
Heuristic Search Value Iteration for POMDPs

Trey Smith and Reid Simmons
Robotics Institute, Carnegie Mellon University

{trey,reids}@ri.cmu.edu

Abstract

We present a novel POMDP planning algorithm
called heuristic search value iteration (HSVI).
HSVI is an anytime algorithm that returns a
policy and a provable bound on its regret with
respect to the optimal policy. HSVI gets
its power by combining two well-known tech-
niques: attention-focusing search heuristics and
piecewise linear convex representations of the
value function. HSVI’s soundness and con-
vergence have been proven. On some bench-
mark problems from the literature, HSVI dis-
plays speedups of greater than 100 with respect
to other state-of-the-art POMDP value iteration
algorithms. We also apply HSVI to a new rover
exploration problem 10 times larger than most
POMDP problems in the literature.

1 INTRODUCTION

Partially observable Markov decision processes (POMDPs)
constitute a powerful probabilistic model for planning
problems that include hidden state and uncertainty in action
effects. There are a wide variety of solution approaches. To
date, problems of a few hundred states are at the limits of
tractability.

The present work gathers a number of threads in the
POMDP literature. Our HSVI algorithm draws on prior
approaches that combine heuristic search and value itera-
tion [Washington, 1997, Geffner and Bonet, 1998], and a
multitude of algorithms that employ a piecewise linear
convex value function representation and gradient backups
[Cassandra et al., 1997, Pineau et al., 2003]. It keeps com-
pact representations of both upper and lower bounds on the
value function [Hauskrecht, 1997]. Making use of these
bounds, HSVI incorporates a novelexcess uncertaintyob-
servation heuristic that empirically outperforms the usual
sampling, and allows us to derive a theoretical bound on
time complexity.

By employing all of these techniques, HSVI gains a num-
ber of benefits. Its use of heuristic search forward from
an initial belief (aided by the new observation heuristic)
avoids unreachable or otherwise irrelevant parts of the be-
lief space. Its representations for both bounds are compact
and well-suited to generalizing local updates: improving
the bounds at a specific belief also improves them at neigh-
boring beliefs.

Some weaknesses of HSVI are that it is relatively compli-
cated, and its upper bound updates are a source of major
overhead that only becomes worthwhile on the larger prob-
lems we studied.

This paper describes HSVI, discusses its soundness and
convergence, and compares its performance with other
state-of-the-art value iteration algorithms on four bench-
mark problems from the literature. On some of these prob-
lems, HSVI displays speedups of greater than 100. We
provide additional results on the newRockSamplerover ex-
ploration problem. Our largest instance ofRockSamplehas
12,545 states, 10 times larger than most problems in the
scalable POMDP literature.

2 POMDP INTRODUCTION

A POMDP models an agent acting under uncertainty. At
each time step, the agent selects an action that has some
stochastic result, then receives a noisy observation. The
sequence of events can be viewed as a tree structure (fig.
1). Nodes of the tree are points where the agent must make
a decision. We label each node with the beliefb that the
agent would have if it reached that node. The root node
is labeled with the initial belief,b0. Starting from nodeb,
selecting actiona, and receiving observationo, the agent
proceeds to a new beliefτ(b, a, o), corresponding to one of
the children ofb in the tree structure.

Formally, the POMDP is a tuple〈S,A,O, T, O,R, γ, b0〉,
whereS is the set of states,A the set of actions,O is the
set of observations,T is the stochastic transition function,
O is the stochastic observation function,R is the reward

520 SMITH & SIMMONS UAI 2004

o1 on

a1 naa2

o2

t=0

1t=

b0

Figure 1: POMDP tree structure.

function,γ < 1 is the discount factor, andb0 is the agent’s
belief about the initial state. Letst, at, andot denote, re-
spectively, the state, action, and observation at timet. Then
we define

b0(s) = Pr(s0 = s)
T (s, a, s′) = Pr(st+1 = s′ | st = s, at = a)
O(s, a, o) = Pr(ot = o | st+1 = s, at = a).

Let at = {a0, . . . , at} denote the history of actions up to
time t, and similarly defineot. At time t + 1, the agent
does not knowst+1, but does know the initial beliefb0, and
the historyat andot. The agent can act optimally on this
information by conditioning its policy on its current belief
at every step. The belief is recursively updated as follows:

bt+1 = τ(bt, at, ot),

If b′ = τ(b, a, o), then

b′(s′) = ηO(s′, a, o)
∑

s

T (s, a, s′)b(s),

whereη is a normalizing constant. The agent’s policyπ
specifies an actionπ(b) to follow given any current belief
b.

The (expected) long-term reward for a policyπ, starting
from a beliefb, is defined to be

Jπ(b) = E

[∞∑
t=0

γtR(st, at) | b, π

]
.

