Automating Model Checking for Autonomous Systems

Reid Simmons

Carnegie Mellon University
Pittsburgh, PA 15213
reids@cs.cmu.edu

Abstr act

While autonomous systems offer great promise in terms of
capability and flexibility, their reliability is particularly
hard to assess. This paper describes research in the use of
model checking to support the development of reliable
autonomy software. In particular, it presents tools and
techniques that we are developing to facilitate the
integration of model checking into the main software
development cycle. Thebasic approachistotranslate high-
level models used by autonomy systems into the
specification language of the SMV model checker, verify
them using SMV, translate diagnostics back to the source
language and visualize and explain those diagnostics. This
approach has been applied to MPL models for the
Livingstone fault diagnosis system and to TDL task
descriptions for mobile robot systems.

1 Introduction

Autonomous systems rely on intelligent inference
capabilities to be able to take appropriate actiewen in
unforeseen circumstances. They enable a whole rahge
new applications, such as sending autonomous rahots
places where it is too dangerous or expensive dondns

to go, and where remote human control is diffiarlinot
even technically feasible. In particular, autonoisia key
enabling technology for the future of NASAs space
exploration program and is becoming more important
terrestrial applications as embedded systems arfaileno
robotics become more prevalent.

However, this increased capability and flexibildtpmes
with a price: It is typically very difficult to asss the
reliability of autonomy software, because of thegéwu
number of scenarios that have to be consideredn&lor
verification is a powerful tool for creating religbsystems
[2, 3]. Model checking is one technique that hasnbesed
successfully to formally verify complex hardwaredan
software systems. In model checking, one specifies
system in a formal language, such as SMV or PROMELA
along with formal specifications that indicate dable
properties of the system that one wants verifi¢re model
checker then determines whether the properties iruder

Charles Pecheur

RIACS / NASA Ames Research Center
Moffett Field, CA 94035
pecheur@ptolemy.arc.nasa.gov

all possible execution traces. Essentially, modhele&ing
exhaustively (but intelligently) considers the cdete
execution tree. Counter-examples are provided for a
specification that does not hold.

While powerful, to date model checking, and otteenfal
verification techniques, have had little impact tre
development of autonomous systems. There are devera
reasons for this. For one, developers of autonomous
systems are not typically versed in model-checking
techniques. For another, one typically has to méyua
translate the system into the model-checking laggua
process which is both tedious and error prone. Ttien
counter-examples produced by the model checker baust
interpreted, in the context of the original syst@mgrder to
understand what actually is going wrong. Finallypdal
checking tends to be computationally expensive hic
general, tends to limit the size of software progsahat

can be verified.

Our goal is to make formal verification, and model
checking in particular, part of the standard todl flor
designing and developing autonomous systems. Heeigd

to make model checking easy enough to use sotthani

be employed as a regular part of the development/
debugging cycle, much as compilers regularly employ
extensive syntactic and some semantic checkingrdefo
producing object code. The hope is that by checkeady

in the development cycle, subsequent testing and
debugging can be significantly reduced.

The basic approach is to automate the translatibn o
autonomous system software and specifications & th
SMV model-checking language, perform model checking
using standard algorithms, translate counter-exasiphck
into terms that are meaningful to the software tper,
and then provide tools for visualizing and explagithe
counter-examples.

Probably the biggest problem is computational caxipy.
Although great strides are being made in the model-
checking algorithms themselves, it is still the ecahat
large software systems written using general-plepos
programming languages are beyond the state ofth®uar
solution to this problem is based on the fact timainy

(def conponent switch (?nane)
(:inputs ((command-in ?nane)
:type on-of f-conmmand))
(:outputs((indicator-lanp ?nane)
:type on-of f-val ues))
(: background :initial-nmode off)
(on :nmodel (on (indicator-Ilanp ?nane))
:type :ok-node
:transitions ((turn-off
:when (of f (conmmand-in
?nane))
:next off)
(:otherwi se :persist)))
:model (off (indicator-lanp ?nane))
:type :ok-node
:transitions ((turn-on
:when (on (command-in
?nane))

(of f

:next on)
(:otherwi se :persist)))
(broken :type :fault-node
:probability 0.01
:transitions ((:otherw se :persist))))

Figure1: MPL Model of a Simple Switch

autonomous systems are developed using speciabgairp
languages and inference engines. For instancéyAg8A
Remote Agent [5] uses specialized languages fon eéc
the planner, executive and fault diagnosis comptandine
advantage here is that these languages tend betTaring
complete, and so are simpler to verify than gerguapose
programming languages. This reliance on a setiatively
simple representation languages is key to our ampro

