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Abstract By employing all of these techniques, HSVI gains a num-
ber of benefits. Its use of heuristic search forward from
We present a novel POMDP p|anning a|gorithm an initial belief (alded by the new observation heuristiC)
called heuristic search value iteration (HSVI). avoids unreachable or otherwise irrelevant parts of the be-
HSVI is an anytime algorithm that returns a lief space. Its representations for both bounds are compact
policy and a provable bound on its regret with and well-suited to generalizing local updates: improving
respect to the optimal policy. HSVI gets the bounds at a specific belief also improves them at neigh-
its power by combining two well-known tech- boring beliefs.
niques: attention-focusing search heuristics and  gome weaknesses of HSVI are that it is relatively compli-
piecewise linear convex representations of the  c51ed, and its upper bound updates are a source of major
value function. HSVI's soundness and con- overhead that only becomes worthwhile on the larger prob-
vergence have been proven. On some be'nch- lems we studied.
mark problems from the literature, HSVI dis-
plays speedups of greater than 100 with respect ~ This paper describes HSVI, discusses its soundness and
to other state-of-the-art POMDP value iteration convergence, and compares its performance with other
algorithms. We also apply HSVI to a new rover state-of-the-art value iteration algorithms on four bench-
exploration problem 10 times larger than most mark problems from the literature. On some of these prob-
POMDP problems in the literature. lems, HSVI displays speedups of greater than 100. We
provide additional results on the né&ockSampleover ex-
ploration problem. Our largest instanceRdckSampléas
1 INTRODUCTION 12,545 states, 10 times larger than most problems in the

scalable POMDP literature.

Partially observable Markov decision processes (POMDPS)

constitute a powerful probabilistic model for planning

problems that include hidden state and uncertainty in actiod POMDP INTRODUCTION

effects. There are a wide variety of solution approaches. To

date, problems of a few hundred states are at the limits oA POMDP models an agent acting under uncertainty. At
tractability. each time step, the agent selects an action that has some

The present work gathers a number of threads in thestochastlc result, then receives a noisy observation. The

POMDP literature. Our HSVI algorithm draws on prior Sequence of events can be viewed as a tree structure (fig.

. N .. 1). Nodes of the tree are points where the agent must make
approaches that combine heuristic search and value iterg?’, "~ : :
. ) a decision. We label each node with the belighat the
tion [Washington, 1997, Geffner and Bonet, 1998], and a o
A : . . : agent would have if it reached that node. The root node
multitude of algorithms that employ a piecewise linear. . S . :
. . . is labeled with the initial beliefpy. Starting from nodé,

convex value function representation and gradient backups ; . L ?
Selecting actioru, and receiving observation the agent

[Cassandra et al., 1997, Pineau et al., 2003]. It keeps com- : .
: roceeds to a new belie{b, a, 0), corresponding to one of
pact representations of both upper and lower bounds on t £ e children ob in the tree structure

value function [Hauskrecht, 1997]. Making use of these

bounds, HSVI incorporates a now@tcess uncertaintgb-  Formally, the POMDP is a tupléS, A, O, T, O, R, ~, bo),
servation heuristic that empirically outperforms the usualwhereS is the set of states4 the set of actions) is the
sampling, and allows us to derive a theoretical bound orset of observationd] is the stochastic transition function,
time complexity. O is the stochastic observation functioR, is the reward
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3 HEURISTIC SEARCH VALUE
4 o G NG ITERATION

A e HSVI is an approximate POMDP solution algorithm that
& g\‘ combines techniques for heuristic search with piecewise
: linear convex value function representations. HSVI stores

' ' ' upper and lower bounds on the optimal value functitn

Its fundamental operation is to make a local update at a

specific belief, where the beliefs to update are chosen by

exploring forward in the search tree according to heuristics

function,y < 1 is the discount factor, anfg is the agent’s that select actions and observations.

belief about the initial state. Let, a;, ando; denote, re-

spectively, the state, action, and observation at tinfden

Figure 1: POMDP tree structure.

