
Automating Model Checking for Autonomous Systems

Reid Simmons Charles Pecheur

Carnegie Mellon University RIACS / NASA Ames Research Center
Pittsburgh, PA 15213 Moffett Field, CA 94035

reids@cs.cmu.edu pecheur@ptolemy.arc.nasa.gov

Abstract

While autonomous systems offer great promise in terms of
capability and flexibility, their reliability is particularly
hard to assess. This paper describes research in the use of
model checking to support the development of reliable
autonomy software. In particular, it presents tools and
techniques that we are developing to facilitate the
integration of model checking into the main software
development cycle. The basic approach is to translate high-
level models used by autonomy systems into the
specification language of the SMV model checker, verify
them using SMV, translate diagnostics back to the source
language and visualize and explain those diagnostics. This
approach has been applied to MPL models for the
Livingstone fault diagnosis system and to TDL task
descriptions for mobile robot systems.

1  Introduction

Autonomous systems rely on intelligent inference
capabilities to be able to take appropriate actions even in
unforeseen circumstances. They enable a whole range of
new applications, such as sending autonomous robots in
places where it is too dangerous or expensive for humans
to go, and where remote human control is difficult or not
even technically feasible. In particular, autonomy is a key
enabling technology for the future of NASA’s space
exploration program and is becoming more important in
terrestrial applications as embedded systems and mobile
robotics become more prevalent.

However, this increased capability and flexibility comes
with a price: It is typically very difficult to assess the
reliability of autonomy software, because of the huge
number of scenarios that have to be considered. Formal
verification is a powerful tool for creating reliable systems
[2, 3]. Model checking is one technique that has been used
successfully to formally verify complex hardware and
software systems. In model checking, one specifies the
system in a formal language, such as SMV or PROMELA,
along with formal specifications that indicate desirable
properties of the system that one wants verified. The model
checker then determines whether the properties hold under

all possible execution traces. Essentially, model-checking
exhaustively (but intelligently) considers the complete
execution tree. Counter-examples are provided for any
specification that does not hold.

While powerful, to date model checking, and other formal
verification techniques, have had little impact on the
development of autonomous systems. There are several
reasons for this. For one, developers of autonomous
systems are not typically versed in model-checking
techniques. For another, one typically has to manually
translate the system into the model-checking language, a
process which is both tedious and error prone. Then, the
counter-examples produced by the model checker must be
interpreted, in the context of the original system, in order to
understand what actually is going wrong. Finally, model
checking tends to be computationally expensive which, in
general, tends to limit the size of software programs that
can be verified.

Our goal is to make formal verification, and model
checking in particular, part of the standard tool kit for
designing and developing autonomous systems. The idea is
to make model checking easy enough to use so that it can
be employed as a regular part of the development/
debugging cycle, much as compilers regularly employ
extensive syntactic and some semantic checking before
producing object code. The hope is that by checking early
in the development cycle, subsequent testing and
debugging can be significantly reduced.

The basic approach is to automate the translation of
autonomous system software and specifications to the
SMV model-checking language, perform model checking
using standard algorithms, translate counter-examples back
into terms that are meaningful to the software developer,
and then provide tools for visualizing and explaining the
counter-examples. 

Probably the biggest problem is computational complexity.
Although great strides are being made in the model-
checking algorithms themselves, it is still the case that
large software systems written using general-purpose
programming languages are beyond the state of the art. Our
solution to this problem is based on the fact that many



- 2 -

autonomous systems are developed using special-purpose
languages and inference engines. For instance, the NASA
Remote Agent [5] uses specialized languages for each of
the planner, executive and fault diagnosis components. The
advantage here is that these languages tend not to be Turing
complete, and so are simpler to verify than general-purpose
programming languages. This reliance on a set of relatively
simple representation languages is key to our approach.

2  Background

Currently, we have focused on two languages used for
autonomous systems. MPL (Model-Based Processing
Language) is used in the Livingstone system to encode
hardware and software models. Livingstone is a model-
based fault diagnosis and recovery subsystem developed
by NASA [11]. The Livingstone inference engine observes
the physical system, predicts its current state according to
the MPL model, detects discrepancies between the
predicted and observed states, and diagnoses potential
faults if discrepancies exist. MPL has been used in the fault
diagnosis component of the Remote Agent architecture.
Figure 1 shows a simple component written in MPL.

