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Abstract— This paper presents an online algorithm for early
detection of anomalies in robot execution, where the anomalies
occur in a particular region of the robot’s state space. Assuming
that a model of normal execution is given, the algorithm detects
regions of space where data significantly deviate from normal.
It achieves this by focusing optimization over a fixed-parameter
family of shapes to find the one among them that is most
likely anomalous, and then using this region to decide whether
execution is anomalous. Experiments using synthetic and real
robot data support the effectiveness of the approach.

I. INTRODUCTION

Autonomous robots often encounter unexpected situations
and failures as they perform tasks. The goals of execution
monitoring [1] are to enable robots to autonomously detect
failures or anomalies in execution, diagnose the character-
istics of these failures, and recover from them. This paper
focuses on the first two of these subproblems, for failures
in which (1) the anomaly occurs in only a subset of the
state space X , (2) the anomaly is too subtle to detect from a
single observation, but is apparent only when considering a
set of nearby observations, and (3) the relevant observations
are not necessarily sequential in time. Examples of these
regional failures in robotics domains may include:
• A mobile robot whose motion is inaccurate at certain

speeds or in some areas of its environment.
• A golf putting robot that misses more shots than ex-

pected from a particular region of the green.
• A manipulating robot whose robustness is lower than

expected when using a set of similar grasps.
• A service robot whose task success rate is lower than

normal at times of the day when the hallways of its
building are crowded.

Our approach to detect such failures is to conduct a Fo-
cused Anomalous Region Optimization (FARO) to actively
search for regions where expectations of normal behavior are
not met. Our target domain is the first example above: we
wish to monitor the motion of the CoBot service robot [2] in
a 6-dimensional domain. However, for ease of explanation
and visualization, we use a simpler 2-dimensional domain,
inspired by the golf example above, as a motivating example.
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(a) abnormal success rate = 0.2 (b) abnormal success rate = 0.5

Fig. 1: Robot repeatedly aiming at a target on the far right.
FARO finds approximations (blue ellipses) to anomalous
regions (defined by red lines) where the observed distribution
of success (green circles) vs failure (red exes) does not match
the expected distribution P (success) = 0.8.

Our motivating example robot, with state x = [x y]> ∈
X , needs to hit a target from various points in X , as
shown in Figure 1. The robot expects to succeed with some
known, possibly state-dependent probability p(z|x), where
z ∈ {0, 1} indicates whether the robot succeeded.

Figure 1 also shows an example of the type of abnormal
situation that we wish to detect: In a particular region of the
field, the robot’s performance is inferior to its expectation.
This anomaly could be caused by various problems, such
as some unevenness on the field for the putting robot.
Regardless of the reason, simply knowing the region in which
the anomaly happens gives the robot valuable information;
the robot might, for example, choose to avoid the abnormal
region if possible.

Formally, our algorithm assumes a robot that receives a
sequence of state-observation pairs (xt ∈ X, zt ∈ Rk), t ∈
{0, 1, 2, . . .} during execution. It also assumes this robot has
an expectation about what observations zt it will receive in
each state xt it visits1, defined by a given distribution p(z|x).

We address the problem of early detection of regions R ⊆
X in which the robot’s observations deviate significantly
from their expectation µ(x) ≡ E[z|x]. The difficulty in
detecting this type of anomaly comes from two main sources:

1) Data from abnormal regions may not happen sequen-
tially in time. In our motivating example, shot location
xi+1 is independent from shot location xi. Thus,
attempting to detect anomalies as temporal changes in
data streams [3] is not effective in our scenarios.

2) The shape of the abnormal region could be compli-
cated. While, given enough data, existing machine

1The problem of generating observation expectations is beyond the scope
of this paper. They could be given by a human expert, or they could be
generated from data of past normal execution.



learning methods (e.g., kernel-based [4] or density ratio
estimation [5] methods could approximate this region
very accurately, this is guaranteed only with large
bodies of data. In many applications, it is important
to detect anomalies early (i.e., with few data points) to
stop or rectify execution.

To address these difficulties, our algorithm approximates the
shape of the region Rmax ⊆ X most likely to be abnormal
by optimizing over a fixed-parameter family of shapes. This
active optimization enables it to find abnormal regions early,
at the cost of only being to approximate the shape of
abnormal regions as ell as the chosen family of shapes
permits. The algorithm scales tractably with dimensionality,
and experiments with synthetic and real robot data show that
it can find abnormal regions with high accuracy.

