
The Lane-Curvature Method for Local Obstacle Avoidance

Nak Yong Ko Reid G. Simmons

Control and Instrumentation Eng. School of Computer Science.

Chosun Univ. Carnegie Mellon Univ.

Kwang-Ju, 501-759 Korea Pittsburgh, PA 15213

nyko@soback.kornet.nm.kr reids@cs.cmu.edu

Abstract

The Lane-Curvature Method (LCM) presented in

this paper is a new local obstacle avoidance method

for indoor mobile robots. The method combines the

Curvature-Velocity Method (CVM) with a new di-

rectional method called the Lane Method. The lane

method divides the environment into lanes, and then

chooses the best lane to follow to optimize travel along

a desired heading. A local heading is then calculated

for entering and following the best lane, and CVM

uses this heading to determine the optimal transla-

tional and rotational velocities, considering the head-

ing direction, physical limitations, and environmental

constraints. By combining both directional and veloc-

ity space methods, LCM yields safe collision-free mo-

tion as well as smooth motion taking the dynamics of

the robot into account.

Introduction

A local obstacle avoidance method for indoor mo-

bile robots in unknown or partially known environ-

ments is investigated. The method should guide a

robot through a collision free space along a given goal

heading, or to a goal location, as fast as possible. For

fast and smooth robot movement, it should be e�cient

for real-time implementation, and take the dynam-

ics and physical limitations of the robot into account.

Though many approaches e�ciently yield commands

guiding the robot through a collision free path, they

often do not address the dynamics of the robot, and

results in slow or jerky movement.

The directional approaches compute a direction for

robot to head in, in Cartesian space or con�guration

space. The V-graph search methods [1], potential �eld

methods [2, 3], and Vector Field Histogrammethod [4]

belong in this category. Though they are simple and

e�cient in producing a directional command for colli-

sion free movement, they are not adequate for taking

the robot dynamics into account. The Vector Field

Histogram [4] method is able to achieve smoother nav-

igation and is more successful in traveling through nar-

row openings. However, it is still not adequate to deal

with vehicle dynamics, which can cause problems in

cluttered environments.

Velocity space approaches, on the other hand,

choose rotational velocity along with translational ve-

locity, and can incorporate vehicle dynamics [5, 6, 7,

8, 9]. They typically presume that the robot travels

along arcs of circles. The Curvature-Velocity Method

(CVM) chooses a point in translational-rotational ve-

locity space which satis�es some constraints and maxi-

mizes an objective function [5]. The constraints repre-

sent both the presence of obstacles and physical limita-

tions on robot's velocities and accelerations. Though

it produces reliable, smooth, and speedy navigation

in o�ce environments, it has some shortcomings. Of-

ten, at an intersection of corridors, it fails to guide

the robot into an open corridor toward the goal di-

rection. It often passes over some paths which are at

right angles to the current robot orientation. Also,

it sometimes lets the robot head towards an obstacle

until the robot gets near the obstacle, even if there

is a clear space around the obstacle. These problems

all stem from the fact that CVM chooses commands

based on the collision-free length of the arcs assumed

to be robot's trajectories. It does not consider that

the robot may be on that arc for just a short distance,

and will soon be turning again. In short, CVM pays

less attention to collision free directions than do the

directional approaches.

The Lane-Curvature Method (LCM), described in

this paper, improves the velocity space approach by

considering collision free direction as well as the col-

lision free arc length. It uses a two-step approach to

navigation. First, given a desired goal heading, a di-



rectional approach, called the Lane Method, chooses

a \lane" for the robot to be in, taking into consider-

ation obstacle avoidance, motion e�ciency, and goal

directedness. Then, the Lane Method calculates a lo-

cal heading that will guide the robot either into, or

along, that lane. Since, the Lane Method alone can-

not account for the physical constraints of the robot

motion, the local heading is supplied to CVM. Based

on this heading, CVM produces translational and ro-

tational velocity commands, taking into consideration

the physical constraints of the robot.

The Lane Method chooses the direction to a wide

and collision free opening since it decides heading di-

rection based on the collision free distance and width

of lanes. On the other hand, the VFH method chooses

a direction to the opening with wide collision free an-

gular range rather than an opening with wide width.

