, this capability is used for making and
breaking intra-robot and inter-robot skill connections.
Making a connection simply requires subscribing to the
correct message; breaking the connection requires un-
subscribing. The next section describes the executive
layer of the architecture.

Coordinated Task Execution

The executive layer has responsibility for hierarchi-
cally decomposing tasks into subtasks, enforcing syn-
chronization constraints between tasks (both those im-
posed by the planner and those added during task de-
composition), monitoring task execution, and recover-
ing from exceptions (Simmons 1994).

For coordinated multi-robot task execution, it
should be possible to synchronize tasks transparently
on two different agents, in the same way as if they were
performed by a single agent. For instance, we may
want to state that a robot should not start analyzing

a rock until two other rovers have moved into place to
provide assistance. In addition, a distributed executive
should facilitate one robot monitoring the execution of
another robot and helping it recover from faults. Fi-
nally, it is desirable for one robot to be directly able
to request that another robot perform a task (such as
assisting it to perform visual servoing), but care must
be taken to prevent the robot from illegitimately exe-
cuting a task on the other robot.

Our interface between planner and executive is based
on PRL, a plan representation language that was de-
veloped for an earlier project (Simmons et al. 2000a).
PRL represents plans as a hierarchy of tasks, with each
task defined in terms of parameters, subtasks, and tem-
poral constraints between the subtasks. We have re-
cently extended PRL in two ways: (1) to enable speci-
fication of the resource utilization of a task and which
agent should be executing it; (2) to provide automatic
status reports on executing tasks (indicating, for ex-
ample, when each task has successfully completed).

PRL’s automatic status reports provide an impor-
tant connection between the executive and planning
layers in our architecture. When, for example, a robot
completes the task of characterizing a particular rock,
the status report reflecting this is used by the planning
layer to update the schedule and determine which new
task(s) should be sent to the executive.

The executive is implemented using the Task De-
scription Language (TDL). TDL is an extension of
C++ that contains explicit syntax to support hierar-
chical task decomposition, task synchronization, exe-
cution monitoring, and exception handling (Simmons
& Apfelbaum 1998). Recently, we have extended TDL
to handle task-level coordination between robots and
to enable one robot to spawn or terminate a task on
another. TDL transparently handles passing task data
(function parameters) and synchronization signals be-
tween robots, using message passing based on our IPC
package. These capabilities have been used to perform
coordinated deployment (Figure 4) of multiple, hetero-
geneous robots (Simmons et al. 2000a).

We have demonstrated TDL’s distributed task-
level coordination capabilities in a scripted, proof-of-
concept scenario meant to encompass the characterize-
region task. This scenario has a rover climbing a hill
(Figure 1), doing a panoramic “survey” of the sur-
rounding area, and deploying other rovers to areas of
potential interest where they might, for example, per-
form the characterize-region task. While TDL’s dis-
tributed features are available in our current system,
all of the necessary protocols for using them are not
in place. Among these is a distributed planning-layer
mechanism that would establish the parameters and

constraints for executive-level distributed tasks. This
would prevent the undesirable possibility of executing
a distributed task that has not been agreed upon. For
example, using the distributed features of TDL, one
rover can execute a task on a second rover. Unless the
second rover has “agreed” (at the planning level) to
execute this task, the results could be disastrous. The
second rover, for example, could be in the process of
placing a delicate scientific instrument on a rock. The
unplanned movement caused by the distributed task
might break the instrument.

The next section presents details of the planning
layer.

Coordinated Planning: Market and
Scheduler

Our approach to task allocation and planning is based
on a market economy. An economy is essentially a
population of agents coordinating with each other to
produce an aggregate set of goods. Market economies
are generally unencumbered by centralized planning,
instead leaving individuals free to exchange goods and
services and enter into contracts as they see fit. Despite
the fact that individuals in the economy act only to
advance their own self-interests, the aggregate effect is
a highly productive society.

We have developed a market-based architecture in
which tasks are allocated based on exchanges of single
tasks between pairs of robots (Dias & Stentz 2001). A
robot that needs a task performed announces that it
will auction off the task as a buyer. Each seller capable
of performing the task for a cost ¢, bids to do so for
c+ €. The buyer accepts the lowest bid, as long as it is
cheaper than doing the task itself. If a bid is accepted,
the seller performs the task and pockets € as profit.