II. RELATED WORK

Various fields of research, such as computer security and
medical imaging, have extensively studied the problem of
detecting failures or anomalies during execution. Approaches
to do so can be generally divided into three categories:
detecting modeled deviations from normal execution models,
detecting unmodeled deviations from normal execution mod-
els, and detecting anomalies in data without previous models
of either normal or abnormal execution. Which approach
is more suited to a problem depends on the availability of
models or labeled data from normal and abnormal behavior,
and they have all been applied in robotics [1] and other fields
[6]. We focus on the problem of detecting abnormal behavior
given that a model of normal behavior is available.

We are interested in finding anomalies that cannot be
detected from a single data point. Instead, the approach
needs to analyze collections of data to find anomalies.
Several techniques have been used to detect anomalies from
collections of data, such as finding anomalous subsequences
of time-ordered data [7] or detecting when a particular data
point or series is observed more or less frequently than
expected [8]. Our approach differs from those in that it is
built to detect anomalous data that may happen far apart
in time but close along some dimensions of state space X ,
and that may conform to overall frequency expectations,
but violates them in a particular region of X (e.g., in our
recurring example, the overall probability of success may
not deviate significantly from normal, but the probability of
success from the anomalous region does).

In some ways, our problem is related to image segmenta-
tion: We try to find groups of data points that may not each be
special on their own, but whose spatial proximity makes them
a significant region (like an object in an image). However,
image segmentation algorithms (e.g., [9]) generally require a
dense representation of the image, while our problem often
presents relatively sparse data in space.

Our algorithm is closely related to the spatial scan statistic
algorithm presented in [10], in which a scanning window is
used to try to find abnormal regions of data in space. This
work has been extended to elongated and rotated regions
[11], and to increase scanning efficiency [12]. However,

these methods were developed for low-dimensional data, and
become intractable with an increase in dimensionality. A
scan statistic algorithm linear in the number of data points
is presented in [13], but this algorithm requires no spatial
relation among the abnormal data points, leading to false
positive abnormal region classifications when the anomaly
is truly confined to a particular region of state space.

III. ONLINE DETECTION OF ANOMALOUS REGIONS

The core ideas behind our algorithm are the following: We
can find anomalous regions during execution by repeatedly
searching for the region Rmax most likely to be anomalous,
and then deciding whether it is abnormal enough to be
declared an anomaly. During execution, this search can be
performed tractably by keeping it focused in two ways: (1)
We restrict the optimization to a fixed-parameter family of
shapes, and (2) We initialize the optimization only with
a small set of regions R which are likely to be quickly
optimized toward Rmax. At every time t, R consists of two
regions: the most abnormal-seeming region from (t − 1),
and a small region r(xt) surrounding the new data point
xt. We choose these two regions because Rmax is likely to
evolve either from the previous most promising region or
from information provided by the new data point.

Algorithm 1 presents the core of our Focused Anomalous
Region Optimization (FARO) detector, which is run each
time a new data pair is observed. An iterative optimization
runs while the algorithm has not exceeded an allowed
running time tmax and no anomaly has been found. Every
iteration, each region in R is optimized (i.e. reshaped) into
regions that are more likely to be abnormal, based on an
anomaly likelihood measure anom(R), discussed extensively
in Section III-A. For each optimized region R′, anom(R′) is
compared to a threshold value amax. If anom(R′) > amax,
R′ is returned as anomalous. The algorithm finalizes when
an anomalous region is found, or the allowed time runs out.

Algorithm 1 Focused Anomalous Region Optimization.

1: function FARO((xi, zi)i∈{0,...,t},R, amax, tmax)
2: R ← R∪ r(xt)
3: while running time < tmax do
4: for R ∈ R do
5: R← OptimizerStep(R) . Algorithm 2
6: if anom(R) ≥ amax then
7: return R as an anomalous region
8: end if
9: end for

10: end while
11: return No anomalous region found
12: end function

Ideally, during each time step, each of the regions in R
would (a) be optimized until convergence, and would (b)
converge to a common global optimum. These two goals are
unrealistic in most systems, as anom(R) is often a compli-
cated, nonlinear function that is hard to optimize, and tmax



may be short. Initializing the optimization with regions from
R thus allows convergence to happen throughout multiple
time steps for the most promising regions.

