
Motion Interference Detection in Mobile Robots

Juan Pablo Mendoza

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

jpmendoza@ri.cmu.edu

Manuela Veloso

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

mmv@cs.cmu.edu

Reid Simmons

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213–3890

reids@cs.cmu.edu

Abstract—As mobile robots become better equipped to au-
tonomously navigate in human-populated environments, they
need to become able to recognize internal and external factors
that may interfere with successful motion execution. Even
when these robots are equipped with appropriate obstacle
avoidance algorithms, collisions and other forms of motion
interference might be inevitable: there may be obstacles in
the environment that are invisible to the robot’s sensors, or
there may be people who could interfere with the robot’s
motion. We present a Hidden Markov Model-based model for
detecting such events in mobile robots that do not include
special sensors for specific motion interference. We identify
the robot observable sensory data and model the states of
the robot. Our algorithm is motivated and implemented on an
omnidirectional mobile service robot equipped with a depth-
camera. Our experiments show that our algorithm can detect
over 90% of motion interference events while avoiding false
positive detections.

I. INTRODUCTION

Autonomous mobile robots have reached the point where

they can start to perform useful tasks in unconstrained

human-populated environments. For robots to become an

efficient means for performing such tasks, they need to be

able to navigate safely and effectively without supervision.

Therefore, robustness during navigation (and, more generally,

during task execution) is an area of increasing importance

in robotics. To perform tasks robustly in unconstrained and

uncertain environments, robots need to reason about their

own state and execution, which is why execution monitoring

–the problem of recognizing and indicating anomalies in

behavior– has gained importance in the robotics community

[1]. This paper presents a Hidden Markov Model (HMM)-

based model for detection of Motion Interference (MI)

events–events that disrupt the normal motion of the robot–

with the purpose of increasing the robustness, and thus the

autonomy, of robots in human-populated environments.

Previous work on execution monitoring for mobile robots

has mostly focused on model-based monitors, such as

the hierarchical monitor of Xavier [2], the knowledge-

based SKEMon monitor [3], and the Unit Circle qualitative

representation-based monitor [4], in all of which properties

such as the dynamics of the mobile robot are explicitly

modeled. More recently, there has also been robotics work

in model-free monitors [5], in which fault detection arises

solely from observing the robot’s behavior, rather than from

a predictive model. The model presented in this paper

Fig. 1: The CoBot mobile service robots. CoBot robots au-

tonomously perform tasks in human-populated environments,

often without any supervision. This makes robustness during

navigation a particularly relevant problem.

more closely resembles some estimation-based methods (e.g.,

using HMMs or Kalman Filters) that have been used for

execution monitoring of outdoor robots [6], [7] and planetary

rovers [8], [9]. In contrast to these methods, however, where

the dynamics or the parameters of the robot are explicitly

given, our model is built as an observer outside of the

robot’s existing architecture: the monitor builds a model from

navigation data, such as driving commands and measurable

velocity, as opposed to using pre-existing knowledge of the

robot’s properties. In this respect, our model takes some ideas

from activity recognition work [10], [11], where the inner

workings of the system to be described are unknown, yet

behaviors are successfully classified. In some ways, then,

our approach combines strengths from both model-based and

model-free monitors: while an explicit model of the robot’s

behavior is built, this model is learned from observed data,

which potentially allows for modeling of complex behaviors

whose properties might be too difficult to define analytically.

II. THE MOTION INTERFERENCE DETECTION PROBLEM

The robotic platform used to test the algorithm presented in

this paper is the CoBot service robot (Figure 1). CoBots are

(a) (b) (c)

Fig. 2: Types of Motion Interference considered in this paper: (a) Collision against a partially detectable obstacle, (b) Being

held by a person, and (c) Having one or more wheels stuck

equipped with an omnidirectional wheeled base for motion,

laser range-finders and/or Microsoft Kinects for obstacle

avoidance and localization in the environment and cameras.