In addition to the market component, or trader, of
each robot, the market also contains operator traders
that are similar in function except that: they are not
associated with a robot, they provide a user interface
to the system, and they act on behalf of the scien-
tists/users. When a scientist introduces a characterize-
region task into the system, it is the operator trader
that decomposes the task into its components, if neces-
sary, and auctions off the task(s) while trying to mini-
mize cost.

(Zlot et al. 2002) reports on multi-robot exploration
of an unknown environment using a similar market ar-
chitecture. Each robot generates a list of target points
to visit, and orders them into a tour (using an approx-
imate TSP algorithm). Our characterize-region task
can be similarly solved with a distributed approxima-
tion to an optimal TSP tour.

The market works closely with the other major com-

ponent of the planning layer: the scheduler. Following
the market economy framework, a scheduler is associ-
ated with each robot and it is responsible for maintain-
ing the robot’s current agenda of accepted and pending
tasks. The scheduler plays a critical role both in the
formation of bids and in the interaction between the
planning and executive layers. Before a given robot
trader can bid on a new task, it must first ascertain
from the robot’s scheduler whether the task can in
fact be feasibly undertaken (given resource/timing con-
straints and the other tasks already in the schedule)
and, if so, what is the cost. For our initial characterize-
region task scenario, we are assuming robot travel time
as a baseline measure of cost. Later versions will in-
corporate more sophisticated metrics such as expected
value of information. Once a robot trader is awarded
a task, it is added to the schedule and now further
constrains decisions to bid on other tasks. The sched-
uler is responsible for subsequently sending the task
to the executive so that it is executed appropriately
with respect to the other tasks that the robot must
accomplish.

The scheduler component of the market architecture
is implemented using a general stochastic search frame-
work called WHISTLING (Cicirello & Smith 2001;
2002). The WHISTLING framework is inspired by
the self-organizing behavior of wasp colonies (hence the
name Wasp beHavior-Inspired STochastic sampLING).
But extracted from this context, it provides a basic
mechanism for randomizing a given search heuristic in
a way that concentrates random activity (and search)
in those neighborhoods of the search space where the
heuristic is not well-informed. Presuming a reasonable
domain heuristic (which is the case for many schedul-
ing objectives), the approach provides good solutions
fast with subsequent anytime improvement properties
if decision time permits. The procedure also provides
the flexibility to incorporate a range of different search
heuristics (e.g., as a function of the perceived drivers
of task cost).

We are currently in the process of completing the
major components of the planning layer and begin-
ning testing of the characterize-region task of our
Mars exploration scenario, as well as examining mar-
ket/scheduler parameters that might affect perfor-
mance. We have demonstrated all layers of our archi-
tecture functioning in a limited test of the characterize-
region task. In this test, the operator trader is given
several rocks to auction among the rovers. The auc-
tioning takes place, the rovers appropriately plac-
ing bids, scheduling the awarded tasks, and execut-
ing them through the executive and behavioral lay-
ers. The major component that is currently lacking,

though approaching completion, is the facility allowing
the robot traders to auction tasks among themselves,
rather than only having the operator trader auctioning
to the rovers.

In addition to these enhancements, there are a num-
ber of other issues that will require attention. One of
these relates to the timing between the various pro-
cesses of the system. Currently, each agent consists
of four processes (behavioral layer, executive, trader,
and scheduler) in addition to the single simulator pro-
cess. In order for planning, task coordination, and be-
havior execution to work properly, all processes must
function using the same rate for time. Unfortunately,
this is complicated by the fact that the flow of time in
the simulator may be sped up or slowed down on pur-
pose or due to CPU load. Since the simulator provides
the grounding for the other layers, timing mismatches
can easily break components such as low-level con-
troller code in the behavioral layer. As a solution, we
are considering the possibility of adjusting the timing-
dependent functionality of each layer to the rate of
time in the simulator. While this might help, other
factors, such as the latency of IPC messages, would be
unaffected and may have exacerbating effects.

The previous sections described the major compo-
nents of control flow in the architecture. The next
section describes a mechanism by which essential ca-
pability data flows through the architecture.

