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Abstract 

 
This paper presents an improved method for 

planetary rover path planning in very rough terrain, 
based on the particle-based Rapidly-exploring 
Random Tree (pRRT) algorithm. It inherits the benefits 
of pRRT, an improvement over the conventional RRT 
algorithm that explicitly considers uncertainty in 
sensing, modeling, and actuation by treating each 
addition to the tree as a stochastic process. Although 
pRRT is well-suited to planning under uncertainty, it 
has limitations in minimizing the cost of path plans. 
Our approach addresses these limitations by 
considering the relevant cost functions explicitly. Such 
cost functions depend on the application and can 
include time or distance of traversal, and energy 
consumption of the rover. The paper demonstrates the 
planner performance using a specific cost function 
defined in terms of the energy expenditure. The 
improved pRRT algorithm has been experimentally 
validated in simulation, and it has been shown to 
produce lower-cost plans than the standard pRRT 
algorithm. The proposed approach is likely to benefit 
the present and future space missions as an onboard 
motion planner and as a ground-based tool for plan 
validation. 
 
1. Introduction 
 

Over the past few years, experience with rover 
navigation on Mars has shown that a number of 
significant challenges still exist with rover autonomy. 
Generating correct and safe rover motions is 
complicated by a number of challenges, including: 
1. environment constraints (cluttered obstacles, high 

wheel slip), 
2. uncertainty of information about the environment, 
3. rover constraints (kinematics and dynamics 

constraints), 
4. resource constraints (energy expenditure). 

Motion planning under partially-known, yet certain 
environment constraints has received considerable 
attention in robotics research, and some standard 
solutions exist [4] [6]. Planning under nonholonomic 
constraints also has been studied extensively [5]. 
However, planning with uncertainty is still among the 
most active areas of inquiry [7] [8] [9]. 

The particle-based Rapidly-exploring Random Tree 
(pRRT) algorithm has been shown to be effective at 
solving planning problems under uncertainty [1] [3]. It 
extends the RRT algorithm and inherits its capability 
to satisfy challenges 1 and 3 above. In addition, pRRT 
is also capable of computing the likelihood of 
successful execution of motion plans (i.e. probability 
of achieving the goal by following the plan). It selects 
a plan that is likely to succeed as the solution, thereby 
satisfying the challenge 2. However, it is not designed 
to consider any other performance measures. For 
example, in selecting a motion plan, it may be 
important to evaluate a trade-off between the 
likelihood of reaching the goal and a desired cost 
function. Examples of application-dependent motion 
costs could be energy expenditure, time or distance of 
traversal and others, including any combination of the 
above.  

With respect to applying pRRT to rover motion 
planning, this can be an important limitation. 
Specifically, it leaves the challenge 4 unmet. The 
approach presented here addresses this limitation by 
considering arbitrary cost functions explicitly. The 
proposed motion planner therefore represents an 
incremental improvement over state of the art. It 
provides the complete capability of pRRT, while also 
considering a representation of the path’s cost. Thus, 
the proposed method is a promising solution for rover 
motion planning, since it satisfies all important 
challenges of the problem, outlined above. 

The proposed algorithm has been experimentally 
validated in simulation. The results confirm that it 
becomes possible to leverage a trade-off between the 
cost function of choice and the likelihood of achieving 
the goal. This property is an important advantage over 



the state of the art and is likely to enable 
unprecedented rover autonomy in planetary terrain. 
 
2. Related work 
 

Previous work in path planning has taken several 
approaches to planning with uncertainty. One of the 
most common approaches is to ensure proper operation 
in the worst case scenario. For example, if uncertainty 
is considered only in actuation, but not in sensing or 
modeling, Hait and Sim´eon [7] consider the range of 
possible rover poses and test for impact with the 
terrain. Related work by Esposito in the domain of 
plan validation [8] samples several possible values of 
the uncertain parameter from a given distribution and 
repeats planning for each value. In the more general 
case, approaches such as Iagnemma’s [9] computes the 
cost metric of traversing a particular region based on 
the worst case estimate of uncertainty. 

Most of previous path planning works assume that 
the environment is completely known before the robot 
begins its traverse (see Lavalle [10]). The optimal 
algorithms in this search a state space (e.g., visibility 
graph, grid cells) using the distance transform [13] or 
heuristics [14] to find the lowest cost path from the 
robot’s start state to the goal state. Cost can be defined 
to be distance travelled, energy expended, time 
exposed to danger, etc. 