TDL (Task Description Language) is an extension of C++
that includes constructs for expressing hierarchical task
decomposition and synchronization constraints between
tasks, monitoring task execution, and handling exceptions
[10]. TDL simplifies the process of specifying how
concurrent robot tasks should, and should not, behave and

interact. TDL, which is based on the TCA (Task Control
Architecture) [7], has been used to implement the
“executive” layer of several autonomous mobile robot
systems. While TDL, being an extension of C++ is Turing
complete, we actually just deal with verifying the parts of
TDL that are concerned with task management. Figure 2
shows a simple task specification written in TDL.

We perform the verification using the SMV model checker
[2]. SMV uses symbolic computation techniques based on
Binary Decision Diagrams (BDDs) [1] to compactly and
efficiently manipulate sets of system configurations. This
allows SMV to tackle very large state spaces of 10100 states
and beyond.

3  Translation for Model Checking

The first step in automating the translation of these higher
level languages to SMV is to formalize the inference
engine.1 Essentially, this involves formalizing the state
transitions that occur as the languages are interpreted by the
inference engine. For MPL, a first-order formalization is
fairly straightforward, since MPL is based on concurrent
transition networks, which is the same formalism
underlying SMV. Unfortunately, understanding exactly
how Livingstone works is difficult, and research at NASA
Ames is endeavoring to capture this precisely in a formal

(defcomponent switch (?name)
  (:inputs ((command-in ?name)
            :type on-off-command))
  (:outputs((indicator-lamp ?name)
            :type on-off-values))
  (:background :initial-mode off)

  (on :model (on (indicator-lamp ?name))
      :type :ok-mode
      :transitions ((turn-off
                     :when (off (command-in 
                                    ?name))
                     :next off)
                    (:otherwise :persist)))
 (off :model (off (indicator-lamp ?name))
      :type :ok-mode
      :transitions ((turn-on 
                     :when (on (command-in 
                                    ?name))
                     :next on)
                    (:otherwise :persist)))
 (broken :type :fault-mode
     :probability 0.01
     :transitions ((:otherwise :persist))))

Figure 1: MPL Model of a Simple Switch

1. Note that we are not trying to verify the implementation of the inference
engine itself. That is an important task, but since it is a one-time
process, it can more profitably be done with traditional formal
verification techniques.

Figure 2: TDL Specification of a Multi-Robot 
Deployment Strategy (Simplified)

Goal GroupDeploy (DEPLOY_PTR deployList)
{

with (serial) {
for (int i=0; i<length(deployList); i++) {

spawn GroupDeploySub(i, deployList);
}

}
}

Goal GroupDeploySub (int phase,
DEPLOY_PTR deployList)

{
with (parallel) {

for (int j=phase; j<length(deployList); j++) {
spawn Deploy(deployList[j].robot,

deployList[phase].location);
}

}
}



- 3 -

way. TDL is organized around the execution of tasks, each
of which goes through various phases. The phase
transitions can be formalized as finite state machines, with
constraints between different phases and between different
tasks. Using this formalization, we can represent the
synchronization between tasks and verify whether desired
properties (such as liveness, safety, and absence of resource
conflict) hold.

After the inference engine is formalized, a translator is
written that produces SMV code from the higher-level
language. The generated SMV code encodes the state
transitions that occur as the inference engine interprets the
higher-level code. For instance, SMV code for an MPL
model encodes how the state of a component transitions
from one mode to the next as the component receives
commands. The SMV code also encodes constraints
between states. For instance, SMV code for a TDL program
can encode the constraint that one task may not begin
execution until another task is completed. Figure 3 shows
the translated SMV code for the switch component in
Figure 1. Note that information that is just implicit in the
original model (especially relating to state transitions) is
made explicit in the SMV model.