While in this paper we only keep the most promising
region in R for the next time step, the algorithm gener-
alizes straightforwardly to keeping the k most promising
regions around instead, at the cost of having to maintain
and optimize those k regions. Using such extension to detect
multiple anomalous regions is beyond the scope of this paper,
however, as issues such as overlapping regions and loss of
diversity in R would probably need to be addressed.

A. Computing an anomaly measure

To calculate the anomaly value of a region R, we will
assume the following: For all the states in region R, the mean
of the observations has been shifted by a constant vector δ:

E[z|x] =

{
µ(x) + δ if x ∈ R
µ(x) otherwise (1)

While other work [14] has used a multiplicative constant, an
additive constant serves our purposes best. In many monitor-
ing applications, zero-mean observations (e.g., residuals) in-
dicate normal execution; thus a multiplicative constant would
not distinguish between normal and abnormal execution.

We search for the region R that maximizes the ratio
of likelihoods anom(R) = P (Data |∃Anomaly)

P (Data |@Anomaly) . Assuming
independence between observations given the state of the
robot, these probabilities can be broken down into products
of individual probabilities P (zi|xi). Furthermore, since we
do not know beforehand the shift value δ, we use the most
likely value for δ, i.e., the one that maximizes the likelihood
of the data, as is standard in the literature [3], [14]. We
now have a double maximization, over R and δ; however,
given a region R, the maximization over δ can be done
analytically, as shown below. The ratio of likelihoods we
wish to maximize then becomes

anom(R) ≡

max
δ

∏
xi∈R

P (zi|µi + δ)
∏
xi /∈R

P (zi|µi)∏
xi

P (zi|µi)

= max
δ

∏
xi∈R

P (zi|µi + δ)∏
xi∈R

P (zi|µi)
(2)

The above expression is a general measure of anomaly
for arbitrarily shaped regions R and for arbitrary distribu-
tions P (z|x). To make it more concrete, we now derive
the expression for anom(R) for the Gaussian distribution
P (zi|xi) ∼ N (µ(xi),Σ(xi)) = N (µi,Σi). We show
the derivation for the Gaussian distribution since it is one
of the most commonly used. For example, the data in the
robot experiments of Section IV-B is close to Gaussian-
distributed, and even the binomial distribution generated by
our motivating example can be approximated by a Gaussian
distribution. Analogous derivations for other distributions,

and for multiplicative shifts (instead of our additive shift δ),
can be found in [14].

For Gaussian distributions, it is simpler to work with the
logarithm of the likelihood ratio rather than with the likeli-
hood ratio itself. Since logarithm is a monotone function,
the region that maximizes one will maximize the other.
Defining an auxiliary variable ∆zi ≡ zi − µi, function
F (R) ≡ ln anom(R) is given by 2

= max
δ

∑
xi∈R

[ln(P (zi|µi + δ,Σi)− ln(P (zi|µi,Σi)]

= max
δ

∑
xi∈R

1

2

[
∆z>i Σ

−1
i ∆zi − (∆zi − δ)>Σ−1i (∆zi − δ)

]
= max

δ

∑
xi∈R

[
δ>Σ−1i ∆zi −

1

2
δ>Σ−1i δ

]

= max
δ

[
δ>

∑
xi∈R

(
Σ−1i ∆zi

)
− 1

2
δ>

∑
xi∈R

(
Σ−1i

)
δ

]
(3)

To find the maximizing δ, we differentiate the expression
inside the max and equate it to 0 to obtain

δmax =

(∑
xi∈R

Σ−1i

)−1(∑
xi∈R

Σ−1i ∆zi

)
(4)

Substituting δmax back into Equation 3 gives the final
expression for the quantity to maximize:

F (R) =
1

2

(∑
xi∈R

Σ−1i ∆zi

)>(∑
xi∈R

Σ−1i

)−1(∑
xi∈R

Σ−1i ∆zi

)
(5)

This expression depends only on sufficient statistics of
the observed data and assumed previous knowledge of the
covariance matrix Σ(xi). This is particularly useful when
the state space is discretized and only sufficient statistics of
each discrete state, instead of all the data points, need to be
stored, as in our implementation (see Section IV).