The optimal POMDP planning problem is to compute a
policy π∗ that optimizes long-term reward.

π∗ = argmax
π

Jπ(b0)

The usual goal for approximate POMDP planning is to
minimize theregretof the returned policyπ, defined to be

regret(π, b) = Jπ∗
(b)− Jπ(b)

In particular, we focus on minimizingregret(π, b0) for the
initial belief b0 specified as part of the problem.

3 HEURISTIC SEARCH VALUE
ITERATION

HSVI is an approximate POMDP solution algorithm that
combines techniques for heuristic search with piecewise
linear convex value function representations. HSVI stores
upper and lower bounds on the optimal value functionV ∗.
Its fundamental operation is to make a local update at a
specific belief, where the beliefs to update are chosen by
exploring forward in the search tree according to heuristics
that select actions and observations.

HSVI makes asynchronous (Gauss-Seidel) updates to the
value function bounds, and always bases its heuristics on
the most recent bounds when choosing which successor to
visit. It uses a depth-first exploration strategy. Beyond the
usual memory vs. time trade-off, this choice makes sense
because a breadth-first heuristic search typically employs a
priority queue, and propagating the effects of asynchronous
bounds updates to the priorities of queue elements would
create substantial extra overhead.

We refer to the lower and upper bound functions asV and
V̄ , respectively. We use the interval function̂V to refer to
them collectively, such that

V̂ (b) = [V (b), V̄ (b)]
width(V̂ (b)) = V̄ (b)− V (b)

HSVI is outlined in algs. 1 and 2. The following subsec-
tions describe aspects of the algorithm in more detail.

3.1 VALUE FUNCTION REPRESENTATION

Most value iteration algorithms focus on storing and up-
dating the lower bound. Thevector setrepresentation is
commonly used. The value at a pointb is the maximum
projection ofb onto a finite setΓV of vectorsα:

V (b) = max
α∈ΓV

(α · b).

For finite-horizon POMDPs, a finite vector set can repre-
sentV ∗ exactly [Sondik, 1971]. Even for the discounted
infinite-horizon formulation, a finite vector set can approx-
imateV ∗ arbitrarily closely. Equally important, when the
value function is a lower bound, it is easy to perform a local
update on the vector set by adding a new vector.

Unfortunately, if we represent the upper bound with a vec-
tor set, updating by adding a vector does not have the de-
sired effect of improving the bound in the neighborhood of
the local update. To accommodate the need for updates,
we use apoint setrepresentation for the upper bound. The
value at a pointb is the projection ofb onto the convex hull
formed by a finite setΥV̄ of belief/value points(bi, v̄i).
Updates are performed by adding a new point to the set.

The projection onto the convex hull is calculated with a
linear program (LP). This upper bound representation and

UAI 2004 SMITH & SIMMONS 521

Algorithm 1 π = HSVI(ε).

HSVI(ε) returns a policy π such that
regret(π, b0) ≤ ε.a

1. Initialize the boundŝV .
2. While width(V̂ (b0)) > ε, repeatedly invoke

explore(b0, ε, 0).
3. Having achieved the desired precision, return the

direct-control policyπ corresponding to the lower
bound.

aIn fact,π can be executed starting at any beliefb. In gen-
eral,regret(π, b) ≤ width(V̂ (b)), which is guaranteed to be
less thanε only atb0.

Algorithm 2 explore(b, ε, t).

explore recursively follows a single path
down the search tree until satisfying a termi-
nation condition based on the width of the
bounds interval. It then performs a series of
updates on its way back up to the initial belief.

1. If width(V̂ (b)) ≤ εγ−t, return.
2. Select an actiona∗ and observationo∗ according to

the forward exploration heuristics.
3. Callexplore(τ(b, a∗, o∗), ε, t + 1).
4. Locally update the boundŝV at beliefb.

LP technique was suggested in [Hauskrecht, 2000], but in
that work LP projection seems to have been rejected with-
out testing on time complexity grounds. Note that with the
high dimensionality of the belief space in our larger prob-
lems, LP projection is far more efficient than explicitly cal-
culating the convex hull: an explicit representation would
not even fit into available memory. We solve the LP using
the commercial ILOG CPLEX software package.

3.2 INITIALIZATION

HSVI requires initial bounds, which we would like to have
the following properties:

1. Validity: V 0 ≤ V ∗ ≤ V̄0.1

2. Uniform improvability: This property is explained in
the section on theoretical results.

3. Precision:The bounds should be fairly close toV ∗.
4. Efficiency:Initialization should take a negligible pro-

portion of the overall running time.