There was also an approach to use the adaptive path 
planning algorithm based on the cost function. 
Cunningham and Roberts [15] present the way for 
cooperating unmanned air vehicles. A key requirement 
of the algorithm is that it adapts the subnets (and paths 
through the subnets) in response to the change of 
environment. More complex situations can be derived 
as combinations of several factors around robots. In 
this algorithm, subnet and path adaptation is driven by 
a global cost function that essentially shifts sensors 
into and out of subnets to reach a minimum cost.   
 
3. The particle-based Rapidly-exploring 
Random Tree (pRRT) algorithm 
 

In this work, we use the particle RRT (pRRT) 
algorithm [1] [3] which is an extension to the Rapidly-
exploring Random Tree (RRT) algorithm introduced 
by Lavalle and Kuffner [10]. RRT is a widely-used 
algorithm for motion planning in high-dimensional 
spaces with kinodynamic constraints. Each iteration of 
the algorithm, as depicted in figure 3(a), begins with a 
tree of states that the rover can reach. At the first step, 
this tree only consists of the initial state of the rover. A 
new state xrand is chosen stochastically from the state 

space, and the nearest node xbest in the tree is 
determined. An action is estimated to reach xrand from 
xbest, and the action is executed. The resulting state xnew 
is added to the tree. The planner may compute the 
forward simulation of the action with any level of 
fidelity appropriate to the task at hand. It is not 
necessary for the final state xnew to coincide with xrand, 
so it is often preferable to select the action using 
simple inverse kinematics, but simulate the result of 
the action using more accurate dynamic models. 

The pRRT algorithm selects a pair of xrand and xbest 
as the same way of RRT. However, the selected xbest is 
evaluated based on the quality value, the probability of 
reaching xbest from the root of the tree. A random value, 
r is drawn from a uniform distribution between 0 and 1, 
and if xbest.quality > r, the pair of points xrand and xbest is 
accepted and an extension is attempted. Otherwise, a 
new pair of points is chosen. This procedure is called a 
rejection test. The detailed procedure is listed in figure 
1. The extension introduced by pRRT, as shown in 
figure 3(b), produces distributions of states, rather than 
single states, at each node of the tree. The distributions 
are nonparametric, and are derived from the 
uncertainty specified as input to the algorithm, and the 
forward simulation process itself. Specifically, they 
use a set of discrete particles to estimate the 
distribution at each node. For each extension added to 
the tree, several particles are computed under uncertain 
environment. To compute a single particle, one particle 
from the node is chosen as the start state, and a value is 
drawn from the prior distribution over the uncertain 
parameter (in this case, terrain friction). Simulations of 
the same action under different values for friction will 
result in different final states for the rover. In this 
procedure, CM Lab’s Vortex Simulator [16] is used to 
get particles under the uncertain factor with a specific 
vehicle model (See figure 2). After simulating several 
times in this manner, the resulting particles are 
clustered into one or more nodes, which are added to 
the tree with the same parent. The clustering is used to 
separate qualitatively different particles into different 
 
 

 
Figure 1. The pRRT algorithm - SELECT_NODE 



nodes. This procedure is accomplished using a 
hierarchical clustering tree [11] with a weighted 
Euclidean distance metric to determine the difference 
between particles. The hierarchical clustering tree 
algorithm uses this metric to iteratively agglomerate 
the particles and clusters separated by the shortest 
distance. 

In general, building a planning tree while 
accounting for uncertainty should result in nodes 
whose variance grows with the depth in the tree. 
However, since the clustering step permits a single 
extension to be broken into more than one node, the 
variance is split as well. In addition, the probability of 
a single particle is associated with the prior likelihood 
of the sampled value of friction used to produce it. 
Since the prior over the uncertain parameter can have 
an arbitrary probability distribution function and nodes 
may contain different numbers of particles, some 
nodes will contain more probability mass than others. 
Nodes which combine both low variance and high 
probability are good candidates for path planning, 
because the rover is expected to be able to reach them 
accurately despite the uncertainty. Consequently, such 
a path is executed with greater accuracy by the rover. 
Thus, as the planning tree is built, there is a bias 
towards extending new leaves from such high-
probability paths. This bias is implemented using a 
selection mechanism similar to that introduced by 
Urmson in [2]. 

 
 
 
 
 

 
Figure 2. The Vortex simulator 

 
Figure 3. The RRT & pRRT algorithms 

 
4. Enhancing pRRT with cost functions 
 

The advantage of the proposed approach over 
pRRT lies in a more informed method of growing the 
search tree. It is guided by a cost function that 
represents the true cost of moving the rover from one 
state to another. Here we extend the pRRT algorithm 
to utilize the additional information, provided by the 
cost function. First, we will describe the mechanism 
for fusing the cost function estimates with the 
probability of successful execution of the plan. 
Afterwards, we will discuss the details of extending 
the pRRT algorithm to accommodate the new 
methodology for guiding the tree growth.  