B. Cross-entropy optimization for maximum anomaly regions

Once equipped with an appropriate anomaly measure, we
use the Cross-Entropy Method (CEM) [15] to optimize for
the most abnormal parameterized region R(θ), where θ ∈
Rn is the parameter vector for R. Algorithm 2 shows a step
of CEM in our context. Given θ, and its estimated covariance
matrix Σθ (initially set to some small covariance Σ0), this
randomized optimization algorithm re-estimates θ and Σθ to
a value closer to its optimal anomaly value.

While the original CEM algorithm gives the top k samples
(for some constant k) a weight of wi = 1

k , and all other
samples a weight of 0, other weighing schemes may also be
used [16]. Our normalized value function already represents
the relative likelihood of different candidate regions, and
therefore we use it as the weighing function.

2Unfortunately, capital letter Σ is the standard symbol for both summa-
tions and covariance matrices. While we have kept this notation, we try
to avoid confusion by always placing summation indices under Σ, while
covariance matrices are indexed by a subscript to the right of Σ.



Algorithm 2 Cross Entropy Maximization Step

1: function OptimizerStep(R(θ))
2: Sample m points θi ∼ N (θ,Σθ) . Sample
3: ∀i, wi ← anom(R(θi))∑

i anom(R(θi))
. Weigh

4: θ ←
∑
i

wiθi . Re-estimate θ

5: Σθ ←
∑
i

wi(θi − θ)(θi − θ)> . Re-estimate Σθ

6: return R(θ)
7: end function

The CEM algorithm re-estimates both the mean and the
covariance matrix of the distribution. This, along with some
noise added as a diagonal matrix Σε (as in [16]), allows our
algorithm to naturally perform a broader search in portions of
X where the value function is close to constant, and a most
focused search where the function changes rapidly, requiring
a finer optimization. We chose the value of both the first
guess of covariance Σ0 and the noise matrix Σε to be about
5% of the size of the world along each dimension.

For the examples and experiments in this paper, our chosen
parameterized family of shapes were ellipsoids. In an n-
dimensional state space, an ellipse can be parameterized by
an n-vector v and a n× n positive definite matrix A as the
set of points that satisfy:

(x− v)>A−1(x− v) = 1 (6)

For the purposes of optimization, our vector θ will thus be
the linearized form of v and A, consisting of n+ n(n+1)

2 =
1
2

(
n2 + 3n

)
dimensions.

IV. EXPERIMENTS AND RESULTS

To validate the effectiveness of our FARO-based detector,
we ran experiments in two domains: synthetic data from
the recurring example discussed in previous sections, and
real-world data from the CoBot service robots [2]. The
objectives of experimenting in these two domains are that
the first provides a simple and easily visualizable domain,
while the second provides a real-world application with a
higher dimensional state space; the two combined support
the generality of the algorithm.

To greatly decrease the number of data points to be
analyzed, the state space was discretized into a grid. For
each cell in this grid, we store only sufficient statistics of
the observed data. Discretizing the state space involves a
trade-off between efficiency and accuracy in detection.

A. Synthetic Data Experiments

We first show experiments and results using synthetic data
from our recurring example. The parameters in this world are
the shape and location of the unperceived obstruction obs,
the probability p of success during normal execution, and
the probability q of success from locations that are blocked
by obs (abnormal execution). For each test of each of the
experiments below, obs was sampled uniformly from the set
of line obstructions where the distance between the target

and the center of obs is between 0.1 and 1.5 meters (the
field measures 6 × 4 meters); the center of obs is in the
field, and the angle subtended by the endpoints of obs and
the target is between π

16 and π
4 radians. This randomization

created test regions of various shapes, sizes, and orientations.
The goal of the first experiment was to determine the

effect of the number of available abnormal data points on
the effectiveness of detection. To do this, we held both p
and q constant and kept track of the precision and recall
rates of the algorithm as the number of abnormal data points
increased. In the context of this work, given a ground truth
anomalous region S, precision and recall of the estimated
region R are defined as

precision =
| {xi : xi ∈ R ∩ S} |
| {xi : xi ∈ R} |

(7)

recall =
| {xi : xi ∈ R ∩ S} |
| {xi : xi ∈ S} |

(8)

Figure 2a shows the results of these experiments for p = 0.8,
q = 0.2. Apart from an initially surprising high precision and
recall when the number of abnormal data points na = 1,
we see a consistent increase in both as na increases. With
na ≈ 10, precision and recall both get to about 80%, and they
keep slowly increasing. The apparently surprising precision
and recall observed for na = 1 happens because we use
r(xt) as a seed to the optimizer; thus, xt is often correctly
selected as the only abnormal point when na = 1.