The following initialization procedure meets these require-
ments. We calculateV 0 using the blind policy method

1Throughout this paper, inequalities between functions are
universally quantified, i.e.,V ≤ V ′ meansV (b) ≤ V ′(b) for
all b.

[Hauskrecht, 1997]. Letπa be the policy of always select-
ing actiona. We can calculate a lower boundRa on the
long-term reward ofπa by assuming that we are always in
the worst state to choose actiona from.

Ra =
∞∑

t=0

γt min
s

R(s, a) =
mins R(s, a)

1− γ

We select the tightest of these bounds by maximizing.

R = max
a

Ra

Then the vector set for the initial lower boundV 0 contains
a single vectorα such that everyα(s) = R.

To initialize the upper bound, we assume full observability
and solve the MDP version of the problem [Astrom, 1965].
This provides upper bound values at the corners of the be-
lief simplex, which form the initial point set. We call the
resulting upper boundVMDP.

V*

V

V

b b

update

Figure 2: Locally updating atb.

3.3 LOCAL UPDATES

The Bellman update,H, is the fundamental operation of
value iteration. It is defined as follows:

QV (b, a) =
∑

s

R(s, a)b(s) +

γ
∑

o

Pr(o | b, a)V (τ(b, a, o))

HV (b) = max
a

QV (b, a)

QV (b, a) can be interpreted as the value of taking actiona
from beliefb.

Exact value iteration calculates this update exactly over the
entire belief space. HSVI, however, uses local update oper-
ators based onH. Because the lower and upper bound are
represented differently, we have distinct local update op-
eratorsLb andUb. Locally updatingat b means applying
both operators. To update the lower bound vector set, we
add a vector. To update the upper bound point set, we add
a point. The operators are defined as:

ΓLbV = ΓV ∪ backup(V , b)
ΥUbV̄ = ΥV̄ ∪ (b, HV̄ (b)),

where backup(V , b) is the usual gradient backup, de-
scribed in alg. 3.

522 SMITH & SIMMONS UAI 2004

Algorithm 3 β = backup(V , b).

Thebackup function can be viewed as a gen-
eralization of the Bellman update that makes
use of gradient information. The assignments
are universally quantified, e.g.,βa,o is com-
puted for everya, o.

1. βa,o ← argmaxα∈ΓV
(α · τ(b, a, o))

2. βa(s) ← R(s, a)+

γ
∑

o,s′ βa,o(s′)O(s′, a, o)T (s, a, s′)
3. β ← argmaxβa

(βa · b).

Fig. 2 represents the structure of the bounds representations
and the process of locally updating atb. In the left side of
the figure, the points and dotted lines representV̄ (upper
bound points and convex hull). Several solid lines represent
the vectors ofΓV . In the right side of the figure, we see the
result of updating both bounds atb, which involves adding
a new point toΥV̄ and a new vector toΓV , bringing both
bounds closer toV ∗.

HSVI periodically prunes dominated elements in both the
lower bound vector set and the upper bound point set. Prun-
ing occurs each time the size of the relevant set has in-
creased by 10% since the last pruning episode. This prun-
ing frequency was not carefully optimized, but there is not
much to be gained by tuning it, since we do note see sub-
stantial overhead either from keeping around up to 10% too
many elements or from the pruning operation itself. For the
lower bound, we prune only vectors that arepointwisedom-
inated (i.e., dominated by a single other vector). This type
of pruning does not eliminate all redundant vectors, but it
is simple and fast. For the upper bound, we prune all dom-
inated points, defined as(bi, v̄i) such thatHV̄ (bi) < v̄i.

3.4 FORWARD EXPLORATION HEURISTICS

This section discusses the heuristics that are used to decide
which child of the current node to visit as the algorithm
works its way forward from the initial belief. Starting from
parent nodeb, HSVI must choose an actiona∗ and an ob-
servationo∗: the child node to visit isτ(b, a∗, o∗).

Define theuncertaintyatb to mean the width of the bounds
interval. Recalling that the regret of a policy returned by
HSVI is bounded by the uncertainty at the root nodeb0, our
goal in designing the heuristics is to ensure that updates at
the chosen child tend to reduce the uncertainty at the root.

First we consider the choice of action. Define the interval
functionQ̂ as follows:

Q̂(b, a) = [QV (b, a), QV̄ (b, a)]

Fig. 3 shows the relationship between the boundsQ̂(b, a)
on each potential action and the boundsHV̂ (b) at b after a

Q(b,a3)Q(b,a2)Q(b,a1) V(b)H

Figure 3: Relationship between̂Q(b, ai) andHV̂ (b).