The level of autonomy of the CoBots is very high, having

navigated more than 8.7 km while autonomously completing

service tasks requested by inhabitants of the Gates-Hillman

Center at Carnegie Mellon University [12]. However, the

CoBots’ ability to reason about their own state and per-

formance during execution is still limited. The goal of this

paper is to provide a model to increase the robustness of

CoBots’ (and, more generally, mobile robots’) autonomous

navigation by detecting when some environmental or internal

event is interfering with its regular motion. For the remainder

of this paper, we focus on the following types of motion

interference, as they are the most relevant to the CoBot’s

execution, though we believe our algorithm is more generally

applicable to motion interference.

Collision with partially detectable objects (collision)

While the fairly reliable perception mechanisms

of the CoBots, combined with obstacle avoidance

algorithms, can provide successful local navigation

the vast majority of the time, there are some ob-

stacles that are either undetectable or only partially

detectable to the sensors. Transparent obstacles are

particularly challenging for such light-based sen-

sors, but opaque obstacles can also be only partially

detectable. For example, the top of the table shown

in Figure 2a is too tall for either the Kinect or the

laser range-finder to perceive it. While the robot

avoids the leg of the table successfully, it cannot

detect and avoid the much larger full width of the

table, leading to potential collisions.

Being held by a person (hold)

In some situations, a person may want to stop the

CoBot’s motion, and although the CoBots have

emergency stop buttons, a person’s first reaction

may reasonably be to directly stop it by holding it,

as shown in Figure 2b. Furthermore, the effect of

being suddenly grabbed and stopped seems similar

to the effect of a head-on collision between the

robot and a transparent or otherwise undetectable

wall. In either case, it is important for the robot to

be able to detect the situation and react accordingly.

Having one or more wheels stuck (stuck)

Several events in the environment might cause one

or more of the robot’s wheels to get stuck. For ex-

ample, a person might accidentally place their foot

in front of the robot’s wheels during navigation (see

Figure 2c), or the robot could have trouble passing

over gaps or level changes, such as the entrance into

an elevator. A similar type of motion interference

might occur independently of the environment due

to malfunctioning wheel motors.

Note that all of the described forms of interference will

have a similar effect on the robot: the robot’s motion in the

direction of travel will be impeded, and thus its velocity is

going to be diminished to a value smaller than the given

velocity command. Because of this similarity, all of these

events are grouped for this paper under the category of

Motion Interference, and are treated as equivalent events.

Experimental results in Section IV support this abstraction.

However, in the case of non-equivalent events (e.g., a person

pushing the robot forward, or a defective motor given only

a fraction of the expected current), the model can readily

support detection of different types of events by adding the

appropriate states to the model of Section III.

III. A HMM FOR MOTION INTERFERENCE DETECTION

Hidden Markov Models are particularly well-suited for

modeling an MI detector: even though the CoBots don’t have

sensors to directly detect MI events, the occurrence of these

events can be inferred from the observations that are available

to the robot. HMMs provide an appropriate framework to

perform these inferences.

A Hidden Markov Model M can be defined as a 5-tuple

M = {S,Π, A,O,B}, where

Stop

Accel

Decel

Constant

MI

Fig. 3: Diagram of the HMM modeling the Motion In-

terference Monitor. Ellipses represent hidden states, while

arrows represent transitions between states. (While no arrows

are shown in transitions which the data determined had

probability 0, no transitions were explicitly forbidden)

S = {si} the set of hidden states in M

Π = {πi} the initial distribution of M such that

P (S1 = si) = πi

A = {aij} the transition probabilities such that

P (St+1 = sj |St = si) = aij
O = {~oi} the space of possible observations

B = {bi} the emission probabilities such that

P (~oj |St = si) = bi(~oj)
For the detector described in this paper, each possible

simple behavior of the robot is represented by a state in S.

The possible behaviors assigned to the CoBot for purposes of

MI detection are S = {stop, accel, constant, decel,mi} rep-

resenting the states where the robot is stopped, accelerating,

at constant positive speed, decelerating, and having its motion

interfered, respectively. A diagram for the resulting HMM is

shown in Figure 3. Since the robot always starts from the

stop state, the respective values for Π are Π = {1, 0, 0, 0, 0}.