(a) Precision, Recall and anom
value as the number of abnor-
mal data points varies.

(b) Precision, Recall and Num-
ber of abnormal points when
threshold anomaly was passed.

Fig. 2: Synthetic data experiments results. Blue dashed lines
indicate standard error bars. The black dashed line is the
highest anomaly value observed during normal execution.

Anomaly value anom(R) in Figure 2a grows exponen-
tially as more abnormal data arrives (ln anom(R) grows
approximately linearly); with na ≈ 15, the anomaly value
surpasses the highest value observed during normal execu-
tion. With relatively few data points, then, FARO finds the
abnormal regions with high precision and recall.

Figure 3 shows an example of how an ellipse evolves
as more data becomes available. Both anom(R) and the



(a) ln anom(R) = 10.0, 7 observations (b) ln anom(R) = 20.6, 43 observations (c) ln anom(R) = 40.8, 84 observations

Fig. 3: Most abnormal ellipse found as more observations arrive. The sub-figures show the state of the algorithm when three
anomaly thresholds are reached. Parameter values are p = 0.8, q = 0.5.

accuracy of the ellipse approximation increase with the
number of abnormal data points. Note that even when the
ellipse approximates the true anomaly S very well, as in
Figure 3c, precision and recall rates still do not reach 1.0.
The first reason for this is that S cannot be arbitrarily-well
approximated by any ellipse; the efficiency of choosing a
relatively small parameterization (i.e., ellipses) comes with
the cost of the inability to represent regions arbitrarily well.
Additionally, if there are missed shots outside of S, an ellipse
that includes those shots has a higher value than an ellipse
that does not, and conversely with successful shots inside
of S; thus, for finite data sets, the region that maximizes
anomaly is not necessarily the one that best matches S.

The goal of the second experiment was to determine the
effect of the magnitude of the anomaly on the algorithm’s
performance. To do this, we analyzed the number of data
points required for the detector to reach ln(anom(R)) =
41.6 (twice as much as the maximum observed during normal
execution), as the abnormal distribution q approached the
normal execution distribution p = 0.8. Figure 2b shows
the results of this experiment. The number of data points
required to be certain of an anomaly appears to increase
exponentially as the anomalous distribution gets closer to the
normal distribution. This result is expected as the number
should go to infinity as q → p, at which point the distri-
butions are indistinguishable. Furthermore, it is noteworthy
that the precision and recall rate stay close to constant for a
given anomaly threshold. This suggests that the precision and
recall performance of the detector are not heavily dependent
of the magnitude of the failure, given an anomaly threshold.

B. Real world experiments: motion anomalies on the CoBot

The CoBot mobile robots autonomously perform tasks
for inhabitants of the Gates-Hillman Center at CMU. The
CoBots’ autonomy is very robust, and it has traversed sev-
eral hundred kilometers without supervision as it completes
online-requested tasks, with very few failures in execution
[2]. These rare failures are precisely those we want the robot
to be able to detect autonomously, and in these experiments
we focus on motion failures. Concretely, we define the
motion state of the CoBot by translational and rotational
positions and velocities as x ≡ [x y φ ẋ ẏ φ̇]>, and let
our observations be defined as z ≡ [∆ẋ ∆ẏ ∆v̇], the vector

difference between the CoBot’s measured velocity, obtained
from its wheel encoders, and its expected velocity, based on
its velocity command and its state.

After running the CoBot for about 20 minutes of normal
execution, and determining that the highest anomaly value
during normal execution of ln(anom(R)) = 20.1, we pro-
ceeded to inject anomalies into its execution and test the
detector. We introduced four types of anomalies separately:

Failing encoder
Everywhere in X , one of the CoBot’s wheel en-
coders returns (1 − ε)d, at each timestep, where
d is the displacement of the wheel that would
be returned during normal execution. This failure
mode tests FARO under anomalies that happen
globally in X .

Collision
During an otherwise normal run of the robot, a
sudden collision happens. This failure mode tests
the detector under anomalies that are local in X .

Bad corridor
The wheel encoders fail by returning (1 − ε)d,
as above, but only in a particular corridor of the
building. This failure mode tests the detector under
failures that happen in a particular region of state
space. Note that this region encompasses a particu-
lar sub-region of two of the dimensions of X , and
it is global in the others.