HSVI makes asynchronous (Gauss-Seidel) updates to the
value function bounds, and always bases its heuristics on

we define the most recent bounds when choosing which successor to
visit. It uses a depth-first exploration strategy. Beyond the
bo(s) = Pr(so=s) usual memory vs. time trade-off, this choice makes sense
T(s,a,s") = Pr(sy1=5"]s=sa =a) because a breadth-first heuristic search typically employs a
O(s,a,0) = Pr(oy=o0]s41=5,a = a). priority queue, and propagating the effects of asynchronous
bounds updates to the priorities of queue elements would
Leta’ = {ao,...,a;} denote the history of actions up to Create substantial extra overhead.

time ¢, and similarly defineo?. At time ¢ + 1, the agent
does not know, 1, but does know the initial beliéf,, and
the historya® ando’. The agent can act optimally on this
information by conditioning its policy on its current belief

We refer to the lower and upper bound functiond/aand
V, respectively. We use the interval functidhto refer to
them collectively, such that

at every step. The belief is recursively updated as follows: V(b)) = [V(b),V(b)]
width(V (b)) = V(b) — V(b)
bt+1 = T(bhahot)a . . . .
HSVI is outlined in algs. 1 and 2. The following subsec-
If o = 7(b, a,0), then tions describe aspects of the algorithm in more detail.

b (s') = nO(s', a, 0) ZT(s,ms’)b(s), 3.1 VALUE FUNCTION REPRESENTATION

Most value iteration algorithms focus on storing and up-
wheren is a normalizing constant. The agent's policy dating the lower bound. Theector setrepresentation is

specifies an action(b) to follow given any current belief commonly used. The value at a points the maximum
b, projection ofb onto a finite set’,, of vectorsa:

The (expected) long-term reward for a poligy starting V(b) = max(a-b).

from a beliefb, is defined to be o ) o
For finite-horizon POMDPs, a finite vector set can repre-

) sentV* exactly [Sondik, 1971]. Even for the discounted
Z Y R(s¢, at) | b, 77] . infinite-horizon formulation, a finite vector set can approx-
t=0 imate V* arbitrarily closely. Equally important, when the
value function is a lower bound, it is easy to perform a local
update on the vector set by adding a new vector.

JT(b) = E

The optimal POMDP planning problem is to compute a

policy 7* that optimizes long-term reward.
Unfortunately, if we represent the upper bound with a vec-

7* = argmax J™ (b) tor set, updating by adding a vector does not have the de-
™ sired effect of improving the bound in the neighborhood of
the local update. To accommodate the need for updates,
we use goint setrepresentation for the upper bound. The
value at a poinb is the projection ob onto the convex hull
formed by a finite sefl’;, of belief/value points(b;, v;).
Updates are performed by adding a new point to the set.

The usual goal for approximate POMDP planning is to
minimize theregretof the returned policyr, defined to be

regret(m,b) = J™ (b) — J™(b)

In particular, we focus on minimizingegret(m, by) forthe ~ The projection onto the convex hull is calculated with a
initial belief b, specified as part of the problem. linear program (LP). This upper bound representation and
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Algorithm 1 7 = HSVI(e). [Hauskrecht, 1997]. Let, be the policy of always select-
ing actiona. We can calculate a lower bourd@, on the
HSVI(e) returns a policy = such that long-term reward ofr, by assuming that we are always in
regret(m, by) < e.® the worst state to choose actiefirom.

oo

=

Initialize the bound$’. B . _ min, R(s, a)
2. While width(V (b)) > ¢, repeatedly invoke R, = 27 min R(s, a) = 11—~

explore(bo, €, 0). =0

3. Having achieved the desired precision, return the We select the tightest of these bounds by maximizing.

direct-control policyr corresponding to the lower
bound. R =max R,

%In fact, = can be executed starting at any belietn gen- Then the vector set for the initial lower boufg, contains

eral,regret(m, b) < width(V'(b)), which is guaranteed to be 4 single vector such that every(s) = R.
less thare only atbo. -

To initialize the upper bound, we assume full observability
and solve the MDP version of the problem [Astrom, 1965].
explore recursively follows a single path Thls 'prowdes upper bound v.allu.es at .the corners of the be-
down the search tree until satisfying a termi- lief simplex, which form the initial point set. We call the

nation condition based on the width of the resulting upper bountiypp .
bounds interval. It then performs a series of
updates on its way back up to the initial belief.

Algorithm 2 explore(b, €, t).