True transition probabilities between pairs of states were

approximated from a large amount of hand-labeled gathered

training data. In general, given a set of observations accom-

panied by state labels St for all times 0 ≤ t ≤ T ,

aij =

∑T−1

t=0

(

δSt,si · δSt+1,sj

)

∑T−1

t=0
δSt,si

, (1)

where δi,j is the Kronecker delta function. That is, the

transition probability from state si to sj is given by the

total number of labeled observations in which the robot

transitioned from state si to sj divided by the total number of

labeled observations in which the robot transitioned from si
to anywhere. The only transition probabilities not calculated

using Equation 1 were transitions into MI ai,mi∀i 6= mi.

Given the rarity of MI events in normal CoBot runs, MI

events had to be artificially created to gather significant data

for experimenting, and thus the real probabilities to transition

from a different state to the MI state are extremely difficult

to gather. These values were thus set to ai,mi = pmi, where

pmi is the only parameter for the MI detector. Tuning pmi has

the effect of varying the total number of MI events detected,

and therefore it serves as a parameter to find the desired

trade-off value between precision and recall of MI events

(see Section IV for more details).

Observation space O may vary greatly depending on the

sensors of the specific robot and the type of event that needs

to be detected. For the task of detecting MI events in the

CoBot, observations were of the form

~ot = (ut − vt, at, jt, ut), (2)

where ut is the commanded forward velocity of the robot,

and vt, at and jt are the forward velocity, acceleration and

jerk of the robot as measured by its wheel encoders. The

reasoning for each observation and the method for obtaining

it are the following:

Velocity difference ut − vt.

One can expect that when the robot’s movement

is being interfered, its measured velocity would be

significantly lower than its commanded velocity.

While ut is directly obtained as a command, vt
needs to be calculated from the individual encoder

velocities. Velocity vt was obtained from the least

squares solution transforming the encoder values

for each of the four wheels to forward, sideways

and rotational components of the robot’s velocity.

Acceleration at.

There are times during normal (i.e., not MI) robot

motion when the velocity difference ut − vt is

significantly positive. For example, when the robot

accelerates from a stopped position to full speed,

the change in ut is discrete, while vt smoothly

changes from 0 to ut over time. Thus, ut−vt alone

is not a sufficient observation to detect MI events.

Therefore, acceleration at is added as an additional

layer to distinguish between these events: while

an accelerating robot has a positive acceleration, a

robot during a MI event usually has either negative

(at the moment the MI event begins) or near-zero

(once velocity has stabilized) acceleration. at can

be obtained by applying linear regression to the

last Na measures of velocity vt as a function of

t, and then getting the slope of the resulting line.

Even though at could be obtained from only the

last 2 values of vt and t, a larger number Na is

used to reduce the effects of noise in the data. Na

must be large enough to negate the effects of noise,

but small enough to provide a meaningfully recent

value for at. For this paper, Na = 4.

Jerk jt.

In the event that the robot’s motion is disrupted

while the robot is accelerating, it might be the

case that the positive acceleration continues for a

while until the final velocity under the disturbance

is reached. In these cases, at might be within the

normal parameters of an accelerating motion at

any instant, but the change in acceleration in time

may provide valuable information to distinguish

MI acceleration from normal acceleration. For this

reason, the second time derivative of the velocity

is also used as part of the observations. Jerk jt is

obtained by dividing the difference between the two

last acceleration measurements by the difference in

time between measurements. However, since jerk

is significantly more sensitive to noise in the data

than acceleration, a larger number of measurements

Nj ≥ Na is used to calculate the accelerations to

be used for jt, for purposes of further smoothing

of noise at the cost of a more outdated jerk mea-

surement. For this paper, Nj = 8. Various values

of Na and Nj were tested on small portions of the

data, and the final values were those that maximized

performance in these portions.

Velocity command ut.

The final attribute of the observation is simply

the commanded velocity ut. The purpose of this

attribute is to distinguish between stop , where

ut = 0, and constant, where ut 6= 0. Otherwise

these states would have identical properties.

