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Abstract

This paper addresses the problem of exploration and
mapping of an unknown environment by multiple rebot
The mapping algorithm is an on-line approach to
likelihood maximization that uses hill climbing fimd
maps that are maximally consistent with sensor datd
odometry. The exploration algorithm explicitly cdomates
the robots. It tries to maximize overall utility tnimizing
the potential for overlap in information gain amatghe
various robots. For both the exploration and mapgpin
algorithms, most of the computations are distriblut€he
technigues have been tested extensively in redbvirdals
and simulations. The results demonstrate the perémce
improvements and robustness that accrue from outi-mu
robot approach to exploration.

1 Introduction

Creating maps of the environment is a fundamental
challenge in mobile robotics. In general, to defiiently
requires good exploration strategies. In particutae
robots need to know what areas are worthwhile fogs
and how to distribute themselves effectively in esrdo
thoroughly map previously unknown areas.

Most previous work in mapping dealt only with siagl
robots. There are, however, advantages in mappitily w
multiple robots. The most obvious is that multiptdots
can often do the task in less time. This may notags
hold, however, due to interference between rob®tsS].
Thus, it is important for the exploration strategie keep
the robots relatively well separated. Another adzge is
that multiple robots may produce more accurate mayos
to merging of overlapping information. This can el
compensate for sensor uncertainty and localizagioar,
especially where the robots have different sensol/cx
localization capabilities [7].

This paper presents techniques for coordinatingtipiel)
heterogeneous robots in their task of exploring and
mapping large, indoor environments. We consider two
coordination problems — creating a single globalpma
from the sensor information of the individual rokoand
deciding where each robot should go in order tater¢he
map most effectively. While solving the latter pierin
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optimally is intractable, we present a greedy apphothat
performs quite well, in practice.

Our basic approach to both coordination problems is
similar: Distribute most of the computation amontjs
individual robots and asynchronously integratertresults

by performing some global computations over tha.dabr
instance, each robot processes its own laser dataate a
consistent local map. A central mapper module then
integrates the local maps to create a consistebagmap.
The local mappers reduce uncertainty in the data,
principally by matching laser scans to decreasalitpation
error. The central mapper further improves the map
(minimizing localization error) by iteratively corming
data from the robots. This works under the assumptiat

the robots know their pose relative to one ancdinerhave
access to high-bandwidth communication.

Similarly, our approach to coordinating exploration
combines distributed computation with global demisi
making. The individual robots construct “bids,” whi
describe their estimates of the expected informagjain
and costs of traveling to various locations. A caint
executive receives the bids and assigns tasks &ttampt
to maximize overall utility, while trying to minime
overlap in coverage by the robots. In both casks, t
majority of the computation is done in a distrillite
fashion, by the individual robots, and the centedi
modules combine and coordinate information in an
efficient way.

After presenting related work, Sections 3 and 4cdbe
our approaches to multi-robot map creation and
exploration, respectively. Section 5 presents a sagly of
three robots combining to map a large indoor aismalso
analyze quantitative results from simulations shngathe
effects of our exploration strategies on task peménce.
Finally, we discuss future directions that are imaot to
the problems of multi-robot exploration and mapping

2 Related Work

While there has been work in mapping and explonafio
single robot systems [3, 4, 9, 17, 18], there hbhgen
relatively few approaches for mapping and explorati
with multi-robot systems. Several researchers lsaveied
the problem of using multiple robots to reduce lizegion
error during exploration [10, 13]. For instanceRiekleitis



et. al. [13] the environment is divided into strisch strip
is explored by a single robot, while the others aam
stationary to observe the moving robot and estinitste
position. While this has the advantage of improvihg

overall accuracy of the map, it does nothing toespthe

exploration process. On the contrary, the robadaced to
remain near each other in order to stay visible.

Balch and Arkin [1] investigated how communication
multi-robot systems affects different tasks, inahgd the

grazetask where the objective is to completely cover an

unknown environment. The robots essentially perfam
randomized search of the environment. Their peréarce
results are qualitatively similar to what we obserbut we
have not done any direct comparisons of the twdous.

More sophisticated techniques for multi-robot exatmn
are presented in [15, 21, 22]. Singh and Fujimurd] [
present a decentralized on-line approach for hgereous
robots. When a robot discovers an opening to arplaeed
area that it cannot reach because of its sizeldtss another

robot which can carry out the exploration task. The

candidate robot is chosen by trading off the nundb@reas
to be explored, the size of the robot, and theigitdine
distance between the robot and the target region.

Yamauchi developed a technique in which the robotksl a
common map (an occupancy grid) in a distributedhitas
[21, 22]. The work introduces the notion dfentier, which
is a location near an unexplored part of the emwirent. The
approach groups adjacent cells into frontier regidfach
robot then heads for the centroid of the closeshtier
region, but they do so independently — while thbgre
maps, there is no explicit coordination. Thus,rtit®ots may

end up covering the same area and may even physical

interfere with one another. Our approach, in cattrends
to keep the robots well separated, which can Saanitly
decrease the time needed to accomplish the mapasig

The work reported here extends our earlier efffisin

several important ways. First, the approach deedritere
distributes the computation, to a large extentsTénables
the robots’ “bids” to be calculated in parallel, iain
facilitates scaling to larger numbers of robots andbles
the robots to construct bids based on their owralggifies

(sensor range, travel costs, etc.). Second, threrumethod
uses a more sophisticated notion of expected irdtGom

gain that takes current map knowledge and the sobot

individual capabilities into account. This allowsr fmore
subtle types of coordination, for example, allowitige
robots to remain near one another if the map shbatshey
are separated by a solid wall.