So, it may force a robot into a narrow opening near the

robot because even a narrow opening can o�er wide

collision free angular range to a robot if the opening

is close to the robot. In this respect, the lane method

can provide safer heading commands to CVM than the

VFH.

The Curvature-Velocity Method

CVM formulates the local obstacle avoidance prob-

lem as one of constrained optimization in the velocity

space of the robot. It determines translational velocity

tv and rotational velocity rv, maximizing the objec-

tive function f(tv; rv):

f(tv; rv) = �

1

� dist(tv; rv) + �

2

�head(rv)

+ �

3

� speed(tv)

dist(tv; rv) = d(tv; rv;OBS)=L

head(rv) = 1� j�

c

� rv�T

c

j=�

speed(tv) = tv=tv

max

(1)

d(tv; rv;OBS) is the arc distance that the robot

can go with the curvature c = rv=tv before hitting a

set of obstacles OBS. The arc distance d(tv; rv;OBS)

is normalized to dist(tv; rv) by some limiting distance

L(three meters, in our implementation). head(rv) is

the normalized error in goal heading. It is de�ned to

be the di�erence between the commanded heading �

c

(in the robot's local reference frame) and the heading

the robot will achieve if it turns at rv for some time

constant T

c

. In other words, the objective function

tries to have the robot achieve high speed movement

close to the command heading direction, while travel-

ing longer before hitting the obstacles.

The constraints maintaining the robot motion

within its physical limitations are the followings:

0 � tv � tv

max

;�rv

max

� rv � rv

max

rv � rv

cur

� (ra

max

�T

accel

)

rv � rv

cur

+ (ra

max

�T

accel

)

tv � tv

cur

+ (ta

max

�T

accel

)

(2)

These constraints limit the robot's translational ve-

locity, rotational velocity, translational acceleration,

and rotational acceleration within the maximum val-

ues tv

max

, rv

max

, ta

max

, and ra

max

, respectively. The

constraint 0 � tv prohibits the robot from moving

backwards. Here, T

accel

is the time interval with which

commands are issued.

As a whole, CVM �nds a point in translational-

rotational velocity space satisfying the constraints (2),

and maximizing the objective function (1). This

produces rotational and translational commands that

move the robot through a safe and goal directed path

as fast as possible, within the robot's physical driving

ability.

The Lane Method

To �nd a heading direction for collision free move-

ment, the lane method divides the environment into

lanes oriented in the direction of the desired goal head-

ing. Then it selects the best lane for collision free and

e�cient motion. Finally, it calculates a heading direc-

tion to enter, or continue along, the selected lane.

Lanes

Lanes are constructed by determining the max-

imum collision-free distance to obstacles along the

desired goal heading. Adjacent lanes with similar

collision-free distances are merged. To facilitate the

lane determination, and to match the implementation

of CVM, the obstacles are approximated as circles,

represented by their locations and radii. The radii

of the obstacles are increased by the radius of the

robot to convert from Cartesian space to con�gura-

tion space obstacles, since our robot is also circular.

The parameters describing the k-th lane are lane width

w(k), collision-free distance d(k), and viewing direc-

tion va(k), which is the angle at which a line from

the robot to the lane passes through only collision-

free areas. These parameters are depicted graphically

in Figure 1.



lane 0 lane 1

gd

d(4)

lane 5

va(0)

w(4)

starting line

lane 4

ba

sonar detecting range

Figure 1: Lanes and their describing parameters

In Figure 1, the number of lanes N

L

is six. The

working area is divided into lanes within the range

of the maximum obstacle sensing distance (set to 4

meters in our experiments). In determining lanes, we

ignore the obstacles that are \behind" the robot. Since

the robot is continually moving forward, we actually

determine what obstacles are \behind" the robot as

those whose angular distance from the desired goal

heading is beyond some prede�ned angle limit. The

angular limits for the clockwise and counter clockwise

direction are determined individually. The blocking

angle limit, ba, for each direction is de�ned as:

jbaj =

8

>

>

>

<

>

>

>

:

90

�

; if there are no obstacles

on the starting line

55

�

; If there is some obstacle

on the starting line

(3)

The collision-free distance of the k-th lane, d(k) is

de�ned as the distance the robot can go through the k-

th lane before hitting obstacles, from the starting line.