There are some design decisions behind the use of the

attributes of Equation 2 as observations. First, notice that

only the forward velocity, acceleration and jerk of the robot

are used. While the CoBot’s base is omnidirectional, most

of its movements are restricted to the forward direction (plus

rotations) because its sensors are pointing forward. Therefore,

using only the forward direction has the benefit of requiring

estimation of fewer parameters at little cost. Furthermore

while the CoBot has other sensors (e.g., Kinect) that could

provide estimates of velocity apart from the encoders, for

this paper only encoder estimates were used. While encoders

provide the simplest method for velocity estimation, the

biggest concern with using them as the only estimator is

that, on extremely slippery surfaces, the robot’s wheels could

keep spinning at the commanded velocity even during an MI

event. We determined, however, that even in the most slippery

surfaces in the CoBots’ environment (i.e., hardwood floors),

slipping was not enough to make MI events undetectable

using only encoder-based velocities. If this were not the case,

however, additional sources of velocity information could be

added as observations at the cost of additional parameter

estimation.

Finally, emission probabilities B are calculated from hand-

labeled training data in a similar manner to transition prob-

abilities A. For the specific monitor described in this paper,

the data is treated as being generated by conditionally inde-

pendent Gaussian variables. The Gaussian assumption fits the

data relatively well, but the independence assumption does

not hold for the data in question: velocity, acceleration and

jerk are strongly correlated. While the general model readily

supports treating data as conditionally dependent, there is

a trade-off between higher model accuracy at the cost of

more parameter estimation and processing (conditionally de-

pendent) and lower model accuracy with a simpler and more

efficient model (conditionally independent). For the purposes

26 28 30 32 34 36 38

Control Run

time

F
o

rw
a

rd
 V

e
lo

c
it
y

command

measured

26 28 30 32 34 36 38
time

P
(S

t=
s

i|O
)

stop accel constant decel MI

Fig. 4: Sample of data gathered from a normal (control) run

of the CoBot navigating in its environment. The top figure

shows the velocity command and the measured velocity

(meters per second) over time (seconds)), while the bottom

stacked probability figure shows the respective assigned

probabilities P (St = si|O) (each between 0 and 1) for each

state given the sequence of observations.

of this paper, the simpler model provided satisfactory results

(see Section IV), and therefore the it was preferred over the

more complex one. Rewriting the observation attributes as

(o1 ≡ ut − vt, o2 ≡ at, o3 ≡ jt, o4 ≡ ut) for brevity, the

emission probabilities can then be written as:

bi(o1, o2, o3, o4) = P (o1, o2, o3, o4|St = si)

=

4
∏

j=1

P (oj |St = si)

=





3
∏

j=1

f(oj ;µi,j , σ
2
i,j)



Pi(o4), (3)

where the individual probabilities are defined as:

f(oj ;µi,j , σ
2
i,j) =

1

σi,j

√
2π

e
−

(oj−µi,j)
2

2σ2
i,j (4)

Pi(o4) =







δ0,o4 if i = 1
1 if i = 2, 4, 5

1− δ0,o4 if i = 3
(5)

Equation 4 simply describes a Gaussian probability distri-

bution whose parameters were obtained from training labeled

data, while Equation 5 describes the probability of observing

a certain velocity command ut = o4 depending on the current

state: in state stop, o4 = 0 always; in state constant, o4 6= 0,

and in any other state o4 could be anything.

Having defined all S,Π, A,O,B, the HMM-based MI de-

tector is fully defined. Now, given any sequence of observa-

0 1 2 3 4

Collision from Stop

time

F
o

rw
a

rd
 V

e
lo

c
it
y

command

measured

0 1 2 3 4
time

P
(S

t=
s

i|O
)

stop accel constant decel MI

(a)

4 5 6 7 8

Hold from Accel

time

F
o

rw
a

rd
 V

e
lo

c
it
y

command

measured

4 5 6 7 8
time

P
(S

t=
s

i|O
)

stop accel constant decel MI

(b)

0 2 4 6 8

Stuck from Constant

time

F
o

rw
a

rd
 V

e
lo

c
it
y

command

measured

0 2 4 6 8
time

P
(S

t=
s

i|O
)

stop accel constant decel MI

(c)

Fig. 5: Examples of data gathered from MI runs. As in Figure 4, top figures show velocities while bottom figures show

probabilities for each state, as predicted by the monitor. Figures show (a) a collision against a partially detectable obstacle

right as the robot starts to move, (b) somebody holding the robot as it is accelerating, and (c) something interfering with a

wheel’s rotation when the robot is traveling at constant speed. Vertical dotted lines indicate the beginning of an MI event,

while rise in P (St = smi|O) above 0.5 indicates detection of the event.

tions, the probability of being in state MI at each time can be

calculated using an algorithm such as the forward algorithm

described in [13]. Then, if P (St = smi|O) > thresh (for

this paper, thresh = 0.5), an MI event has been detected at

time t. Changing the value of thresh varies the sensitivity of

the detector, but for this paper it was kept fixed, as parameter

pmi already served this purpose.