2 Background

Currently, we have focused on two languages used fo
autonomous systems. MPL (Model-Based Processing
Language) is used in the Livingstone system to éaco
hardware and software models. Livingstone is a ode
based fault diagnosis and recovery subsystem deeélo
by NASA [11]. The Livingstone inference engine olves

the physical system, predicts its current statemticg to

the MPL model, detects discrepancies between the
predicted and observed states, and diagnoses jbtent
faults if discrepancies exist. MPL has been usebérfault
diagnosis component of the Remote Agent architectur
Figure 1 shows a simple component written in MPL.

TDL (Task Description Language) is an extensioiCef
that includes constructs for expressing hierardhiaak
decomposition and synchronization constraints betwe
tasks, monitoring task execution, and handling ptioas
[10]. TDL simplifies the process of specifying how
concurrent robot tasks should, and should not, \e=had

Goal GroupDeploy (DEPLOY_PTR deployList)
{
with (serial) {
for (int i=0; i<length(deployList); i++) {
spawn GroupDeploySub(i, deployList);
}
}
}

Goal GroupDeploySub (int phase,
DEPLOY_PTR deployList)
{

with (parallel) {
for (int j=phase; j<length(deployList); j++) {
spawn Deploy(deployList[j].robot,
deployList[phase].location);

Figure2: TDL Specification of a Multi-Robot
Deployment Strategy (Simplified)

interact. TDL, which is based on the TCA (Task Coht
Architecture) [7], has been used to implement the
“executive” layer of several autonomous mobile obo
systems. While TDL, being an extension of ds#uring
complete, we actually just deal with verifying tharts of
TDL that are concerned with task management. Figure
shows a simple task specification written in TDL.

We perform the verification using the SMV model cker
[2]. SMV uses symbolic computation techniques based
Binary Decision Diagrams (BDDs) [1] to compactlydan
efficiently manipulate sets of system configurasiomhis
allows SMV to tackle very large state spaces dP96tates
and beyond.

3 Trandation for Model Checking

The first step in automating the translation ofstndigher
level languages to SMV is to formalize the inferenc
engine? Essentially, this involves formalizing the state
transitions that occur as the languages are iretgiby the
inference engine. For MPL, a first-order formalizatis
fairly straightforward, since MPL is based on cament
transition networks, which is the same formalism
underlying SMV. Unfortunately, understanding exgactl
how Livingstone works is difficult, and researchNgASA
Ames is endeavoring to capture this precisely formal

1. Note that we are not trying to verify the impkmation of the inference
engine itself. That is an important task, but sifices a one-time
process, it can more profitably be done with tiadél formal
verification techniques

MODULE swit ch

VAR command-in : {on_, off_, no-command };

indicator-lanp : {on_, off_};
mode : {on, off _, broken_};
DEFINE faults := {broken_};
_broken := (_node in _fault_nobdes);
INNT (_nmode = off)

TRANS (((_node on_) & (command-in off))
-> (next(_node) in (off _ union _faults))’
TRANS (((_node on_) & !(command-in of f)]
-> (next(_node) in (on_ union faults)))
TRANS (((_node off) & (command-in on_))
-> (next(_node) in (on_ union faults)))
TRANS (((_node off) & !'(conmmand-in on_)’
-> (next(_node) in (off_ union _faults)))
TRANS ((_node = broken_) ->
(next (_node) = broken_))
I N\VAR ((_node on_) ->
(indicator-Ilanp
I N\VAR ((_node of f)
(indicator-Ianp off))

Figure3: SMV Trandlation of Switch Model

on_))

->

way. TDL is organized around the execution of tasksh

of which goes through various phases. The phase
transitions can be formalized as finite state maei with
constraints between different phases and betwdfamatit
tasks. Using this formalization, we can represdreg t
synchronization between tasks and verify whethesired
properties (such as liveness, safety, and absdmesaurce
conflict) hold.

After the inference engine is formalized, a tratwlds
written that produces SMV code from the higher-leve

verifying MPL models. These properties expand sets

of CTL formulae that can then be verified alonghntihe
explicitly encoded specifications. We are currently
designing extensions to TDL that would enable
specifications to be described directly in the lzage.