The view angle for the k-th lane, va(k) is the minimum

angle from the desired goal heading gd to the collision-

free direction to the k-th lane. In determining va(k), it

is assumed that the k-th lane is blocked at the distance

d(k) from the starting line.

A lane with very narrow lane width is merged to a

neighboring lane by the following rule: If w(h) � w

min

and d(h) > Minfd(h� 1); d(h+ 1)g for some 1 � h �

N

L

� 2, then merge the h-th lane into the neighbor-

ing lane with the smaller collision-free distance. In

the experiment w

min

is set to be 2:0cm. Also, two

lanes with similar collision-free distances are merged

together using the following rule: If jd(h)�d(h+1)j �

�d

min

; 0 � h � N

L

� 2, then merge the lane with

larger collision-free distance into the other lane. We

set �d

min

= 2:5cm in the experiment.

Lane Selection

Once lanes are constructed, the Lane Method

chooses the best lane to be in for e�cient and collision

free movement. For safe, collision-free movement, it is

desired to go through a lane with longer collision-free

distance and wider lane width. For e�cient steering,

smaller change of heading command is desired. Also,

abrupt change of heading command due to noisy sonar

reading can be prevented by keeping the change of

heading command as small as possible. For fast and

e�cient robot motion, heading command closer to the

current robot orientation o

r

is preferred. To address

the above discussions, we choose the following linear

function f

s

(k) as a lane selection function.

f

s

(k) = �

1

� d(k) + �

2

�w(k) � �

3

� ad

va;c

(k)

� �

4

� ad

va;o

(k)

d(k) = Minfd(k); D

limit

g=D

limit

w(k) =Minfw(k);W

limit

g=W

limit

ad

va;c

(k) = Minfva(k)� c

p

; C

limit

g=C

limit

ad

va;o

(k) = Minfva(k) � o

r

; O

limit

g=O

limit

c

p

: current heading command

o

r

: current orientation of the robot

(4)

Since the viewing angle va(k) is the minimum

collision-free angular deviation from the goal direc-

tion gd, we use it as a guiding direction to the k-th

lane in the selection function (4). Here, each term in

f

s

(k) is limited and normalized by the corresponding

maximum values, D

limit

, W

limit

, C

limit

, and O

limit

.

The term ad

va;c

(k) indicates a preference for smaller

change of heading command. Similarly, the term

ad

va;o

(k) indicates a preference for a heading com-

mand closer to the current robot orientation.

The � values are the weights to be given to each

term of the selection function and they are all positive.



In our experiments, they are set to be �

1

: �

2

: �

3

:

�

4

= 6 : 1 : 6 : 1. Maximizing the f

s

(k) selects a wide,

collision-free, and motion-e�cient lane.

Local Heading

If the robot is already in the best lane, CVM is

sent the original desired goal heading, and uses this

to command the robot. Otherwise, a local heading

is calculated that will cause CVM to transfer lanes.

Assume the n

s

-th lane is selected as the best. Since

the view angle va(n

s

) is the minimum collision-free

angle to the n

s

-th lane, the local heading hc should

be jva(n

s

)j � jhcj. Also, we con�ne the local heading

to be within the blocking angle ba, that is jhcj � jbaj.

So, the local heading hc becomes:

hc = va(n

s

) + � � (ba� va(n

s

))

where;

0 � � � 1:0

(5)

The value � determines how far the local heading is

from the viewing angle of the selected lane. If � = 0,

then the heading command is just the viewing angle,

and there is no clearance for safe motion. If � = 1:0,

heading command always directs to the extreme left

hand side or right hand side. In our experiments, �

is set to 0:5. The relationship between the heading

command, viewing angle, and blocking angle is shown

in the Figure 2.

Experiments and Results

The LCM algorithm has been implemented and ex-

tensively tested on the Xavier mobile robot (Figure

3) [10]. Xavier is built on a four-wheel synchro-drive

base, produced by RWI, and has independent control

over translational and rotational velocities. For obsta-

cle detection, it uses a ring of 24 sonars (data rate 2

Hz) and a 30 degree �eld of view front-pointing No-

madics laser range sensor. The base provides Xavier

with dead-reckoning information at 8 Hz, which is the

rate at which the LCM algorithm runs. The LCM al-

gorithm runs on an on-board 200 MHz Pentium-Pro

computer.