Bellman update. We see that theHV̂ (b) interval is deter-
mined by only two of theQ̂(b, a) intervals: the ones with
the maximal upper and lower bounds. This relationship im-
mediately suggests that, among theQ̂ intervals, we should
choose to update one of these two most promising actions.
But which one? It turns out we can guarantee convergence
only by choosing the action with the greatestupperbound.

a∗ = argmax
a

QV̄ (b, a).

This is sometimes called the IE-MAX heuristic
[Kaelbling, 1993]. It works because, if we repeatedly
choose ana∗ that is sub-optimal, we will eventually
discover its sub-optimality when thea∗ upper bound drops
below the upper bound of another action. However, if we
were to choosea∗ according to the highest lower bound,
we might never discover its sub-optimality, because further
work could only cause its lower bound to rise.

Next we need to select an observationo∗. Consider the re-
lationship between̂Q(b, a∗) and the bounds at the various
child nodesτ(b, a∗, o) that correspond to different obser-
vations. From the Bellman equation, we have

width(Q̂(b, a∗))=γ
∑

o

Pr(o|b, a∗)width(V̂ (τ(b, a∗, o))).

Note that this explains the termination criterion ofexplore,
width(V̂ (b)) ≤ εγ−t. Because the uncertainty at a nodeb
after an update is at mostγ times a weighted average of its
child nodes, we have successively looser requirements on
uncertainty at deeper nodes: we rely on theγ factor at each
layer on the way back up to make up the difference. Given
these facts, we can defineexcess uncertainty

excess(b, t) = width(V̂ (b))− εγ−t

such that a node with negative excess uncertainty satisfies
the explore termination condition. We say such a node is
finished. Conveniently, the excess uncertainty atb is at
most a probability-weighted sum of the excess uncertain-
ties at its children

excess(b, t)≤
∑

o

Pr(o|b, a∗)excess(τ(b, a∗, o), t + 1).

Thus we can focus on ensuring early termination by select-
ing the deptht + 1 child that most contributes to excess
uncertainty atb:

o∗ = argmax
o

[
Pr(o|b, a∗)excess(τ(b, a∗, o), t + 1)

]
.

UAI 2004 SMITH & SIMMONS 523

Algorithm 4 π = AnytimeHSVI().

AnytimeHSVI() is an anytime variant of
HSVI. When interrupted, it returns a policy
whose regret is bounded by the current value
of width(V̂ (b0)).

Implementation: AsHSVI, but in step (2), in the call to
explore(b0, ε, 0), replaceε with ζ width(V̂ (b0)), where
ζ < 1 is a scalar parameter. Empirically, performance is
not very sensitive toζ; we usedζ = 0.95 in the experi-
ments, which gives good performance.

Past heuristic search approaches have usually either sam-
pled fromPr(o|b, a∗) or maximized weighted uncertainty
rather than weightedexcessuncertainty. We find the ex-
cess uncertainty heuristic to be empirically superior. In ad-
dition, this heuristic allows us to derive a time bound on
HSVI convergence.

3.5 ANYTIME USAGE

The definition ofHSVI(ε) given above assumes that we
know in advance that we want a policy with regret bounded
by ε. In practice, however, we often do not know what
a reasonableε is for a given problem—we just want the
algorithm to do the best it can in the available time. In
support of this goal, we define a variant algorithm called
AnytimeHSVI (alg. 4). WhereHSVI uses a fixedε,
AnytimeHSVI adjustsε at each top-level call toexplore,
setting it to be slightly smaller than the current uncertainty
at b0. Instead of having a fixed finish line, we have a finish
line that is always just ahead, receding as we approach.

AnytimeHSVI is used for all of the experiments in this pa-
per. However, our theoretical analysis focuses onHSVI(ε),
which is easier to handle mathematically.

4 THEORETICAL RESULTS

This section discusses some of the key soundness and con-
vergence properties ofHSVI(ε). The actual proofs are pre-
sented in [Smith and Simmons, 2004].

• The initial lower and upper bound value functions
are uniformly improvable, meaning that applyingH
brings them everywhere closer toV ∗.
• If V is uniformly improvable, then the correspond-

ing direct control policyPV supportsV , meaning that
V ≤ JPV .2

• If V̄ is uniformly improvable, then it is valid, in the
sense thatV ∗ ≤ V̄ .

2Direct and lookahead control policies corresponding to a
value function are discussed in, e.g., [Hauskrecht, 2000].

Exit

Figure 4:RockSample[7, 8].