IV. DETECTOR PERFORMANCE RESULTS

A. Methods

To gather the necessary data for training and testing of

the detector, two long control runs (no MI events) and 29

short test runs (with MI events) were conducted on the CoBot

robot. For each run, the robot was instructed to autonomously

move from its current location to a different location in

the building; the driving commands, encoder-based velocity

and times of MI events (perceived by a human observer)

were then recorded. The control runs, during which a human

supervisor made sure no MI events happened, lasted about

3 minutes each, and gave a total of 7145 observations. A

subset of the data gathered during a control run is shown in

Figure 4. The test runs were each much shorter, focusing on

the MI event, and giving a total of 8101 observations. Of the

test runs, 15 contained collision events, 6 contained hold

events, and 8 contained stuck events. Figure 5 shows the

data gathered from three of these experiments.

To train and test the detector, each observation was man-

ually labeled as stop, accel, constant, decel or MI. Since

MI times were previously recorded, each observation during

those periods was labeled as MI. When the robot travels

at constant speed, the standard deviation of the encoder-

measured velocity is about σ = 0.028m/s. From this, each

observation where the velocity command ut was 0 and the

measured velocity vt was within σ of 0 was labeled as stop.

Similarly, each observation where |vt − ut| ≤ σ, ut 6= 0
was labeled as constant. To label accel (or decel), every

observation after an increase (or decrease) of ut, and while

|vt − ut| > σ was labeled as accel (or decel, respectively).

Other observations (i.e., noisy observations where |vt−ut| >
σ but ut had been constant) were labeled as constant.

The detector’s performance was then tested using leave-

one-out cross-validation: for a given parameter set, 31 tests

were conducted (one for each labeled run of the robot). For

test i, all runs except for run i were used for training the

detector (i.e., finding transition and emission probabilities),

which was then tested on run i. A true positive detection

happened when at least one frame within a MI-labeled

interval was classified as MI. A false positive detection was

defined as each group of consecutive frames outside of the

MI-labeled intervals that were classified as MI, given that

such group was not a continuation of a true positive detection

(the probability of being in state MI could take a few frames

to decay after an MI event; this was not considered a false

positive). A false negative was defined as each MI-labeled

time interval where no MI event was detected.

B. Results

The goal of the detector presented in Section III is to

detect MI events reliably and within a useful time from initial

interference. The proposed measures for judging the model

are therefore precision (the fraction of detected MI events

that were true MI events) and recall (the fraction of true MI

events detected) rates of detection, as well as the average and

median time to detection from when interference starts.

The only parameter of the model, transition probability

pmi, was varied to find the trade-off between precision and

0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

Fig. 6: Trade-off between precision and recall rates for

motion interference detection, as parameter pmi is varied.

recall rates. For each tested parameter value, a full test –i.e., a

set of 31 cross-validation tests as described in Section IV-A–

was conducted, with the results of Figure 6. For the purposes

of the CoBot project, optimization for high precision was

prioritized, given that the project focuses on giving a high

degree of autonomy to the robot, and stopping execution for

false positive detections would hinder this autonomy.

An optimal parameter value for our purposes was pmi =
5×10−8, since it had the highest recall rate for which 0 false

positives were detected. For this value, the precision rate was

100% while the recall rate was 93.1%; the average time to

detection from initial motion interference was t̄ = 0.647
seconds. The median time to detection was significantly

lower than this, at tm = 0.36 seconds, reflecting the fact

that a few outlier detections took significantly longer than

the average detection time. These outliers were mostly MI

events that started from the stop state (e.g., Figure 5a); this

can be explained by the fact that the wheel’s accelerations

looked normal in the beginning, even if they were mostly

slipping while spinning, before their behavior was abnormal

enough to be detected as an MI event. This suggests that

perhaps adding an estimate of velocity from a different

sensor as an observation could help diminish the average

time of detection. Overall, however, the detection time was

usually well under a second, which is a useful time-frame for

many applications, such as stopping when being held from a

dangerous situation, or reacting to an inescapable collision.