1. If width(V (b)) < ey, return.

2. Select an action™ and observation* according to
the forward exploration heuristics.

3. Callexplore(7(b,a*,0*),¢,t + 1).

4. Locally update the bounds at beliefb.

b
Figure 2: Locally updating &t

LP technique was suggested in [Hauskrecht, 2000], but ig-3 LOCAL UPDATES
that work LP projection seems to have been rejected with=|.
out testing on time complexity grounds. Note that with the
high dimensionality of the belief space in our larger prob-

he Bellman updatef, is the fundamental operation of
value iteration. It is defined as follows:

lems, LP projection is far more efficient than explicitly cal- QV(bya) = Z R(s,a)b(s) +

culating the convex hull: an explicit representation would s

not even fit into available memory. We solve the LP using VZPY(O 10, a)V (7(b, a,0))
the commercial ILOG CPLEX software package. -

HV() = maxQV(b,a
3.2 INITIALIZATION (®) a Q" (ba)
QV (b, a) can be interpreted as the value of taking action

HSVI requires initial bounds, which we would like to have :
from beliefb.

the following properties:
Exact value iteration calculates this update exactly over the

1. Validity: V, < V* < V.t entire belief space. HSVI, however, uses local update oper-

2. Uniform improvability: This property is explained in ~ators based off. Because the lower and upper bound are
the section on theoretical results. represented differently, we have distinct local update op-

3. Precision: The bounds should be fairly close ¥o'. eratorsL, andU,. Locally updatingat b means applying

4. Efficiency:Initialization should take a negligible pro- both operators. To update the lower bound vector set, we
portion of the overall running time. add a vector. To update the upper bound point set, we add

a point. The operators are defined as:

The following initialization procedure meets these require- r, — T, Ubackup(V,b)
ments. We calculatd’, using the blind policy method b - S
Ty,y = YTy U HV(D)),

Throughout this paper, inequalities between functions are . .
universally quantified, i.ey < V' meansV(b) < V'(b) for ~ Where backup(V,b) is the usual gradient backup, de-
all b. scribed in alg. 3.
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Algorithm 3 8 = backup(V, ). | | T
Thebackup function can be viewed as a gen- { I _________ T
eralization of the Bellman update that makes
use of gradient information. The assignments

are universally quantified, e.gs, , is com- ‘ ‘ ‘ ‘

uted for every, o. Qb)) Qbay) Ofbay) HO) .
P # Figure 3: Relationship betwee&p(b, a;) and HV (b).

o Bao < argmax,cr,(a-7(b,a,o0))
2. Bu(s) — R(s,a)+ Bellman update. We see that tlﬁéV(b) interval is deter-
mined by only two of the)(b, a) intervals: the ones with
the maximal upper and lower bounds. This relationship im-
mediately suggests that, among théntervals, we should
choose to update one of these two most promising actions.
Il?éJt which one? It turns out we can guarantee convergence
only by choosing the action with the greatapperbound.

Y ZO.S/ ﬁ%o(s/)o(s/a a, O)T(Sv a, 8/)
3. 8 argmaxﬂa (B - b).

Fig. 2 represents the structure of the bounds representatio
and the process of locally updatingtatin the left side of
the figure, the points and dotted lines represér{upper a* = argmax Q (b, a).
bound points and convex hull). Several solid lines represent a

the vectors o'y . In the right side of the figure, we see the This is sometimes called the IE-MAX heuristic
result of updating both bounds @twhich involves adding  [Kaelbling, 1993]. It works because, if we repeatedly
a new point toY'y; and a new vector td'y, bringing both  choose ana* that is sub-optimal, we will eventually
bounds closer t&"*. discover its sub-optimality when the& upper bound drops

HSVI periodically prunes dominated elements in both theP€low the upper*bound of another action. However, if we
lower bound vector set and the upper bound point set. PrunV€re to choose" according to the highest lower bound,
ing occurs each time the size of the relevant set has ine might never discover its sub-optimality, because further

creased by 10% since the last pruning episode. This pruff?ork could only cause its lower bound to rise.

ing frequency was not carefully optimized, but there is notNext we need to select an observatign Consider the re-
much to be gained by tuning it, since we do note see subtationship betweeid)(b, a*) and the bounds at the various
stantial overhead either from keeping around up to 10% to@hild nodesr (b, a*, 0) that correspond to different obser-

many elements or from the pruning operation itself. For theyations. From the Bellman equation, we have
lower bound, we prune only vectors that prentwisedom-

inated (i.e., dominated by a single other vector). This typevidth(Q(b,a*))=7 _ Pr(o|b,a*)width(V (7 (b, a*, 0))).
of pruning does not eliminate all redundant vectors, but it o
is simple and fast. For the upper bound, we prune all domNote that this explains the termination criterioregplore,