• Our local update operators preserve uniform improv-
ability. Thus, throughout the execution ofHSVI, the
current best policyPV supportsV , andV̄ is valid.
• Together, these facts imply that HSVI has valid

bounds on the direct control policy, in the sense that
V ≤ JπV ≤ V̄ . This validity holds throughout exe-
cution and everywhere in the belief space.
• Theregret(π, b0) of the policyπ returned byHSVI(ε)

is at mostε. WhenAnytimeHSVI is interrupted, the
regret(π, b0) of the current best policyπ is at most
width(V̂ (b0)).
• There is a finite depth

tmax = dlogγ(ε/
∣∣∣∣V̄0 − V 0

∣∣∣∣
∞)e

such that all nodes with deptht ≥ tmax are finished.
• The uncertainty at a node never increases (thus fin-

ished nodes never become unfinished).
• After each top-level call to explore, at least one pre-

viously unfinished node is finished. This property de-
pends on our particular choice of heuristics.
• As a result,HSVI(ε) is guaranteed to terminate after

performing at mostumax updates, where

umax = tmax
(|A||O|)tmax+1 − 1
|A||O| − 1

.

(Note this is a conservative theoretical bound; empiri-
cally, it is much faster.)

5 THE ROCKSAMPLEPROBLEM

To test HSVI, we have developedRockSample, a scalable
problem that models rover science exploration (fig. 4). The
rover can achieve reward by sampling rocks in the imme-
diate area, and by continuing its traverse (reaching the exit
at the right side of the map). The positions of the rover
and the rocks are known, but only some of the rocks have
scientific value; we will call these rocks “good”. Sampling
a rock is expensive, so the rover is equipped with a noisy
long-range sensor that it can use to help determine whether
a rock is good before choosing whether to approach and
sample it.

An instance ofRockSamplewith map sizen × n and
k rocks is described asRockSample[n, k]. The POMDP
model of RockSample[n, k] is as follows. The state

524 SMITH & SIMMONS UAI 2004

space is the cross product ofk + 1 features: Posi-
tion = {(1, 1), (1, 2), . . . , (n, n)}, and k binary features
RockTypei = {Good, Bad} that indicate which of the rocks
are good. There is an additional terminal state, reached
when the rover moves off the right-hand edge of the map.
The rover can select fromk + 5 actions: {North, South,
East, West, Sample, Check1, . . ., Checkk}. The first four
are deterministic single-step motion actions. TheSample
action samples the rock at the rover’s current location. If
the rock is good, the rover receives a reward of 10 and
the rock becomes bad (indicating that nothing more can
be gained by sampling it). If the rock is bad, it receives
a penalty of−10. Moving into the exit area yields reward
10. All other moves have no cost or reward.

EachChecki action applies the rover’s long-range sensor
to rocki, returning a noisy observation from{Good, Bad}.
The noise in the long-range sensor reading is determined by
the efficiencyη, which decreases exponentially as a func-
tion of Euclidean distance from the target. Atη = 1, the
sensor always returns the correct value. Atη = 0, it has
a 50/50 chance of returningGoodor Bad. At intermediate
values, these behaviors are combined linearly. The initial
belief is that every rock has equal probability of beingGood
or Bad.

6 EXPERIMENTAL RESULTS

We tested HSVI on several well-known problems from the
scalable POMDP literature, as well as instances ofRock-
Sample. Our benchmark set follows [Pineau et al., 2003],
which provides performance numbers for PBVI and some
other value iteration algorithms. Note that all of the prob-
lems haveγ = 0.95.

Experiments were conducted as follows. Periodically dur-
ing each run, we interrupted HSVI and simulated its current
best policyπ, providing an estimate of the solution qual-
ity, Jπ(b0). The reported quality is the average reward re-
ceived over many simulation runs (100-1000). Replicating
earlier experiments, each simulation was terminated after
251 steps.

For each problem, results are reported over a single run of
the algorithm. In a few cases we made multiple runs, but
since HSVI is not stochastic, successive runs are identical
up to minuscule changes arising from varying background
load on the platform we used, a Pentium-III running at 850
MHz, with 256 MB of RAM.

Fig. 5 shows HSVI solution quality vs. time for four prob-
lems. In these plots, we also track the boundsV (b0) and
V̄ (b0). Recall that at every phase of the algorithm, we are
guaranteed thatV (b0) ≤ Jπ(b0) ≤ V̄ (b0). Fig. 5 should
reflect this, at least up to the error in our estimate ofJπ(b0)
(errorbars are 95% confidence intervals).ThreeStateis a
trivial problem we generated, an example of HSVI running

ThreeState (3s 4a 3o) Tag (870s 5a 30o)

100 101

18

20

22

24

26

wallclock time (seconds)

so
lu

tio
n

qu
al

ity

bounds
simulation

102 103 104−20

−15

−10

−5

0

wallclock time (seconds)

so
lu

tio
n

qu
al

ity

bounds
simulation

RockSample[5,7] (3201s 12a 2o)) RockSample[7,8] (12545s 13a 2o)

102 103 1040

5

10

15

20

25

30

wallclock time (seconds)

so
lu

tio
n

qu
al

ity

bounds
simulation

103 1040

5

10

15

20

25

wallclock time (seconds)

so
lu

tio
n

qu
al

ity

bounds
simulation

Figure 5: Solution quality vs. time.

to convergence. On the larger problems, the bounds have
not converged by the end of the run.