The � values of the CVM objective function (1)

were determined through a number of empirical tri-

als as the values resulting in the best safe, smooth,

and e�cient robot movement. The values used in the

combined LCM approach di�er from those used when

CVM is the only obstacle avoidance mechanism. In

va(ns)

hc

ba

or

starting line

gd

lane ns

lane nr

Figure 2: Determination of local heading

LCM, they are set to be �

1

= 0:1; �

2

= 0:6; �

3

= 0:3,

while they are set to be �

1

= 0:6; �

2

= 0:1; �

3

= 0:3 if

CVM alone is used for obstacle avoidance. While �

1

,

which dictates the importance of long, collision-free

arcs, is set high for obstacle avoidance in the CVM-

only case, it is lowered in LCM because obstacle avoid-

ance is fully addressed by the Lane Method. On the

other hand, �

2

, which dictates the importance of stay-

ing close to the goal heading, is set higher in LCM, to

force the robot to adhere more closely to the heading

command that is issued by the Lane Method.

For comparison, the results of CVM and LCM are

shown for four environments: (1) turning a corner with

three obstacles, (2) going through a corridor with an

obstacle, (3) entering to a narrow corridor, and (4)

turning right through a narrow entrance. The maxi-

mum translational and rotational velocities are set to

be tv

max

= 50cm=sec; rv

max

= 60

�

=sec.

The results for the �rst environment are shown in

the Figure 4 (note that in all the experiments, the

robot has no initial knowledge of the environment { it

is just provided with the desired heading gd). In this

experiment, the desired goal heading gd is �90

�

. That

is, the robot is commanded to �nd and go through a

collision-free path in the direction �90

�

from its initial

orientation (that is, to the right in the �gure). There

are two possible collision-free paths: One is over the



Figure 3: The Xavier mobile robot

(a) LCM (b) CVM

Figure 4: Turning at a corner avoiding obstacles

second obstacle, and the other is below the second ob-

stacle which is narrower than the other. LCM �nds

the wider collision-free path successfully, but CVM

�rst tries to �nd a collision-free path below the sec-

ond obstacle. As the robot gets closer, it discovers

that the collision-free path below the second obstacle

is too narrow, and so CVM directs it back, and even-

tually �nds the collision-free space. In this case, at

�rst the CVM misses the wider collision-free path.

Figure 5 shows the results for the second environ-

ment. The goal direction is gd = 0

�

(that is, to the

right in the �gure). The LCM forces the robot to

steer away from the obstacle sooner than does CVM.

CVM lets the robot head towards the obstacle until

it gets too close to turn smoothly. This is because

the CVM prefers longer collision-free distance of arc,

rather than collision-free space itself. On the other

hand, LCM can detect wide collision-free lane from

earlier stage, and the avoidance motion begins earlier

(a) LCM (b) CVM

Figure 5: Avoiding an obstacle in a corridor

(a) LCM (b) CVM

Figure 6: Entering into a narrower corridor

(in fairness to CVM, it usually handles such situations

much more smoothly { this is just an extreme case).

Figure 6 shows results for the third environment.

The goal direction is gd = 0

�

(that is, heading up in

the �gure). Though there is a corridor in the direc-

tion gd, CVM guides the robot straight towards the

wall, turning late to avoid it. With LCM, the robot

notices the long open corridor, and enters that lane

fairly early.

In Figure 7, results in the fourth environment are

shown. The goal direction here is gd = 90

�

(that is,

heading down in the �gure). LCM smoothly guides

the robot into the correct corridor, while CVM fails

to �nd the perpendicular corridor 90

�

, and contin-

ues straight (later turning down the next corridor).

This result is similar to the result for environment 1,

where the CVM passes over an opening and fails to

�nd collision-free path.