4 Processing Counter-Examples

Given an SMV model and a specification written HLC
the model checker determines whether the spedditat
holds and, if not, produces a counter-example shg\si
sequence of state transitions that make the spatidh
false. The counter-examples are essentially symptom
bugs in the original system. However, it is usualyite
difficult to diagnose the error directly from theunter-
example. One reason is that the counter-exampfettse
SMV language, and the translation may not directly
preserve connections between the SMV model and the
original language. For instance, variable names imay
different and certain aspects of the hierarchitralcture of
the system may be lost during the translation. @andhe
this, we perform an inverse translation — from giV
counter-example back to the original high-levelglaage.

A more serious difficulty is that a counter-exampierely
indicates the state, or sequence of states, tbatolehe
problem, but gives no indication of what within #tate, or
which particular state transitions, were reallyp@ssible.
This is essentially a diagnosis problem. We are
investigating two approaches to this problem.

First, we can use visualization techniques to abstr

language. The generated SMV code encodes the statecounter-examples and present the data in a wayhiohw

transitions that occur as the inference enginapnéts the
higher-level code. For instance, SMV code for anLMP
model encodes how the state of a component transiti

the cause of the problem may be more apparentideze
is that many autonomous system inference engines ha
associated visualization tools used to distill grdsent

from one mode to the next as the component receives data from log files of actual runs of the systengure 4,
commands. The SMV code also encodes constraints for instance, shows one such tool, developed far th

between states. For instance, SMV code for a TDigram
can encode the constraint that one task may noinbeg
execution until another task is completed. Figush8ws
the translated SMV code for the switch component in
Figure 1. Note that information that is just imflim the
original model (especially relating to state traéiosis) is
made explicit in the SMV model.

Secifications are temporally quantified formulae that
describe properties that one wants the system hibiex
For instance, we may want to verify that some psitm

will always hold after some other proposition beesm
true. In SMV, specifications are represented usiig
(Concurrent Temporal Logic). We have extended ML t
enable CTL specifications to be written directlyngsMPL
syntax. In addition, we have included some standard
properties (such as completeness, disjointness,
reachability) that developers have found to be wskf

Remote Agent, to visualize the “Smart Executive”
component [9]. It enables users to see how tasks ar
executed, graphically indicates when violations of
constraints are detected, and enables users tadtitely
investigate constraints between tasks. To use et for
visualizing counter-examples, one needs to tramdia¢
state transitions in the counter-examples intoltigefile
format that the tool expects. In essence, we aratiolg a
log file of a faulty run that corresponds to thdséa
specification. Once this is done, the user caiwatill the
features of the visualization tool to help underdtdhe
problem.

The other way we are addressing the problem of
understanding counter-examples is to produce téxtua
explanations of the problem. Our current approackoi
take the counter-example and feed it into a TMSutfir
Maintenance System), along with the original SMVdelo

File Token Timeline Colors Time Options

It is inconsistent for the pid-controller of (motor-
module ?motor) to be in the off mode because:

—~36246100.00

exec.log

Soowoou| O 1.The torque-controller cannot be in the nominal
NAY_MODE 1
e mode because
armocessnl I 1.1The nominal mode of the torque- .
— 0 controller states that its power-input is
CECRAFT_ATTI VAL-1705 VAL-1556 0 n
A_.{TI ‘m: 1.2 The power-input of the torque-controller
oI equals the power-input of the pid-
icas o controller
o 1.3The off mode of the pid-controller states
sesomoue [that its power-input is off
er_Tue_accuf 2.The torque-controller cannot be in the
pwsT |] overloaded mode because ...
B 3.The torque-controller cannot be in the amp-

" [Token VAL-450 starting at -36245947.64 (43999785236 seconds late)
Token EXEC-SHL-01 ended at -36245343.61
Token EXEC-ADK-01 ended at -36245943.29
Token VAL-350 starting at -36245942.43 (499997656 .57 seconds late)
Token VAL-346 starting at -36245941.96 (439397857.04 seconds late)
__|[Token STARTUP_ATT WP_O starting at -36245940.67 (499997858.33 seconds late)
/ [Token STARTUP_VAY_0 starting at -36245339.31 (3396860.69 seconds late)

‘ = K‘% E“_“&E‘«

Figure 4: Executive Visualization Tool

Step | Run | unti viokation |
-36246100.00

The TMS [6] propagates the constraints of the madel
the state of the system (given by the counter-ex@mp
When it detects an inconsistent proposition, weettaack
through the links in the TMS. This produces a hignical
explanation of the inconsistency that can help $oeu
developer on the true source(s) of the problem.