Bad left turns
The robot’s performance is normal except when it
turns left (i.e., φ̇ > 0), in which case each of its
wheels moves only at (1 − ε)v for a commanded
velocity v. Since the robot turns only at intersec-
tions or when it needs to face a doorway, this failure
mode tests FARO when small clusters of abnormal
points happen infrequently and far apart.

For each of these experiments, the robot was commanded
at a high level to navigate to various offices around the
building, using its autonomous navigation algorithms [17],
while FARO ran simultaneously. The route the robot took
was different each time, as it was simply commanded to go
to various points in the building. Table I summarizes the
results of running the algorithm under the different failure
modes, with ε = 0.05.



Experiment Anomaly Thresh = 40.2 End of experiment
Data Points Precision Recall Anomaly Precision Recall

Failing encoder 58 ± 8.2 1.0 ± 0.0 0.76 ± 0.15 337.08 ± 14.37 1.0 ± 0.0 0.92 ± 0.03
Collision 4.5 ± 2.05 1.0 ± 0.0 0.81 ± 0.09 1535.05 ± 54.02 1.0 ± 0.0 0.85 ± 0.03

Bad corridor 60 ± 11 0.94 ± 0.02 0.77 ± 0.15 198.50 ± 28.15 0.97 ± 0.01 0.90 ± 0.02
Bad left turn 31 ± 5.1 1.0 ± 0.0 0.79 ± 0.07 202.74 ± 22.04 0.80 ± 0.18 0.47 ± 0.12

TABLE I: CoBot experiment results. For each experiment, the table shows statistics at the time the anomaly threshold (two
times the largest anomaly observed during normal execution) was surpassed, and statistics at the time the robot was stopped.

The algorithm shows high precision and recall for each one
of the experiments. The variance in precision and recall rates
is small but not insignificant, indicating that the difficulty of
detecting anomalies in some runs was not route-independent.

The experiment that stands out in terms of results is the
Bad left turn, for which the recall rate is significantly lower
than the others. This is because the anomaly happens in very
disjoint regions of state space (only when the robot needs to
turn left), with no data between them. This also explains
why the final recall in this failure mode is lower than at
the time of detection: more disjoint abnormal regions were
visited after the time of detection, and some of them were not
joined to the main ellipse. This result shows promise for two
potential future extensions of our algorithms not addressed in
this paper: (1) detection of multiple anomalous regions, and
(2) active exploration between potentially abnormal regions
to determine whether they are truly two potentially abnormal
regions or one large abnormal region.

V. CONCLUSION

We have presented the FARO optimization-based algo-
rithm for early detection of abnormal regions. The explicit
and focused search for a parameterized abnormal shape that
best models the data allows the algorithm to detect anomalies
of various orientations and scales with few data points.

The algorithm has shown to reliably detect anomalies that
happen in convex regions of spaces of up to 6 dimensions.
This paper focused on detecting and approximating single
failure regions; it is not hard to imagine an extension to
the algorithm in which multiple ellipsoids are tracked as
candidate regions of anomaly. Problems such as merging
of multiple anomalous regions have not been analyzed yet.
Further work is thus necessary to draw conclusions about
the applicability of our approach to higher dimensions and
to multiple anomalies.

As the results in Section IV-B show, the algorithm had
some problems finding the full anomaly region when large
sub-regions of this region were completely devoid of data.
This suggests a research opportunity in the domain of active
learning of these anomaly regions, given that the robot has
an active role in which states of state space X it visits.
For example, a robot may observe potential anomalies when
turning left at either end of a corridor, but may have never
needed to turn left in the middle; it may then decide to
explore turning left in the middle simply to confirm that those
anomalies should be merged or denying that hypothesis.

In addition to presenting a detection algorithm, a goal
of this paper was to demonstrate the usefulness, within the

context of anomaly detection, of actively optimizing for the
shape of the potential anomalies. For example, kernel-based
density or density ratio estimation approaches to anomaly
detection [5] usually choose the kernel bandwidth parameters
to be independent along the various dimensions, and to
maximize the prediction capabilities within the training set of
data. Future work could explore the potential advantages of
using kernel parameters that actively optimize for anomaly
instead, to test the more general applicability this type of
focused optimization.
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