inated points, defined d8;, ;) such that/ V (b;) < v;. width(V (b)) < ey~*. Because the uncertainty at a ndde
after an update is at mosttimes a weighted average of its
3.4 FORWARD EXPLORATION HEURISTICS child nodes, we have successively looser requirements on

uncertainty at deeper nodes: we rely on{Hactor at each

This section discusses the heuristics that are used to deCi%er on the way back up to make up the difference. Given
which child of the current node to visit as the algorithm these facts, we can defiegcess uncertainty

works its way forward from the initial belief. Starting from ) . i

parent nodé», HSVI must choose an actiari and an ob- excess(b,t) = width(V (b)) — ey

servationo™: the child node to visitis(b, a*, 0%). such that a node with negative excess uncertainty satisfies
Define theuncertaintyatb to mean the width of the bounds the explore termination condition. We say such a node is
interval. Recalling that the regret of a policy returned byfinished Conveniently, the excess uncertaintybais at
HSVI is bounded by the uncertainty at the root négleour ~ MOst & probability-weighted sum of the excess uncertain-
goal in designing the heuristics is to ensure that updates &€s at its children

the chosen child tend to reduce the uncertainty at the rootexeess(b’ £) SZ Pr(ofb, a*)excess(7 (b, a*, 0), ¢ + 1).

First we gonsider the choice of action. Define the interval o

function( as follows: Thus we can focus on ensuring early termination by select-
A o ing the deptht + 1 child that most contributes to excess
Qb.0) = [Q4(b,0),Q" (b, a)] Y i op

uncertainty ab:
Fig. 3 shows the relationship between the boufyds, a) . . .
on each potential action and the bouridl¥ (b) atb aftera ¢ = arelax Pr(olb, a”)excess(r(b, a”, 0),t + 1)) .
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Algorithm 4 7 = AnytimeHSVI().

AnytimeHSVI() is an anytime variant of
HSVI. When interrupted, it returns a policy
whose regret is bounded by the current value

of width(V (by)).

Implementation: AHSVI, but in step (2), in the call tg
explore(by, €, 0), replacee with ¢ width(V (b)), where
¢ < lis ascalar parameter. Empirically, performance is
not very sensitive t@; we used, = 0.95 in the experi-

ments, which gives good performance.

Past heuristic search approaches have usually either sam-

pled fromPr(o|b, a*) or maximized weighted uncertainty
rather than weightedxcesauncertainty. We find the ex-
cess uncertainty heuristic to be empirically superior. In ad-
dition, this heuristic allows us to derive a time bound on
HSVI convergence.

3.5 ANYTIME USAGE

The definition of HSVI(¢) given above assumes that we
know in advance that we want a policy with regret bounded
by e. In practice, however, we often do not know what
a reasonable is for a given problem—we just want the
algorithm to do the best it can in the available time. In
support of this goal, we define a variant algorithm called
AnytimeHSVI (alg. 4). WhereHSVI uses a fixedk,
AnytimeHSVTI adjustse at each top-level call texplore,
setting it to be slightly smaller than the current uncertainty
atby. Instead of having a fixed finish line, we have a finish
line that is always just ahead, receding as we approach.

AnytimeHSVTI is used for all of the experiments in this pa-
per. However, our theoretical analysis focuse$lSiVI(e),
which is easier to handle mathematically.

4 THEORETICAL RESULTS 5

This section discusses some of the key soundness and ¢

SMITH & SIMMONS
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Exit

Figure 4:RockSamplé&, 8].

Our local update operators preserve uniform improv-
ability. Thus, throughout the execution HSVI, the
current best policy?, supports/, andV is valid.
Together, these facts imply that HSVI has valid
bounds on the direct control policy, in the sense that
V < J™ < V. This validity holds throughout exe-
cution and everywhere in the belief space.
Theregret(m, bo) of the policyr returned byHSVI(e)

is at moste. WhenAnytimeHSVT is interrupted, the
regret(m, by) of the current best policy is at most
width(V (bg)).

There is a finite depth

tmax = |—1Og'y(€/ H‘_/O - KOHOO)]

such that all nodes with depth> ¢,,,., are finished.

The uncertainty at a node never increases (thus fin-
ished nodes never become unfinished).

After each top-level call to explore, at least one pre-
viously unfinished node is finished. This property de-
pends on our particular choice of heuristics.