 
4.1. Weighted reward function 
 

In order to facilitate the fusion of the cost function 
with the probability of successful plan execution, we 
use the notion of reward. It is loosely defined as the 
inverse of the cost. The mapping of tree nodes to the 
value of their exploration in pRRT search is referred to 
as a reward function. This function guides the growth 
of the tree toward the goal. The nodes that have a 
higher value of the reward function represent a more 
promising direction of search. Thus, the quality of the 
pRRT solution is more likely to be higher if the 
algorithm grows the tree toward nodes with the highest 
reward. 

Since here we propose combining two reward 
functions – the conventional probability of successful 
execution and cost function of choice –, we require a 
methodology for fusing them, such that the resulting 
reward function still satisfies the requirements of 



pRRT. We propose a fusing technique that is loosely 
related to weighted averaging, hence the resulting 
function is referred to as a weighted reward function. 
The technique we developed was inspired by [12] and 
Urmson’s hRRT technique for heuristically biasing 
RRT growth [2]. The weighted reward function of a 
node n, denoted as W[R(n)], is defined in the following 
equation. 
 

 
 
In the equation, ps(n) is the probability of reaching a 

state n by following the plan from the starting point. 
The variable pnorm(n) is the normalized ps(n) by the 
path length, d. Tm is the minimum probability of all 
leaf nodes of the search tree. Pq(n) is a quality value of 
a state n; it is normalized to ensure that the weight falls 
within the range [0, 1]. C(n) is the total accumulated 
cost function for a state n from the starting point.  

The rationale for normalizing pnorm(n) is as follows. 
We found that the probability of reaching nodes of the 
tree drops quickly with path length. This causes the 
algorithm to favor making extensions from nodes near 
the root, even when reasonably likely nodes exist 
closer to the goal. Hence, the path probability pnorm(n) 
is normalized using the path length in order to 
encourage more extensions from nodes farther from 
the root. 

The definition for W[R(n)] includes an exponential 
function in order to constrain its values between 0 and 
1. Thus, the weighted reward value will also reside 
within [0, 1]. This might bring several advantages. For 
example, we can set a threshold value for a rejection 
test in the pRRT algorithm because we know the scope 
of the value explicitly. Also, because we use 
accumulated cost, C(n) increases very quickly. By 
utilizing the exponential function, large differences in 
cost are translated to small differences in state space. 
However, the reduction of a large cost difference via 
the exponential may make it difficult to compare costs 
of nodes. This is addressed with the relevant parameter 
α, a reward decay factor. It represents the degree of 
importance of reaching the goal quickly and is 
problem-specific. Section 5 briefly discusses choosing 
the value of this parameter, as well as the sensitivity of 
the present method to its value. 
 

4.2. Extending pRRT with weighted reward 
function 
 

Given a weighted reward function for guiding the 
growth of the tree, we extend the pRRT algorithm to 
accommodate it. Through this extension we achieve 
our goal of enabling the pRRT planner to incorporate 
arbitrary cost functions in its search. Relatively small 
changes to pRRT are required: only one routine of the 
algorithm, SELECT_NODE, needs to be modified. 

There are two leading approaches for extending the 
pRRT. Below we describe the details of both, specify 
their re-designed SELECT_NODE routines, and 
conclude with outlining their benefits and drawbacks.  
 
4.1.1. Algorithm 1. In this approach, we select the 
new node by picking a point xrand stochastically and 
selecting the nearest neighbor xbest of the point xrand. 
For the rejection test, we use the weighted reward 
function to evaluate the selected pair (xrand, xbest). The 
algorithm is listed in figure 4. 
 
4.1.2. Algorithm 2. In this version, we pick a point 
xrand stochastically and select a node xbest with the 
maximum reward. For the rejection test, we use the 
weighted reward to evaluate the selected pair 
(xrand, xbest). The algorithm is listed in figure 5. 
  

The difference between Algorithms 1 and 2 is in 
selecting the point xbest. After picking a point xrand 
stochastically, Algorithm 1 selects the nearest neighbor 
xbest of xrand. On the other hand, Algorithm 2 selects 
xbest with the maximum reward. To calculate the 
maximum reward value, we combine a normalized 
distance and a weighted reward with a relevant weight 
factor, wf. Because Algorithm 1 selects a pair (xrand, 
xbest) based on the distance and does a rejection test 
with a weighted reward, we can get a pair with a 
reasonably good weighted reward on average. 
However, Algorithm 1 considers a weighted reward 
after selecting a pair, so we cannot guarantee the  
 

Figure 4. Algorithm 1 



 
selected pair has the highest reward, and if a threshold 
value is too high, it might take a long time to select a 
pair. Algorithm 2 is considering the distance and the 
weighted reward together, so we can select a pair 
based on our needs which are problem-specific. 