V. CONCLUSION

We presented an HMM-based model for Motion Inter-

ference (MI) detection for a mobile robot. We identified

the sensory observables of the robot and three types of

motion interference. Through experiments conducted on the

CoBot service robot, we have shown that such a model can

successfully detect events that are not directly perceivable

by the robot. Our work in general contributes an approach

in which robots can reason about specific events by looking

at their internal and external sensed state with input from

their commanded controls. While this work focuses on the

detection of MI events rather than actions to recover from

them, we considered a base stop command to the robot

when the event is detected, and will pursue research on other

possible actions.

The MI events we considered limit the forward velocity of

the robot, but other types of MI events could be detected

using a similar approach (e.g., pushing the robot so that

its measured velocity is above its velocity command). It is

in principle feasible to detect anomalies in the behavior of

the robot even if these anomalies have not been explicitly

modeled: the formulation of HMMs allows us not only to

calculate the probability of being in a particular state given a

series of observations, but also the probability that a model

describes the observable of a robot given a particular series

of observations [13]; one could thus expect that a robot that

has fallen in an unmodeled state would yield a significantly

different model probability distribution than a robot running

normally (i.e., within the model). In this way, HMM-based

models for execution monitoring could provide a natural

model for implementation of hybrid model-based and model-

free monitoring. Finding whether this is a practical method

to detect anomalies in our robots is a topic of future research.

VI. ACKNOWLEDGMENTS

This work was partially supported by the National Science

Foundation award number NSF IIS-1012733 and the AFOSR

grant number FA2386-10-14138. The views and conclusions

contained in this document are those of the authors only.

REFERENCES

[1] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics

and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005.
[2] J. Fernandez and R. Simmons, “Robust execution monitoring for

navigation plans,” in Proceedings of IEEE Int. Conf. on Intelligent

Robots and Systems, 1998.
[3] A. Bouguerra, L. Karlsson, and A. Saffiotti, “Monitoring the execution

of robot plans using semantic knowledge,” Robotics and Autonomous

Systems, vol. 56, no. 11, pp. 942–954, 2008.
[4] H. Liu and G. M. Coghill, “A model-based approach to robot fault

diagnosis,” Knowledge-Based Systems, vol. 18, no. 4-5, pp. 225–233,
2005.

[5] O. Pettersson, L. Karlsson, and A. Saffiotti, “Model-free execution
monitoring in behavior-based robotics,” IEEE Trans. on Systems, Man

and Cybernetics, Part B, vol. 37, no. 4, pp. 890–901, 2007.
[6] S. Scheding, E. Nebot, and H. Durrant-Whyte, “The detection of faults

in navigation systems: A frequency domain approach,” in Proceedings

of the Int. Conf. on Robotics and Automation, 1998, pp. 2217–2222.
[7] E. M. Nebot, H. F. Durrant-Whyte, and S. Scheding, “Frequency

domain modeling of aided GPS for vehicle navigation systems,”
Robotics and Autonomous Systems, vol. 25, no. 1-2, pp. 73–82, 1998.

[8] R. Washington, “On-board real-time state and fault identification for
rovers,” in Proceedings of the IEEE Int. Conf. on Robotics and

Automation (ICRA). IEEE, 2000, pp. 1175–1181.
[9] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Particle filters

for rover fault diagnosis,” in IEEE Robotics & Automation Magazine

special issue on human centered robotics and dependability, 2004.
[10] D. Govindaraju and M. Veloso, “Learning and recognizing activities in

streams of video,” in Proceedings of the AAAI Workshop on Learning

in Computer Vision, 2005.
[11] K. Han and M. Veloso, “Automated robot behavior recognition,”

in Proceedings of IJCAI Workshop on Team Behaviors and Plan

Recognition, 1999.
[12] M. Veloso et al., “Symbiotic-autonomous service robots for user-

requested tasks in a multi-floor building,” 2012.
[13] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