As a result HSVI(¢) is guaranteed to terminate after
performing at most,,,., updates, where

(AO] ===+ ~ 1
Ajlor-1

max — tmax

(Note this is a conservative theoretical bound; empiri-
cally, it is much faster.)

THE ROCKSAMPLBEPROBLEM

vergence properties 6fSVI(e). The actual proofs are pre-
sented in [Smith and Simmons, 2004].

Of5 test HSVI, we have developdtbckSamplea scalable

problem that models rover science exploration (fig. 4). The
rover can achieve reward by sampling rocks in the imme-
diate area, and by continuing its traverse (reaching the exit

e The initial lower and upper bound value functions at the right side of the map). The positions of the rover

are uniformly improvable meaning that applyind?
brings them everywhere closerto'.

and the rocks are known, but only some of the rocks have
scientific value; we will call these rocks “good”. Sampling

e If V is uniformly improvable, then the correspond- a rock is expensive, so the rover is equipped with a noisy

ing direct control policyP,, supportsV’, meaning that
ZS JPK_Z

o If Vis uniformly improvable, then it is valid, in the
sense that* < V.

long-range sensor that it can use to help determine whether
a rock is good before choosing whether to approach and
sample it.

An instance ofRockSamplenith map sizen x n and

?Direct and lookahead control policies corresponding to ak rocks is described aRockSample;, k]. The POMDP

value function are discussed in, e.g., [Hauskrecht, 2000].

model of RockSample, k] is as follows. The state
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space is the cross product @& + 1 features: Posi- ThreeState (3s 4a 30) Tag (870s 52 300)
tion = {(1,1),(1,2),...,(n,n)}, and k binary features

RockType= {Good Bad} that indicate which of the rocks
are good. There is an additional terminal state, reached
when the rover moves off the right-hand edge of the map.

o N

X >
!

&

N
N

-10|

solution quality
solution quality

The rover can select frorh + 5 actions: {North, South 2 o/

East West _ng'ple'Chech, e Checlg}._ The first four L <= bounds [ o
are deterministic single-step motion actions. Bample A 0 A 10"
action samples the rock at the rover’s current location. If RockSample[5,7] (3201s 12a 20)) RockSample[7,8] (12545s 13a 20)

the rock is good, the rover receives a reward of 10 and  =f"
the rock becomes bad (indicating that nothing more can =
be gained by sampling it). If the rock is bad, it receives
a penalty of—10. Moving into the exit area yields reward
10. All other moves have no cost or reward. )
EachCheck action applies the rover’s long-range sensor Z Somuiton . Smulaon
to rocks, returning a noisy observation frofood Bad}. "9 ok tme saconds) " 1" walllock time (seconds) "
The noise in the long-range sensor reading is determined by
the efficiencyn, which decreases exponentially as a func-
tion of Euclidean distance from the target. At= 1, the
sensor always returns the correct value. A& 0, it has

a 50/50 chance of returninrgoodor Bad At intermediate
values, these behaviors are combined linearly. The initia

belief is that every rock has equal probability of befBigod  Fig. 6 shows running times and final solution quality for

N
=}

solution quality
solution quality
o

=)

o
o

Figure 5: Solution quality vs. time.

to convergence. On the larger problems, the bounds have
pot converged by the end of the run.

or Bad HSVI and some other state-of-the-art algorithms. Unfor-
tunately, not all competitive algorithms could be included
6 EXPERIMENTAL RESULTS in the comparison, because there is no widely accepted

POMDP benchmark that we could use. Results for algo-

rithms other than HSVI were computed on different plat-
We tested HSVI on several well-known problemS from theforms; running times are Only very rough'y Comparab|e_

scalable POMDP literature, as well as_instanceRotk— Among the algorithms compared, HSVI's final solution
Sample Our benchmark set follows [Pineau et al., 2003], quality is in every case within measurement error of the

which prOVideS performance numbers for PBVI and SOM&yest reported so far, and in one case ('[b_g prob|em) is
other value iteration algorithms. Note that all of the prob-sjgnificantly better.

lems havey = 0.95.