The choice of 1 for wf would result in considering 
only the distance in selecting the point xbest. This would 
be identical to Algorithm 1. On the other hand, if we 
choose 0 for wf, we would only use the weighted 
reward to select xbest. Some guidelines for choosing the 
value of wf, as well as sensitivity to this parameter, are 
offered in Section 5. 

5. Experimental results 
 

In this section, we demonstrate the performance of 
the proposed algorithms using the specific cost 
function. Cost may be computed as a combination of 
several factors such as distance traveled, energy 
consumed, etc. In this experiment, cost is a synonym 
for energy consumption, so the cost function becomes: 

 

Figure 5. Algorithm 2 

 
 
where τit and ωi

t are torque value and angular 
velocity for wheeli at time step t. k is the number of 
wheels and m is the number of time steps. np is a parent 
node of a state n. In the pRRT algorithm, each node is 
composed of multiple particles, and thus the cost of a 
node means the average cost of the particles.  

For the simulation, the challenge is to find the value 
for wf that gives the optimal values for the following 
variables: planning time and total cost. The minor 
concern is to find the value for α since it does not 
affect the results of two algorithms relative to the other 
parameter (i.e. wf). Specifically we picked α = 0.005, 
which has been shown to be appropriate for both 
algorithms in the environment. α is used as a scale 
factor to get the reasonable range of reward value. Of 
course we cannot say this value is the optimal one in 
this case. However, once we can compare each 
algorithm’s performance based on cost and reward 
values with the selected α value, optimality is not 
necessarily required. In addition, simulation results 
were not sensitive to α value in the experiments. We 
changed α value from 0.001 to 0.1, but there were no 
significant effects in the results. For Algorithm 2, in 
order to acquire the appropriate wf value, 300 iterations 
were repeatedly applied to both algorithms with a 
given terrain map. Based on the experimental results in 
table 1, we picked wf = 0.7 which gives the best result 
 

It is worth noting the benefits and drawbacks of the 
proposed algorithms. In Algorithm 2, we perform a 
rejection test with a weighted reward, even though we 
have already considered that value when we calculated 
the maximum reward. We take into account the 
weighted reward again in the computation of the 
maximum reward which gives more weight to a 
distance metric for choosing wf. If the pair is selected 
based on the maximum reward, it would likely have a 
higher weighted reward. However, the best pair in 
terms of the maximum reward does not necessarily 
mean the pair having a high weighted reward. 
Therefore, with a rejection test using weighted reward, 
it would likely to get the better plan having higher 
weighted reward value than the case without a 
rejection test. In addition, since the weighted reward 
for each node has been already computed at the 
previous step, this rejection test does not require any 
additional computational resources. Also, because 
Algorithm 2 considers the maximum reward at every 
step, it is more likely to select a better pair even though 
the computation in terms of memory is more expensive 
than Algorithm 1. 

 
Table 1. Picking wf 

wf Planning time (s) Total cost C(n) 

1.0 124.39 15.64 
0.9 117.26 15.45 
0.7 103.88 15.01 
0.5 153.71 15.23 
0.3 231.75 14.98 
0.1 352.35 14.87 
0.01

 n/a n/a 

                                                           
1  With wf = 0.0, the procedure of the proposed algorithms is 
terminated by the maximum iteration number of pRRT before getting 
a path reaching to the goal position. 



in terms of planning time and total cost. Of course, wf 
depends on the needs which are problem-specific or 
evaluation criteria. Therefore the selected wf value is 
not generally optimal. However, we can at least get 
some ideas to select the relevant weight factor for each 
case from values in table 1 and Algorithm 2 described 
in figure 5. 

With these two selected parameter values and a 
given terrain map, the procedure of each algorithm was 
iterated for 150 times to get average path length, 
planning time, total cost, and relative end-point errors. 
As a result, the three patterns as depicted in figure 6 
were produced. The path of pattern 1 has the shortest 
length, but it requires the highest overall cost to get the 
goal position because it needs more energy when it 
climbs over the obstacle. The path of pattern 2 and 3 
goes around the obstacles, and pattern 3 has the 
longest length among three cases. We show the 
detailed results in table 2 for each case. 