Fig. 6 shows running times and final solution quality for
HSVI and some other state-of-the-art algorithms. Unfor-
tunately, not all competitive algorithms could be included
in the comparison, because there is no widely accepted
POMDP benchmark that we could use. Results for algo-
rithms other than HSVI were computed on different plat-
forms; running times are only very roughly comparable.
Among the algorithms compared, HSVI’s final solution
quality is in every case within measurement error of the
best reported so far, and in one case (theTag problem) is
significantly better.

Problem (num. states/actions/observations) Goal% Reward Time (s)|Γ|
Tiger-Grid (36s 5a 17o)
QMDP [Pineau et al., 2003] n.a. 0.198 0.19 n.a.
Grid [Brafman, 1997] n.a. 0.94 n.v. 174
PBUA [Poon, 2001] n.a. 2.30 12116 660
PBVI [Pineau et al., 2003] n.a. 2.25 3448 470
HSVI n.a. 2.35 10341 4860
Hallway (61s 5a 21o)
QMDP [Littman et al., 1995] 47.4 n.v. n.v. n.a.
PBUA [Poon, 2001] 100 0.53 450 300
PBVI [Pineau et al., 2003] 96 0.53 288 86
HSVI 100 0.52 10836 1341
Hallway2 (93s 5a 17o)
QMDP [Littman et al., 1995] 25.9 n.v. n.v. n.a.
Grid [Brafman, 1997] 98 n.v. n.v. 337
PBUA [Poon, 2001] 100 0.35 27898 1840
PBVI [Pineau et al., 2003] 98 0.34 360 95
HSVI 100 0.35 10010 1571
Tag (870s 5a 30o)
QMDP [Pineau et al., 2003] 17 -16.769 13.55 n.a.
PBVI [Pineau et al., 2003] 59 -9.180 180880 1334
HSVI 100 -6.37 10113 1657
RockSample[4,4](257s 9a 2o)
PBVI [Pineau, personal communication] n.a. 17.1 ∼2000 n.v.
HSVI n.a. 18.0 577 458
RockSample[5,5](801s 10a 2o)
HSVI n.a. 19.0 10208 699
RockSample[5,7](3201s 12a 2o)
HSVI n.a. 23.1 10263 287
RockSample[7,8](12545s 13a 2o)
HSVI n.a. 15.1 10266 94

n.a. = not applicable n.v. = not available

Figure 6: Multi-algorithm performance comparison.

UAI 2004 SMITH & SIMMONS 525

Time
Problem (num. states/actions/observations) vc PBVI HSVI Speedup
Tiger-Grid (36 s 5a 17o) 2.25 3448 1053 3.3
Hallway (61s 5a 21o) 0.52 100-200 163 ∼1
Hallway2 (93s 5a 17o) 0.34 360 181 2.0
Tag (870s 5a 30o) -9.18 180880 39 4600
RockSample[4,4](256s 9a 2o) 17.1 ∼2000 23 ∼87

Figure 7: Performance comparison, HSVI and PBVI.

Fig. 6, which shows only a single time/quality data
point for each problem, does not provide enough data
for speed comparisons. Therefore we decided to make a
closer comparison with one algorithm. PBVI was chosen
both because it is a competitive algorithm, and because
[Pineau et al., 2003] presents detailed solution quality vs.
time curves for our benchmark problems.

In order to control for differing lengths of runs, we report
the time that each algorithm took to reach a common value
vc, defined to be the highest value thatbothalgorithms were
able to reach at some point during their run. There is uncer-
tainty associated with some of the times for PBVI because
they were derived from manual reading of published plots;
this uncertainty is noted in our comparison table. PBVI and
HSVI appear to have been run on comparable platforms.3

Fig. 7 compares PBVI and HSVI performance. The two
algorithms show similar performance on smaller problems.
As the problems scale up, however, HSVI provides dra-
matic speedup. A brief explanation of why this might be
the case: Recall that the policy returned by HSVI is based
solely on the lower bound. The upper bound is used only
to guide forward exploration. But upper bound updates,
which involve the solution of several linear programs, of-
ten take longer than lower bound updates. Since PBVI
keeps only a lower bound, its updates proceed much more
quickly. HSVI can only have competitive performance to
the extent that the intelligence of its heuristics outweighs
the speed penalty of updating the upper bound. Apparently,
the heuristics become relatively more important as problem
size increases.