The failure of CVM for these experiments can be

explained using Figure 8. Since CVM prefers longer

collision-free arc lengths, and �

1

is much greater than

�

2

, it prefers the path through the arc oc rather than



(a) LCM (b) CVM

Figure 7: Turning right through a narrow entrance

o

or

gd

c

ba

Figure 8: Problems of CVM

the path through the arc oa or ob. However, the path

through oc is not better than the other paths, regard-

ing the obstacle avoidance and motion e�ciency. In

the CVM-only case, it does not help to make �

1

less

than �

2

, however, since then CVM will be reluctant

to turn the robot to avoid obstacles, preferring to keep

heading in the goal direction. This is not a problem in

the combined LCM approach, since the Lane Method

supplies CVM with a local heading that will avoid ob-

stacles (under the assumption of straight-line motion).

Conclusions

We have presented the Lane-Curvature Method

(LCM) for local obstacle avoidance, which incorpo-

rates a velocity space method (CVM) with a direc-

tional method (Lane Method). The Lane Method de-

termines a local heading which directs robot to a wide

and collision-free lane. So, it resolves some problems

of using the CVM only for obstacle avoidance, such

as passing over a collision-free corridor in the goal di-

rection. By using CVM to actually choose commands,

LCM simultaneously controls the speed and heading of

the robot and incorporates constraints from the robot

dynamics.

The method has been implemented and tested on

Xavier, a synchro-drive robot. Our extensive experi-

ments show that, in many cases, LCM produces safer

and smoother robot motion than does CVM (in many

other cases, not shown here, their behavior is essen-

tially identical). In particular, LCM can often guide

the robot along collision-free paths that CVM misses.

This work shows that by combining the directional

and curvature-based velocity-space methods, we can

obtain an e�cient and reactive local navigation algo-

rithm which produces smooth and speedy, as well as

safe, collision-free movement.

Acknowledgments

This work is supported by RRC of Chosun Univ.,

and KOSEF (Korea Science and Engineering Founda-

tion). Thanks to Greg Armstrong for helping with

many of the experiments. Richard Goodwin and Lon-

nie Chrisman provided the original inspiration for a

lane-based method of local obstacle avoidance.

References

[1] K. Kant and S. W. Zucker, \Toward e�cient tra-

jectory planning: The path-velocity decomposi-

tion," The International Journal of Robotics Re-

search, Vol. 5. No. 3, pp. 72-89, Fall 1986.

[2] O. Khatib, \Real-time obstacle avoidance for ma-

nipulators and mobile robots," The International

Journal of Robotics Research, Vol. 5. No. 1, Spring

1986.

[3] Y. K. Hwang and N. Ahuja, \A potential �eld

approach to path planning," IEEE Trans. on

Robotics and Automation, Vol. 8, No. 1, pp. 23-

32, February 1992.



[4] J. Borenstein and Y. Koren, \The Vector Field

Histogram-Fast Obstacle Avoidance for Mobile

Robots," IEEE Transactions on Robotics and Au-

tomation, pp. 278-288, Vol. 7, No. 3, June 1991.

[5] R. G. Simmons, \The Curvature-Velocity Method

for Local Obstacle Avoidance," In Proc. Interna-

tional Conference on Robotics and Automation,

Minneapolis MN, April 1996.

[6] J. Buhmann, W. Burgard, A. B. Cremers, D.

Fox, T. Hofmann, F. Schneider, J. Stricos, and S.

Thrun, \The mobile robot Rhino," AI Magazine,

Vol. 16, No. 2, pp. 278-288, Summer 1995.

[7] W. Feiten, R. Bauer, and G. Lawitzky, \Robust

obstacle avoidance in unknown and cramped en-

vironment," In Proceedings IEEE International

Conference on Robotics and Automation, pp. 2412-

2417, San Diego, CA, May 1994.

[8] D. Fox, W. Burgard, and S. Thrun, \The dynamic

window approach to collision avoidance," IEEE

Robotics and Automation Magazine, Vol. 4, No.

1, pp. 23-33, 1997.

[9] A. Kelly, \An intelligent predictive control ap-

proach to the high speed cross country autonomous

navigation problem," Tech Report CMU-CS-TR-

95-33, School of Computer Science, Carnegie Mel-

lon University, 1995.

[10] R. Simmons, R. Goodwin, K. Zita Haigh, S.

Koenig and J. O'Sullivan, \A layered architecture

for o�ce delivery robots," In Proc. Autonomous

Agents `97, pp. 245-252, Marina del Rey, CA,

February 1997.