Specifications are temporally quantified formulae that
describe properties that one wants the system to exhibit.
For instance, we may want to verify that some proposition
will always hold after some other proposition becomes
true. In SMV, specifications are represented using CTL
(Concurrent Temporal Logic). We have extended MPL to
enable CTL specifications to be written directly using MPL
syntax. In addition, we have included some standard
properties (such as completeness, disjointness,
reachability) that developers have found to be useful in

verifying MPL models. These properties expand into sets
of CTL formulae that can then be verified along with the
explicitly encoded specifications. We are currently
designing extensions to TDL that would enable
specifications to be described directly in the language.

4  Processing Counter-Examples

Given an SMV model and a specification written in CTL,
the model checker determines whether the specification
holds and, if not, produces a counter-example showing a
sequence of state transitions that make the specification
false. The counter-examples are essentially symptoms of
bugs in the original system. However, it is usually quite
difficult to diagnose the error directly from the counter-
example. One reason is that the counter-example is in the
SMV language, and the translation may not directly
preserve connections between the SMV model and the
original language. For instance, variable names may be
different and certain aspects of the hierarchical structure of
the system may be lost during the translation. To handle
this, we perform an inverse translation — from the SMV
counter-example back to the original high-level language.

A more serious difficulty is that a counter-example merely
indicates the state, or sequence of states, that led to the
problem, but gives no indication of what within the state, or
which particular state transitions, were really responsible.
This is essentially a diagnosis problem. We are
investigating two approaches to this problem.

First, we can use visualization techniques to abstract
counter-examples and present the data in a way in which
the cause of the problem may be more apparent. The idea
is that many autonomous system inference engines have
associated visualization tools used to distill and present
data from log files of actual runs of the system. Figure 4,
for instance, shows one such tool, developed for the
Remote Agent, to visualize the “Smart Executive”
component [9]. It enables users to see how tasks are
executed, graphically indicates when violations of
constraints are detected, and enables users to interactively
investigate constraints between tasks. To use such tools for
visualizing counter-examples, one needs to translate the
state transitions in the counter-examples into the log file
format that the tool expects. In essence, we are creating a
log file of a faulty run that corresponds to the false
specification. Once this is done, the user can utilize all the
features of the visualization tool to help understand the
problem.

The other way we are addressing the problem of
understanding counter-examples is to produce textual
explanations of the problem. Our current approach is to
take the counter-example and feed it into a TMS (Truth
Maintenance System), along with the original SMV model.

MODULE switch 
VAR command-in : {on_, off_, no-command_};
    indicator-lamp : {on_, off_};
    _mode : {on_, off_, broken_};
DEFINE _faults := {broken_};
       _broken := (_mode in _fault_modes);
INIT (_mode = off_)
TRANS (((_mode = on_) & (command-in = off_)) 
    -> (next(_mode) in (off_ union _faults)))
TRANS (((_mode = on_) & !(command-in = off_))
    -> (next(_mode) in (on_ union _faults)))
TRANS (((_mode = off_) & (command-in = on_)) 
    -> (next(_mode) in (on_ union _faults)))
TRANS (((_mode = off_) & !(command-in = on_))
    -> (next(_mode) in (off_ union _faults)))
TRANS ((_mode = broken_) ->
       (next(_mode) = broken_))
INVAR ((_mode = on_) -> 
       (indicator-lamp = on_))
INVAR ((_mode = off_) ->
       (indicator-lamp = off_))

Figure 3: SMV Translation of Switch Model



- 4 -

The TMS [6] propagates the constraints of the model and
the state of the system (given by the counter-example).
When it detects an inconsistent proposition, we trace back
through the links in the TMS. This produces a hierarchical
explanation of the inconsistency that can help focus a
developer on the true source(s) of the problem. 

Figure 5 shows an example of an explanation produced for
an MPL model of a motor controller for a planetary rover.
The symptom is that the “off” mode of the “pid-controller”
is unreachable. The explanation for this is that all of the
possible modes for the “torque-controller” are inconsistent
with the “off” mode because the “off” mode asserts that
power is off, and all the “torque-controller” modes assert
that power is on, and that the power inputs to the two
controllers are the same. This information is of great use in
determining what part of the model is at fault (in this
particular case, an “off” mode was be added to the “torque-
controller”).