When we generated the plan with the original pRRT 
algorithm, over 90% of paths showed pattern 1. 
Because pRRT considers only a distance metric to 
select a pair and just perform a rejection test based on 
a quality value, average planning time showed the best 
result among three algorithms. However, pRRT was 
the worst in terms of total cost. On the other hand, 
when we applied Algorithm 1 and 2, the planner 
generated paths that avoid the obstacle like pattern 2 
and 3 with about 95%. Algorithm 1 and 2 generated 
the path with lower total cost than the path generated 
by the original pRRT because less energy is needed 
along paths of pattern 2 and 3. The interesting thing 
here is even though the total cost of pattern 3 is much 
higher than pattern 2, pattern 3 is chosen with 
relatively high frequency, about 30%, in Algorithm 1 
and 2. This is because the proposed algorithms give 
still more weight to the distance metric for their 
rejection tests. As a result, if a random point is selected 
on the right side of the space, a node relatively close to 
the random point and having reasonable weighted 
reward would likely be selected.  

For the planning time, as we expected, Algorithm 1 
took the longest time on average because it considers 
the distance metric like pRRT, and this procedure is 
iterated until the pair with a reasonable weighted 
reward is selected to pass a rejection test. In fact, for 
all three algorithms, all nodes in the tree need to be 
investigated to select xbest to extend, and thus there is 
no significant difference in time when they select the 
pair at each step. However, after the pair (xrand, xbest) is 
selected, when the rejection test is applied to the 
chosen pair, it is iterated until the pair has a reasonably 
good value in terms of a given evaluation criteria. This 
 

Table 2. Detailed results for each algorithm 
 pRRT Alg1 Alg2 

Pattern 1 

Frequency (%) 90.67 4.67 5.33 
Path length (m) 9.58 9.62 9.81 
Planning time (s) 85.25 90.52 87.33 
Total cost C(n) 22.52 23.03 24.17 
Relative end-point 
error (m) 0.053 0.076 0.058 

Pattern 2 

Frequency (%) 6.67 61.33 69.34 
Path length (m) 11.32 11.52 11.45 
Planning time (s) 112.23 122.69 115.53 
Total cost C(n) 12.04 12.47 12.36 
Relative end-point 
error (m) 0.061 0.097 0.064 

Pattern 3 

Frequency (%) 2.66 34.00 25.33 
Path length (m) 18.52 20.21 18.25 
Planning time (s) 132.53 152.93 130.21 
Total cost C(n) 18.04 20.05 17.53 
Relative end-point 
error (m) 0.084 0.112 0.81 

Average 

Path length (m) 9.93 14.39 13.09 
Planning time (s) 88.31 131.47 117.75 
Total cost C(n) 21.70 15.54 14.29 
Relative end-point 
error (m) 0.054 0.101 0.068 

 

 
Figure 6. Three patterns of generated paths with 

each algorithm 
 
procedure mainly affects overall planning time, and 
that’s why pRRT and Algorithm 2 have nearly 
identical planning time for the same pattern, even 
though average planning time between pRRT and 
Algorithm 2 is fairly different because of the frequency 
of patterns. In cost criteria, Algorithm 2 showed the 
best result because it considers the weighted reward at 
every step when it selects the pair. 

The reason why we mainly get the paths of pattern 
2 or 3 with the proposed algorithms can be explained 
more clearly in the specific case. In figure 7, nodes 
inside a dotted circle were not extended more because 
those nodes already have fairly high overall cost. 
Specifically, even though those nodes are selected, 
  



 
Figure 7. Nodes with higher total cost: These nodes 

are not selected by a rejection test. 
 
they are rejected by SELECT_NODE procedure shown 
in the previous section. Therefore, the proposed 
algorithms select nodes which are not resided on the 
hill to extend the tree, and thus they produce the paths 
going around the obstacle. 

According to the results in table 2, generating a plan 
based on the aggregated cost function slightly 
deteriorated the end-point accuracy of the plan, but the 
plan has lower overall cost. These results show a trade-
off between different metrics of success, specifically, 
accuracy, planning time, path length and energy 
consumption. 
 
6. Conclusions & future work 
 

This paper presented an improved method for 
planetary rover path planning in rough terrain, based 
on the pRRT algorithm. Our contribution enables 
adding arbitrary cost functions to the pRRT algorithm, 
in order to allow the resulting planner to consider a 
trade-off between different metrics of success, such as 
accuracy, path length, and energy consumption. The 
method of incorporating the cost functions in pRRT 
has been experimentally validated in simulation.  

Future work includes investigating additional cost 
criteria and methods for integrating them in the 

proposed algorithm. We would also like to undertake 
field validation of the algorithm, as well as evaluate its 
use for future space missions as an onboard rover 
motion planner and as a ground-based tool for plan 
validation. 
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