7 RELATED WORK

Because HSVI combines several existing solution tech-
niques, it can be compared to a wide range of related work.
Figure 8, although far from exhaustive, lists many relevant
algorithms and some of the features they share with HSVI.

[Hauskrecht, 1997], perhaps the closest prior work, de-
scribes separate algorithms for incrementally calculating
the upper bound (ICUB) and lower bound (ICLB). The
ICUB upper bound is similar to that of HSVI in that it is
initialized with the value function for the underlying MDP
(VMDP), improved with asynchronous backups, and used as

3PBVI performance onRockSample[4, 4] and a rough perfor-
mance estimate for the computer used in PBVI experiments were
provided courtesy of J. Pineau (personal communication).

HSVI Y Y Y Y Y Y Y
ICUB/ICUL [Hauskrecht, 1997] Y Y - Y - Y Y
BI-POMDP [Washington, 1997] Y Y Y Y Y - Y
RTDP-BEL [Geffner and Bonet, 1998] Y Y Y Y - - -
[Brafman, 1997] Y Y - Y Y Y -
[Dearden and Boutilier, 1994] - Y Y Y - - Y
LAO* [Hansen and Zilberstein, 2001] - Y Y Y - - Y
PBVI [Pineau et al., 2003] Y - Y - - Y -
PBDP [Zhang and Zhang, 2001] Y - - - - Y -
Incremental pruning [Cassandra et al., 1997] Y - - - - Y -

Applied to POM
DPs

Asynchronous updates

 Examines only reachable states/beliefs

Uses action heuristic

Uses observation/outcome heuristic

Leverages value function convexity

Keeps upper and lower bounds

Figure 8: Relevant algorithms and features.

an action heuristic. Unlike HSVI, ICUB uses a grid-based
representation, and explores forward from belief space crit-
ical points rather than a specified initial belief. The ICUL
lower bound uses the same vector set representation as
HSVI and adds the result of each gradient backup in the
same way. But because ICUB and ICUL are separate algo-
rithms, ICUL’s forward exploration does not select actions
based on the upper bound, and neither algorithm makes use
of an uncertainty-based observation heuristic.

Other related work mostly falls into two camps.
The first are algorithms that combine heuristic search
with dynamic programming updates. RTDP-BEL
[Geffner and Bonet, 1998], a POMDP extension of the
well-known RTDP value iteration technique for MDPs
[Barto et al., 1995], turns out to be very similar to ICUB.
BI-POMDP [Washington, 1997] uses forward exploration
based on AO∗ with VMDP as its heuristic. BI-POMDP
keeps upper and lower bounds on nodes in the search tree—
however, it does not explicitly represent the bounds as
functions, so it is unable to generalize the value at a be-
lief to neighboring beliefs. Some other algorithms in this
group are [Dearden and Boutilier, 1994, Brafman, 1997,
Hansen and Zilberstein, 2001].

The second camp includes algorithms that employ a piece-
wise linear convex value function representation and gra-
dient backups. There are a host of algorithms along
these lines, dating back to [Sondik, 1971]. Most dif-
fer from HSVI in that they perform gradient backups
over the full belief space instead of focusing on rele-
vant beliefs. One exception is PBVI [Pineau et al., 2003],
which performs synchronous gradient backups on a grow-
ing subset of the belief space, designed such that it ex-
amines only reachable beliefs. Unlike HSVI, PBVI does
not keep an upper bound and does not use a value-
based action heuristic when expanding its belief set.
Other algorithms in this group include incremental prun-
ing [Cassandra et al., 1997] and point-based dynamic pro-
gramming [Zhang and Zhang, 2001].

HSVI avoids examining unreachable beliefs using forward

526 SMITH & SIMMONS UAI 2004

exploration. [Boutilier et al., 1998] describe how to pre-
compute reachability in order to eliminate states in an MDP
context. In a POMDP context their technique would go be-
yond HSVI by explicitly reducing the dimensionality of the
belief space, but the remaining space might still include un-
reachable beliefs never visited by HSVI.

Finally, there are many competitive POMDP solution ap-
proaches that do not employ heuristic search or a PWLC
value function representation: too many to discuss here.
We refer the reader to a survey [Aberdeen, 2002]. Hope-
fully, increased adoption of common benchmarks in the
POMDP community will allow us to better compare HSVI
with other algorithms in the future.

8 CONCLUSION

This paper presents HSVI, a POMDP solution algorithm
that uses heuristics, based on upper and lower bounds of
the optimal value function, to guide local updates.

Experimentally, HSVI is able to find solutions with quality
within measurement error of the best previous report on all
of the benchmark problems we tried, and it did significantly
better on theTag problem. In time comparisons with the
state-of-the-art PBVI algorithm, HSVI showed dramatic
speedups on larger problems. We applied HSVI to an in-
stance of the newRockSampledomain with 12,545 states,
more than 10 times larger than most problems presented in
the scalable POMDP literature.