Figure 5 shows an example of an explanation praditme
an MPL model of a motor controller for a planetasyer.
The symptom is that theff” mode of the pid-controller”
is unreachable. The explanation for this is thhbathe
possible modes for thedrque-controller” are inconsistent
with the “off” mode because theoff” mode asserts that
power is off, and all thetbrque-controller” modes assert
that power is on, and that the power inputs to tthe
controllers are the same. This information is &ajuse in
determining what part of the model is at fault {mis
particular case, aroff’ mode was be added to thfque-
controller”).

5 Current Satus

The current state of this work is that we have falired all

of MPL and a large subset of the TDL syntax thatlsle
with task management. We have extended MPL to enabl
specifications to be encoded directly in MPL. Wevéna
created automated translators for both MPL andtiset

of TDL that is formalized. Currently, we are worgiton
translating from SMV back to MPL and TDL. We have
some prototype explanation software for MPL (the
explanation in Figure 5 is produced automaticaligectly
from an SMV counter-example). Our focus is to conei
investigating the generation of meaningful MPL
explanations from counter-examples, for a wide eanfj

fault mode because
4.The torque-controller must be in one of the
modes: nominal, overloaded, amp-fault

Figure5: Automatically Produced Explanation

CTL specifications, and to investigate the visuatian of
counter-examples for TDL. We also intend to comptee
formalization and translation of TDL. We expecttthize
work on MPL will be ported to NASA for use in actua
development projects.

The translator from MPL to SMV has been used iresalv
case studies in verification of Livingstone appiicas,
including the Remote Agent spacecraft controlldr {be
In-Situ Propellant Production system (ISPP), a doam
processing unit that produces spacecraft propetiahof
the Mars atmosphere, and the Xavier mobile robdt [8
Using the translator and SMV, NASA researchers kbéc
flow properties in the Livingstone model of a portiof the
ISPP system [4]. In one instance, the counter-eamp
reported by SMV for a property violation enabled
developers to identify an error in the modelingflofv
equations. The latest ISPP model, with more tha®d 10
variables and 1% states, still fits within the limits of what
SMV can handle.

We believe that by providing translation and exption
tools, we can make model checking and formal \eaifon
techniques available to developers of autonomosteB)s.
The result should be more reliable autonomous Byste
and reduced debugging/testing effort.

6 References

[1] R. Bryant. “Graph-Based Algorithms for Booleanrietion
Manipulation.” IEEE Transactions on Computers, C-35(8),
1986

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. IDill, and J.
Hwang, “Symbolic Model Checking: #® States and
Beyond."Information and Computation, 98(2), pp. 142-170,
June 1992.

E. M. Clarke , O. Grumberg, and D. Peléthdel Checking.
MIT Press, 1999.

(3]

[4] A. R. Gross, K. R. Sridhar, W. E. Larson, D.Clancy, C.

(5]

(6]

(7]

(8]

(9]

Pecheur, and G. A. Briggs, “Information Technologyd
Control Needs For In-Situ Resource Utilization.’Aroceed-
ings of 50th IAF Congress, Amsterdam, Holland, October
1999.

N. Muscettola, P. P. Nayak, B. Pell, and B. Vdiihs.
“Remote Agent: To Boldly Go Where No Al System Has
Gone Before.” Artificial Intelligence 103(1-2), pp. 5-48,
August 1998.

P. P. Nayak and B.C. Williams. “Fast Context ling in
Real-time Propositional Reasoning.” IRroceedings of
National Conference on Artificial Intelligence, Providence,
RI, July 1997.

R. Simmons. “Structured Control for Autonomoust®ts.”
IEEE Transactions on Robotics and Automation, 10(1), pp.
34-43, February 1994.

R. Simmons R. Goodwin, K. Zita Haigh, S. Koenig. and J.
O’Sullivan. “A Layered Architecture for Office Delkery
Robots.” InProceedings of First I nternational Conference on
Autonomous Agents, Marina del Rey, CA, February 1997.

R. Simmons and G. Whelan. “Visualization Toals Yalidat-
ing Software of Autonomous Spacecraft.”Rroceedings of
International. Symposium on Artificial Intelligence, Robotics
and Automation in Space, Tokyo, Japan, July 1997.

[10]R. Simmons and D. ApfelbaurtA Task Description Lan-

guage for Robot Control.” liProceedings of Confer-
ence on Intelligent Robotics and Systems (IROS),
Vancouver Canada, 1998.

[11]B. C. Williams and P. P. Nayak. “A Model-baskgproach to

Reactive Self-Configuring Systems.” |Rroceedings of
National Conference on Artificial Intelligence, Portland OR,
August 1996.