3 Coordinated Mapping

At the core of our approach is a distributed algdponi for
concurrent mapping and localization in real-tim8][IThe
approach makes two major assumptions: First, iirass
the world is reasonably static, and so it cannatdi&

Figure 1: Probabilistic Motion Model
Robot starts at left of each diagram and followth radicated by
solid line. Probability distribution is shown ineyrfor the robot’s
posterior location. The darker a location, the nmikey it is.

environments that are densely populated or chang&jor
ways (e.g., walls disappearing). Second, it assuthsshe
robots begin in view of one another, and are tdidirt
approximate relative location (within about 1 metistance
and 20 degrees orientation). The first requirement
assumed throughout the literature on concurremtitoation
and mapping [3, 12, 16, 18]. Fortunately, the secon
assumption holds for many practical applicatiois;esthe
problem of team-based mapping in the absence 6élini
pose information is extremely hard.

Our approach decomposes the mapping problem in a

modular, hierarchical fashion: Each robot maintadtis®wn
local map, correcting for odometry error as it ggesentral
module receives the local maps and combines thémain
single, global map. The modules work in real-tinmel,an
fact, adapt their computational requirements tcatbedlable
resources. The beauty of the approach is that &gsihe
same software runs at both the local and globalsev

To start, each robot receives a sequence of itsqalemetry
and sensor measurements (laser range scans, rese).
From that, it incrementally constructs three things
maximum likelihood estimate for its own position, a
maximum likelihood estimate for the map (locatioh o
surrounding objects), and a posterior density attareing

its “true” location, which acknowledges the factlcertain
errors cannot be identified when building a mag.[20

To illustrate the algorithm, assume that a robat &laeady
developed a partial map. It now wants to augmeatntlap
through new sensor and odometry readings. To daterm
the robot’s most likely position, our algorithm nigvizes a
mixture likelihood function that models (1) the seiin
motion (odometry), and (2) the noise in perceptfgure 1
illustrates the motion model. It depictssH(s’, a), the
probability of being at posg if the robot was previously at
s’ and executed actioa (moving and/or turning). This
distribution is obtained by the (obvious) kinematic
equations, assuming that robot motion is noisy @lis
translational and rotational components.

Figure 2 depicts the perceptual model (the likeditho
function for sensor readings). The basic idea fsetteat it is
unlikely to receive sensor readings where previscasns
saw free-space. The dark region in Figure 2 comedsp to
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Figure 2: Likelihood Function Generated
Robot is on the left (circle). The scan is depidbgdl80 dots in
front of the robot. The darker a region, the srmahe likelihood
for sensing an object there. Occluded regions ditew

the free-space of the scan shown there; the ligetdhof
detecting something in that region is (inversely)
proportional to the grey-level. Thus, scans thaelyi align
possess much higher likelihood than ones that do no

A key characteristic of this likelihood functionthat it is
differentiable. Moreover, search in the relative@space of
the robot can be performed very efficiently usingwiton’s
method (e.g., 1,000 iterations per second). Ourcgmh
starts with the odometry measurement reported déydhot
as an initial estimate, and uses gradient descefimd the
nearest maximum in likelihood space. Since mapdaile
incrementally and short-term errors are not larthes
process converges quickly and, with high reliapilftnds
the right alignment. The collection of all scaneng with
their corrected scan coordinateforms the map. The scan
map is then efficiently converted to an occupancg map
[5], which is required by our motion planner anglexation
module.

We now address the problem of building a map using
multiple mobile robots. Each robot builds its owndl map,
using the algorithm described above. Since thetsotho not
communicate directly, their local coordinate syseare not
aligned with each other. Also, due to residual isria the
local maps, the maps typically would not match eegkn if

the coordinate systems were perfectly aligned.

To build a single map, the central mapper moduiegrates
information from the individual robots in real time
Specifically, each robot communicates a subsetsagdans
(e.g., every 10th) to the central mapper, usingctireected
scan coordinatesThus, the maps of the robots are not used
directly. Instead, they are used indirectly to pros
sequences of scans whose (relative) position eraoes
already very small to begin with. The central mappen
applies the same gradient descent algorithm desstebove
to minimize the error between the scans of theersffit
robots. Since we assume that the initial positiohghe
robots are approximately known, our local seargbragch
accurately localizes the robots relative to eadieiotAs
additional scans arrive, they are similarly mapped the
global coordinate system, eliminating small dewiasi. The

Figure 3: Occupancy Map Used for Exploration
“Obstacle” cells are black, “clear” cells are whiteinknown”
cells are grey. Frontier cells are marked by swiedles.

resulting map integrates every robots’ scans ingingle,
consistent map with relatively little computatioffe have
tested our procedure for up to 5 robots, and havdaubt
that the same architecture easily scales to 10mare,
robots.