Capability Registration and the ACS

A mechanism for providing up-to-date information on
robots and their capabilities is necessary for highly dy-
namic multi-robot systems, where robot attrition, ac-
cession, and modification are common. The Agent Ca-
pability Server (ACS) of our architecture is designed
to handle this by providing a distributed facility for
automatically disseminating agent information. The
ACS is not associated with one particular layer, but
rather permeates all layers of the architecture. Each
robot layer in the system has its own local ACS that
it can quickly query for the capabilities and status of
its peer layers on other robots. This information can
then be used in determining which robots can perform
which tasks, planning efficient multi-robot strategies
for a task, establishing the appropriate executive-level
and behavior-level coordination mechanisms between
robots, and accommodating non-responsive (possibly
failed) robots. Our ACS is similar in purpose, though
specialized by comparison, to middle agents that map
capabilities to particular agents, and agent naming ser-
vices that map agents to locations (Sycara et al. 2001).

The ACS participates in a larger capability registra-
tion and propagation process that is important to the

proper functioning of our architecture. On startup,
each layer of a robot registers the capabilities that it
can provide (i.e., the behavioral layer register Skill
Manager blocks, the executive layer registers TDL
tasks, etc.). The capabilities of each layer are recon-
ciled with those of the layer beneath, beginning with
the behavioral layer. In our scenario, for example, in
order for the planning layer to consider the task of char-
acterizing a rock, the executive must have the proper
TDL code, the behavioral layer must have the neces-
sary Skill Manager code, and the “physical” character-
ization sensor/instrument (e.g., SensorA) must exist.
The ACS is used to reconcile these requirements and
provisions between the layers of the robot.

Summary and Future Work

This paper described a multi-robot extension to the
traditional three-layered architecture, where each layer
can communicate directly with its peer layers on other
robots. This gives the robots the ability to coordinate
at multiple levels of abstraction with minimal overhead
in terms of inter- and intra-agent communication. We
have described criteria and design decisions for each
layer, and have presented the implications of the layer-
to-layer interactions on our ongoing Mars exploration
scenario.

The architecture is a work in progress, and many
refinements are required. These include: integrating
the planning and executive layers more fully; gener-
alizing the market-based planning framework, adding
more sophisticated bidding structures and cost esti-
mation approaches; having all levels of the architec-
ture deal more fully with the loss of agents; expanding
and generalizing capability registration; demonstrat-
ing the architecture in rich domains, including space
exploration.

Multi-robot coordination promises huge benefits in
terms of increased capability and reliability. The price,
however, is often added complexity. We believe that a
well-structured, flexible architecture will facilitate the
development of such systems, at reasonable cost.

Acknowledgments

This work has been supported by several grants,
including NASA NCC2-1243, NASA NAG9-1226,
DARPA N66001-99-1-892, and DARPA DAAEO07-98-
C-L032. Thanks go to Jeftf Schneider and Drew Bag-
nell for their comments and advice on the architec-
ture. David Apfelbaum implemented and helped de-
sign TDL. Stuart Anderson implemented the simula-
tor. Thanks also to David Hershberger and Robert
Zlot.

References

Arkin, R. 1992. Cooperation without communication:
Multiagent schema-based robot navigation. Journal
of Robotic Systems 9(3):351-364.

Balch, T., and Arkin, R. C. 1994. Communication
in reactive multiagent robotic systems. Autonomous
Robots 1(1):27-52.

Bonasso, R.; Kortenkamp, D.; Miller, D.; and Slack,
M. 1997. Experiences with an architecture for intelli-
gent, reactive agents. Journal of Artificial Intelligence
Research 9(1).

Cicirello, V. A., and Smith, S. F. 2001. Randomizing
dispatch scheduling policies. In Using Uncertainty
Within Computation: Papers from the 2001 AAAI
Fall Symposium, 30-37. AAAT Press.

Cicirello, V. A., and Smith, S. F. 2002. Amplifi-
cation of search performance through randomization
of heuristics. Submitted to the Eighth International
Conference on Principles and Practice of Constraint
Programming.

Dias, M. B., and Stentz, A. 2001. A market ap-
proach to multirobot coordination. Technical Re-
port CMU-RI-TR-01-26, Robotics Institute, Carnegie
Mellon University.

Gerkey, B. P., and Matari¢, M. J. 2001. Sold!: Market
methods for multi-robot control. In IEEE Transac-
tions on Robotics and Automation Special Issue on
Multi-Robot Systems.