Experiments were conducted as follows. Periodically dur- Problem (num. states/actionsfobservations) __ Goal% __Reward __Time (S)L|
ing each run, we interrupted HSVI and simulated its current Tiger-Grid (36s 5a170)

X L K ) QMDP [Pineau et al., 2003] n.a. 0.198 0.19 n.a.
best policyr, providing an estimate of the solution qual-  Grid [Brafman, 1997] na. 0.94 n.v. 174
. W . PBUA [Poon, 2001] n.a. 2.30 12116 660
ity, J7(bo). The reported quality is the average reward re- pgvi[pineau etal., 2003] na. 2.25 3448 470
H H H H H HSVI n.a. 2.35 10341 4860
ce|v_ed over many S|mulat|0n_ runs _(100-1000). Repllcatmg Fallway (615 5 210)
earlier experiments, each simulation was terminated after ggﬂg;{gma;ogtﬁl-,w95] a4 o n na
251 steps. PBVI [Pineau et al., 2003] 96 053 288 86
HSVI 100 0.52 10836 1341
H Hallway2 (93s 5a 170)
For each'problem, results are reported over a single run of S0 e atal 1605] 259 . . e
the algorithm. In a few cases we made multiple runs, but SQ%LB[Efma”é§§%7] % . TR

. . . . . . oon, .
since HSVI is not stochastic, successive runs are identical pevi [pineau et al., 2003] 98 0.34 360 95
up to minuscule changes arising from varying background—2 % s2305 100 035 10010 157
load on the platform we used, a Pentium-Ill running at 850 QWDP [Pineau etal., 2003] 7 16769 1355  na

. PBVI [Pineau et al., 2003] 59 -9.180 180880 1334
MHz, with 256 MB of RAM. HSVI 100 -6.37 10113 1657
RockSample[4,4](257s 9a 20)

H H H 5 _ PBVI [Pineau, personal communication] n.a. 17.1  ~2000 n.v.
Fig. 5 shows HSVI solution quality vs. time for four prob- 720 na 180 e e
lems. In these plots, we also track the boult$,) and RockSample[5,5](801s 10a 20)
= . HSVI n.a. 19.0 10208 699
V(bg). Recall that at every phase of the algorithm, we are—Rrocksampies, 713201 123 29)

T [/ i HSVI n.a. 23.1 10263 287
guarantged that (by) < J™(by) < _V(bo). Fllg. 5 should RockSampIETT B{iZ5455 T3 70)
reflect this, at least up to the error in our estimatd b, ) HSVI na. 15.1 10266 94
(errorbars are 95% confidence interval3reeStatds a na. = notapplicable  n.v. = not available

trivial problem we generated, an example of HSVI running ~ Figure 6: Multi-algorithm performance comparison.
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Time <
Problem (num. states/actions/observations) v. PBVI HSVI Speedup 2 Q\;\, %L
Tiger-Grid (36 s 5a 170) 2.25 3448 1053 33 % TN\ o
Hallway (61s 5a 210) 0.52 | 100-200 163 ~1 ) N
Hallway? (93s 5a 170) 0.34 360 181 2.0 PN ‘%0 DN\
Tag (870s 5a 300) -9.18 | 180880 39 4600 LN\ % ”oé, NN\ %
RockSample[4,4](256s 9a 20) 17.1 ~2000 23 ~87 “‘v,o ”o,)% O Vof,éo NS "/o,b
. . AO T, /Q"/ % o/;o 009 &d
Figure 7: Performance comparison, HSVI and PBVI. NN e
TN N F\ C\ \ 2\ %
HSVI Y| Y|Y | Y|Y|Y]|Y
ICUB/ICUL [Hauskrecht, 1997] Y | Y - Y - Y | Y
. i ) . ) BI-POMDP [Washington, 1997] YlY[Y[Y[Y]-[Y]
Fig. 6, which shows only a single time/quality data  |[RTDP-BEL (Geffer and Bonet, 1998] Y Y[ Y Y- -
point for each problem, does not provide enough data e seier 1991 N e
for speed comparisons. Therefore we decided to make a |LAO* [Hansen and Zilberstein, 2001] Y Y Y Y
. . . IPBVI [Pineau et al., 2003] Y| -|Y]| - Y | -
closer comparison with one algorithm. PBVI was choSen  [PBDP zhang and Zhane, 20011 Y - Y
Incremental pruning [Cassandra et al., 1997] Y Y

both because it is a competitive algorithm, and because
[Pineau et al., 2003] presents detailed solution quality vs. Figure 8: Relevant algorithms and features.

time curves for our benchmark problems.