5  Current Status

The current state of this work is that we have formalized all
of MPL and a large subset of the TDL syntax that deals
with task management. We have extended MPL to enable
specifications to be encoded directly in MPL. We have
created automated translators for both MPL and the subset
of TDL that is formalized. Currently, we are working on
translating from SMV back to MPL and TDL. We have
some prototype explanation software for MPL (the
explanation in Figure 5 is produced automatically, directly
from an SMV counter-example). Our focus is to continue
investigating the generation of meaningful MPL
explanations from counter-examples, for a wide range of

CTL specifications, and to investigate the visualization of
counter-examples for TDL. We also intend to complete the
formalization and translation of TDL. We expect that the
work on MPL will be ported to NASA for use in actual
development projects.

The translator from MPL to SMV has been used in several
case studies in verification of Livingstone applications,
including the Remote Agent spacecraft controller [5], the
In-Situ Propellant Production system (ISPP), a chemical
processing unit that produces spacecraft propellant out of
the Mars atmosphere, and the Xavier mobile robot [8].
Using the translator and SMV, NASA researchers checked
flow properties in the Livingstone model of a portion of the
ISPP system [4]. In one instance, the counter-example
reported by SMV for a property violation enabled
developers to identify an error in the modeling of flow
equations. The latest ISPP model, with more than 100
variables and 1050 states, still fits within the limits of what
SMV can handle.

We believe that by providing translation and explanation
tools, we can make model checking and formal verification
techniques available to developers of autonomous systems.
The result should be more reliable autonomous systems
and reduced debugging/testing effort.

6  References

[1] R. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation.” IEEE Transactions on Computers, C-35(8),
1986

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J.
Hwang, “Symbolic Model Checking: 1020 States and
Beyond.” Information and Computation, 98(2), pp. 142-170,
June 1992.

[3] E. M. Clarke , O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

Figure 4: Executive Visualization Tool

It is inconsistent for the pid-controller of (motor-
module ?motor) to be in the off mode because:

1.The torque-controller cannot be in the nominal 
mode because
1.1The nominal mode of the torque-

controller states that its power-input is 
on

1.2 The power-input of the torque-controller 
equals the power-input of the pid-
controller

1.3The off mode of the pid-controller states 
that its power-input is off

2.The torque-controller cannot be in the 
overloaded mode because ...

3.The torque-controller cannot be in the amp-
fault mode because ...

4.The torque-controller must be in one of the 
modes: nominal, overloaded, amp-fault

Figure 5: Automatically Produced Explanation



- 5 -

[4] A. R. Gross, K. R. Sridhar, W. E. Larson, D. J. Clancy, C.
Pecheur, and G. A. Briggs, “Information Technology and
Control Needs For In-Situ Resource Utilization.” In Proceed-
ings of 50th IAF Congress, Amsterdam, Holland, October
1999.

[5] N. Muscettola, P. P. Nayak, B. Pell, and B. Williams.
“Remote Agent: To Boldly Go Where No AI System Has
Gone Before.” Artificial Intelligence 103(1-2), pp. 5-48,
August 1998.

[6] P. P. Nayak and B.C. Williams. “Fast Context Switching in
Real-time Propositional Reasoning.” In Proceedings of
National Conference on Artificial Intelligence, Providence,
RI, July 1997.

[7] R. Simmons. “Structured Control for Autonomous Robots.”
IEEE Transactions on Robotics and Automation, 10(1), pp.
34-43, February 1994.

[8] R. Simmons, R. Goodwin, K. Zita Haigh, S. Koenig. and J.
O’Sullivan. “A Layered Architecture for Office Delivery
Robots.” In Proceedings of First International Conference on
Autonomous Agents, Marina del Rey, CA, February 1997.

[9] R. Simmons and G. Whelan. “Visualization Tools for Validat-
ing Software of Autonomous Spacecraft.” In Proceedings of
International. Symposium on Artificial Intelligence, Robotics
and Automation in Space, Tokyo, Japan, July 1997.

[10]R. Simmons and D. Apfelbaum. “A Task Description Lan-
guage for Robot Control.” In Proceedings of Confer-
ence on Intelligent Robotics and Systems (IROS),
Vancouver Canada, 1998.

[11] B. C. Williams and P. P. Nayak. “A Model-based Approach to
Reactive Self-Configuring Systems.” In Proceedings of
National Conference on Artificial Intelligence, Portland OR,
August 1996.