There are several ways that we would like to extend HSVI.
First, it should be possible to speed up lower bound updates
through the following observation: most beliefs are sparse,
and mostα vectors are optimal for only a few closely re-
lated beliefs. Therefore, only a few elements of any given
α vector are relevant, and we can save effort if we avoid
computing the rest. Second, we are working on reducing
the number of LP calculations needed for the upper-bound
by pruning some actions early, and by reusing old LP solu-
tions. Finally, we could leverage better data structures such
as ADDs for representing beliefs,α vectors, and other ob-
jects used by the algorithm [Hoey et al., 1999].

In summary, this is an exciting time: recent progress in
solution performance suggests that the POMDP planning
model will soon be a feasible choice for robot decision-
making on a much wider range of real problems.

References

[Aberdeen, 2002] Aberdeen, D. (2002). A survey of approximate
methods for solving partially observable Markov decision pro-
cesses. Technical report, Research School of Information Sci-
ence and Engineering, Australia National University.

[Astrom, 1965] Astrom, K. J. (1965). Optimal control of Markov
decision processes with incomplete state estimation.Journal
of Mathematical Analysis and Applications, 10:174–205.

[Barto et al., 1995] Barto, A., Bradtke, S., and Singh, S. (1995).
Learning to act using real-time dynamic programming.Artifi-
cial Intelligence, 72(1-2):81–138.

[Boutilier et al., 1998] Boutilier, C., Brafman, R., and Geib, C.
(1998). Structured reachability analysis for Markov decision
processes. InProc. of UAI, pages 24–32.

[Brafman, 1997] Brafman, R. I. (1997). A heuristic variable grid
solution method for POMDPs. InProc. of AAAI.

[Cassandra et al., 1997] Cassandra, A., Littman, M., and Zhang,
N. (1997). Incremental pruning: A simple, fast, exact method
for partially observable Markov decision processes. InProc.
of UAI.

[Dearden and Boutilier, 1994] Dearden, R. and Boutilier, C.
(1994). Integrating planning and execution in stochastic do-
mains. InProc. of the AAAI Spring Symposium on Decision
Theoretic Planning, pages 55–61, Stanford, CA.

[Geffner and Bonet, 1998] Geffner, H. and Bonet, B. (1998).
Solving large POMDPs by real time dynamic programming.
In Working Notes Fall AAAI Symposium on POMDPs.

[Hansen and Zilberstein, 2001] Hansen, E. and Zilberstein, S.
(2001). LAO*: A heuristic search algorithm that finds solu-
tions with loops.Artificial Intelligence, 129:35–62.

[Hauskrecht, 1997] Hauskrecht, M. (1997). Incremental meth-
ods for computing bounds in partially observable Markov deci-
sion processes. InProc. of AAAI, pages 734–739, Providence,
RI.

[Hauskrecht, 2000] Hauskrecht, M. (2000). Value-function ap-
proximations for partially observable Markov decision pro-
cesses.Journal of Artificial Intelligence Research, 13:33–94.

[Hoey et al., 1999] Hoey, J., St-Aubin, R., Hu, A., and Boutilier,
C. (1999). SPUDD: Stochastic planning using decision dia-
grams. InProc. of UAI, pages 279–288.

[Kaelbling, 1993] Kaelbling, L. P. (1993).Learning in Embed-
ded Systems. The MIT Press.

[Pineau et al., 2003] Pineau, J., Gordon, G., and Thrun, S.
(2003). Point-based value iteration: An anytime algorithm for
POMDPs. InProc. of IJCAI.

[Poon, 2001] Poon, K.-M. (2001). A fast heuristic algorithm for
decision-theoretic planning. Master’s thesis, The Hong Kong
University of Science and Technology.

[Smith and Simmons, 2004] Smith, T. and Simmons, R. (2004).
Heuristic search value iteration for POMDPs: Detailed the-
ory and results. Technical report, Robotics Institute, Carnegie
Mellon University. (in preparation).

[Sondik, 1971] Sondik, E. J. (1971).The optimal control of par-
tially observable Markov processes. PhD thesis, Stanford Uni-
versity.

[Washington, 1997] Washington, R. (1997). BI-POMDP:
Bounded, incremental, partially-observable Markov-model
planning. InProc. of European Conf. on Planning (ECP),
Toulouse, France.

[Zhang and Zhang, 2001] Zhang, N. L. and Zhang, W. (2001).
Speeding up the convergence of value iteration in partially ob-
servable Markov decision processes.Journal of AI Research,
14:29–51.

UAI 2004 SMITH & SIMMONS 527