In order to control for differing lengths of runs, we report an action heuristic. Unlike HSVI, ICUB uses a grid-based

thedt'r;‘iﬁ tZa:t T)actrr]] alr?iorr:tthtolok tt%;iscr arictarrrr:m\?vn rvalu?epresentation, and explores forward from belief space crit-
ve, detinedtobe the highestvalue algo SWETe cal points rather than a specified initial belief. The ICUL

le toreach m int during their run. There is uncer: .
able to reach at some point during their ru Ere IS UNCel, er bound uses the same vector set representation as

they were derived from manual reading of published plots('?_isvI and adds the result of each gradient backup in the

this uncertainty is noted in our comparison table. PBVI andSame way. But because ICUB and ICUL are separate algo-

HSVI apoear o have been run on comparable platicims rithms, ICUL's forward exploration does not select actions
PP P P " based on the upper bound, and neither algorithm makes use

Fig. 7 compares PBVI and HSVI performance. The twoof an uncertainty-based observation heuristic.
algorithms show similar performance on smaller problems :

. Other related work mostly falls into two camps.
As the problems scale up, however, HSVI provides dra- y P

matic speedup. A brief explanation of why this might beThe first are algorithms that combine heuristic search

) . . ith dynamic programming updates. RTDP-BEL
the case: Recall that the policy returned by HSVI is base Geffner and Bonet, 1998], a POMDP extension of the
solely on the lower bound. The upper bound is used onl

¢ de f q lorati BUL bound undat ell-known RTDP value iteration technique for MDPs
o e e seum A oo [Baro etal 1935, tums au 0 be verysmir (0 ICUS
ten take longer than lower bound updates. Since PBV I-POMDP [Washington, 1997] uses forward exploration

keeps only a lower bound, its updates proceed much morScd 0N AO with Vipp as its heuristic. BI-POMDP
°b y ' P SP eeps upper and lower bounds on nodes in the search tree—
quickly. HSVI can only have competitive performance to

. . ) v -~ however, it does not explicitly represent the bounds as
the extent that the intelligence of its heuristics outwelghsfunctions so it is unablepto ggnerglize the value at a be-

the speed penalty of updating the upper bound. Apparentl)ﬁef to neighboring beliefs. Some other algorithms in this

the heuristics become relatively more important as prOble"@roup are [Dearden and Boutilier, 1994, Brafman, 1997
Slze Increases. Hansen and Zilberstein, 2001].

7 RELATED WORK The sgcond camp includes algpnthms that em_ploy a piece-
wise linear convex value function representation and gra-

_ _ ) dient backups. There are a host of algorithms along
Because HSVI combines several existing solution teChfhese lines, dating back to [Sondik, 1971]. Most dif-

niques, it can be compared to a wide range of related Workee, from Hsv| in that they perform gradient backups
Figure 8, although far from exhaustive, lists many reIevamover the full belief space instead of focusing on rele-

algorithms and some of the features they share with HSVI,ant beliefs. One exception is PBVI [Pineau et al., 2003],

[Hauskrecht, 1997], perhaps the closest prior work, dewhich performs synchronous gradient backups on a grow-
scribes separate algorithms for incrementally calculatingng subset of the belief space, designed such that it ex-
the upper bound (ICUB) and lower bound (ICLB). The amines only reachable beliefs. Unlike HSVI, PBVI does
ICUB upper bound is similar to that of HSVI in that it is not keep an upper bound and does not use a value-
initialized with the value function for the underlying MDP based action heuristic when expanding its belief set.
(Vmpp), improved with asynchronous backups, and used a®ther algorithms in this group include incremental prun-
ing [Cassandra et al., 1997] and point-based dynamic pro-

3PBVI performance oRockSamplé, 4] and a rough perfor- gramming [Zhang and Zhang, 2001].
mance estimate for the computer used in PBVI experiments were

provided courtesy of J. Pineau (personal communication). HSVI avoids examining unreachable beliefs using forward
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exploration. [Boutilier et al., 1998] describe how to pre- [Barto et al., 1995] Barto, A., Bradtke, S., and Singh, S. (1995).
compute reachability in order to eliminate states inan MDP  Learning to act using real-time dynamic programminAgtifi-
context. In a POMDP context their technique would go be- ~ cial Intelligence 72(1-2):81-138.

yond HSVI by explicitly reducing the dimensionality of the [Boutilier et al., 1998] Boutilier, C., Brafman, R., and Geib, C.
belief space, but the remaining space might still include un- (1998). Structured reachability analysis for Markov decision
reachable beliefs never visited by HSVI. processes. IFroc. of UA| pages 24-32.