Golfarelli, M.; Maio, D.; and Rizzi, S. 1997. A task-
swap negotiation protocol based on the contract net
paradigm. Technical Report CSITE, 005-97, Univer-
sity of Bologna.

Jennings, J., and Kirkwood-Watts, C. 1998. Dis-
tributed mobile robotics by the method of dynamic
teams. In Proc. Conference on Distributed Au-
tonomous Robot Systems.

Khatib, O. 1995. Force strategies for cooperative
tasks in multiple mobile manipulation systems. In
Proc. International Symposium of Robotics Research.

Mataric, M. 1992. Distributed approaches to behavior
control. In Proc. SPIE Sensor Fusion V, 373-382.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. 1998. Remote agent: To boldly go where no ai
system has gone before. Artificial Intelligence 103(1-
2):5-48.

Musliner, D. J., and Krebsbach, K. D. 2001. Multi-
agent mission coordination via negotiation. In Work-
ing Notes of the AAAI Fall Symposium on Negotia-
tion Methods for Autonomous Cooperative Systems.

Parker, L. 1998. Alliance: An architecture for fault
tolerant multirobot cooperation. IEEE Transactions
on Robotics and Automation 14(2):220-240.

Pirjanian, P.; Huntsberger, T.; and Barrett, A. 2001.
Representation and execution of plan sequences for
distributed multi-agent systems. In Proc. Interna-
tional Conference on Intelligent Robots and Systems.

Sandholm, T., and Lesser, V. 1995. Issues in auto-
mated negotiation and electronic commerce: Extend-
ing the contract net framework. In Proc. International
Conference on Multiagent Systems, 328-335.

Simmons, R., and Apfelbaum, D. 1998. A task de-
scription language for robot control. In Proc. Interna-
tional Conference on Intelligent Robots and Systems.

Simmons, R., and Whelan, G. 1997. Visual-
ization tools for validating software of autonomous
spacecraft. In Proc. of i-SAIRAS. See also
http://www.cs.cmu.edu/ IPC.

Simmons, R.; Goodwin, R.; Haigh, K.; Koenig, S.;
and O’Sullivan, J. 1997. A layered architecture for
office delivery robots. In Proc. First International

Conference on Autonomous Agents.

Simmons, R.; Apfelbaum, D.; Fox, D.; Goldman, R.;
Haigh, K. Z.; Musliner, D.; Pelican, M.; and Thrun,
S. 2000a. Coordinated deployment of multiple, het-
erogeneous robots. In Proc. International Conference
on Intelligent Robots and Systems.

Simmons, R.; Singh, S.; Hershberger, D.; Ramos, J.;
and Smith, T. 2000b. First results in the coordina-
tion of heterogeneous robots for large-scale assembly.
In Proc. International Symposium on Ezperimental
Robotics.

Simmons, R. 1994. Structured control for au-
tonomous robots. IEEFE Transactions on Robotics and
Automation 10(1):34-43.

Smith, R. 1980. The contract net protocol: High-level
communication and control in a distributed prob-

lem solver. IEFEE Transactions on Computers C-
29(12):1104-1113.

Stentz, A., and Dias, M. B. 1999. A free market
architecture for coordinating multiple robots. Tech-
nical Report CMU-RI-TR-99-42, Robotics Institute,
Carnegie Mellon University.

Sycara, K., and Zeng, D. 1996. Coordination of multi-
ple intelligent software agents. International Journal
of Cooperative Information Systems 5(2-3).

Sycara, K.; Paolucci, M.; van Velsen, M.; and Gi-
ampapa, J. 2001. The retsina mas infrastructure.

Technical Report CMU-RI-TR-01-05, Robotics Insti-
tute, Carnegie Mellon University.

Thayer, S.; Digney, B.; Dias, M. B.; Stentz, A
Nabbe, B.; and Hebert, M. 2000. Distributed robotic
mapping of extreme environments. In Proceedings of
SPIE: Mobile Robots XV and Telemanipulator and
Telepresence Technologies VII.

Wellman, M., and Wurman, P. 1998. Market-aware
agents for a multiagent world. Robotics and Au-
tonomous Systems 115-125.

Zlot, R.; Stentz, A.; Dias, M. B.; and Thayer, S. 2002.
Multi-robot exploration controlled by a market econ-
omy. In Proc. International Conference on Robotics
and Automation.