rafman, 1997] Brafman, R. I. (1997). A heuristic variable grid

. . . B
Finally, there are many competitive POMDP solution ap colution method for POMDPS. IRroc. of AAAI

proaches that do not employ heuristic search or a PWLC

value function representation: too many to discuss hergCassandra et al., 1997] Cassandra, A., Littman, M., and Zhang,
We refer the reader to a survey [Aberdeen, 2002]. Hope- N- (1997). Incremental pruning: A simple, fast, exact method
fully, increased adoption of common benchmarks in the for partially observable Markov decision processes.Piac.

POMDP community will allow us to better compare HSVI of UAI

with other algorithms in the future. [Dearden and Boutilier, 1994] Dearden, R. and Boutilier, C.
(1994). Integrating planning and execution in stochastic do-
mains. InProc. of the AAAI Spring Symposium on Decision

8 CONCLUSION Theoretic Planningpages 55-61, Stanford, CA.

. . . [Geffner and Bonet, 1998] Geffner, H. and Bonet, B. (1998).
This paper presents HSVI, a POMDP solution algorithm™  solving large POMDPs by real time dynamic programming.
that uses heuristics, based on upper and lower bounds of In Working Notes Fall AAAI Symposium on POMDPs

the aptimal value function, to guide local updates. [Hansen and Zilberstein, 2001] Hansen, E. and Zilberstein, S.

Experimentally, HSVI is able to find solutions with quality ~ (2001). LAO*: A heuristic search algorithm that finds solu-
within measurement error of the best previous report on all 1ons With loops Artificial Intelligence 129:35-62.
of the benchmark problems we tried, and it did significantly[Hauskrecht, 1997] Hauskrecht, M. (1997). Incremental meth-
better on theTag problem. In time comparisons with the ~ ods for computing bounds in partially observable Markov deci-
state-of-the-art PBVI algorithm, HSVI showed dramatic ~ SIon Processes. IRroc. of AAA| pages 734-739, Providence,
speedups on larger problems. We applied HSVI to an in-
stance of the nelRockSamplelomain with 12,545 states, [Hauskrecht, 2000] Hauskrecht, M. (2000). Value-function ap-
more than 10 times larger than most problems presented in Proximations for partially observable Markov decision pro-
the scalable POMDP literature. cessesJournal of Artificial Intelligence Research3:33-94.

. Hoey et al., 1999] Hoey, J., St-Aubin, R., Hu, A., and Boutilier
T_here_ are several ways that we would like to extend HSVI'[ C.y(1999,). SP]UDD: yS'toc’;hasti(: pIe’mni’ng dsin’g decision dia-
First, it should be possible to speed up lower bound updates grams. InProc. of UA| pages 279—288.
through the following observation: most beliefs are sparse
and mosty vectors are optimal for only a few closely re-
lated beliefs. Therefore, only a few elements of any given
« vector are relevant, and we can save effort if we avoidPineau etal., 2003] Pineau, J., Gordon, G., and Thrun, S.
computing the rest. Second, we are working on reducing (onol(\)/legppo'lngbasei }’Jaé‘fl iteration: An anytime algorithm for
the number of LP calculations needed for the upper-bound S InFToc. 0
by pruning some actions early, and by reusing old LP soluf{Poon, 2001] Poon, K.-M. (2001). A fast heuristic algorithm for
tions. Finally, we could leverage better data structures such decision-theoretic planning. Master's thesis, The Hong Kong
as ADDs for representing beliefa,vectors, and other ob- University of Science and Technology.

jects used by the algorithm [Hoey et al., 1999]. [Smith and Simmons, 2004] Smith, T. and Simmons, R. (2004).

o . . . Heuristic search value iteration for POMDPs: Detailed the-
In summary, this is an exciting time: recent progress in  ory and results. Technical report, Robotics Institute, Carnegie
solution performance suggests that the POMDP planning Mellon University. (in preparation).

model will soon be a feasible choice for robot decision-

[Kaelbling, 1993] Kaelbling, L. P. (1993)Learning in Embed-
ded SystemsThe MIT Press.

[Sondik, 1971] Sondik, E. J. (1971The optimal control of par-

making on a much wider range of real problems. tially observable Markov processeBhD thesis, Stanford Uni-
versity.
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