4 Coordinated Exploration

The objective in coordinating the exploration of Itiple
robots is to maximize expected information gain gma
knowledge) over time. While the optimal solution is
computationally intractable, we have developedatikesly
low-cost technique that provides good results ractce.

To start, each robot constructs a “bid” consistofgthe
estimated utilities for it to travel to various &ions. The
bids are sent to a central executive, which asdigsiss to
each robot based on all the bids received, takitgyaccount
potential overlaps in coverage. Thus, while a rofaty
prefer to visit one location, the executive mighsign it a
different location if another robot is expectedgin much
the same information. Robots submit new bids whneir t
maps are updated, which can cause them to be eetask
Exploration ends when there is no useful infornrato be
gained.

4.1 Constructing Bids

A robot constructs a new bid each time it recei@emap
update from the central mapper. It categorizes oedlp into
three different types (Figure 3) — “obstacle” (prbihigy of
occupancy above a given threshpll, “clear” (probability
below a thresholg,) and “unknown” (either never been
sensed, or probability is betwepgandp,).

A bid is a list of the estimated costs and informatiamg
for visiting varioudrontier cells We define drontier cellas
any “clear” cell adjacent to at least one “unknowgell

(Figure 3). For efficiency, we further stipulateatheach
frontier cell must be at least some minimum diséafrom

all other frontier cells. For instance, even thowg grid

has 15 cm resolution, we require frontier cellb¢oat least
30 cm (approximate radius of the robots) from eattier.

To estimate the cost of visiting a frontier cele wompute
the optimal path (shortest distance, assuming hitéstic
motion) from the robot's current position. All cesare



Figure 4: Expected Information Gain
Information gain region$or several representative frontier ce
Circles indicate sensor range. Cross-hatched areaaformatiol
gain regions. Dotted lines are the rectangular@pprations.

computed simultaneously, using a simple flood-fill
algorithm [11] that employs an efficient implemetida of

a priority queue to propagate minimum path costsugh
the map. To further decrease computation, we censialy
“clear” cells, stopping propagation whenever anstakle”

or “unknown” cell is reached.

Estimating information gain is more difficult. Imdt, the
actual information gain is impossible to prediatce it very
much depends on the structure of the environment. O
previous work [2] assumed information gain to bastant
for each frontier cell, which tended to make thigats spend
too much time exploring nearby areas that were Ipear
known already. Here we use the current map to geowi
more informed estimate. Specifically, we assume tha
robot has some nominal sensor range and countutmber

of “unknown” cells that fall within that radius tie frontier
cell, subject to the restriction that the resultinprmation
gain regionforms a connected set (Figure 4). For efficiency,
we again use a flood-fill algorithm, this time emngl
propagation when either a “clear” or “obstacle” |cil
encountered, or when the distance to the fronté is
greater than the sensor range. In addition to dcogrthe
number of cells, we record the minimum and maximum
extent, forming a rectangle that approximates the
information gain region (Figure 4). This enclosnegtangle

is used by the executive to estimate potential lapsrin
coverage.

While there are definite improvements that can laelenin
estimating information gain (a simple one wouldtbéias
the count by the occupancy probability of the ¢eadising
less weight to cells that are already partially Wnp we
have found our metric works quite well in practida.
particular, while the metric usually acts to kebp tobots
well separated, it still allows them to be spagialear one
another if there are known obstacles separatinu tfiéus,
we have seen cases where two robots are taskegblare
adjacent rooms — one goes into the first room amcgdees
the walls, which get added as obstacles in the majs

separates the room from the adjacent room, infaomat
wise, which allows the executive to send the otbbot into
the second room. This would not be possible witthods
that merely try to maintain a given distance betwesbots.

4.2 Assigning Tasks

Each robot asynchronously constructs its bids amts
them to a central executive. The executive triesaaimize
the total expected utility of the robots by assignthem
tasks, based on their bids. A simple greedy algoris used
to keep the computation real time. The executixst finds
the bid location with the highest net utility (imfoation gain
minus cost) and assigns that task to the robotrtizate the
bid.! It thendiscountsthe bids of the remaining robots based
on the current assigned tasks (see below) and ekdbe
highest remaining net utility. This continues umither all
robots have been assigned tasks or no task reméiose
(discounted) expected information gain is aboverdamum
threshold.

Key to this algorithm is the discounting. Without ihe
robots would act in an uncoordinated manner, being
assigned tasks that they, independently, estinsatest. Our
previous work discounted the utility of a locatias a
function of its distance to the other assigned442k Here,

we explicitly use the estimated information gainr fo
discounting. Specifically, we estimate the percgataf
overlap between the information gain regions by imouch

the approximating rectangles overlap (Figure 4) and
decrease the expected information gain by thatepeage:
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Here, IGR; is the rectangular approximation of the
information gain region for some frontier cglthelGR,; are
the rectangular information gain regions for thsigised
robotsR, andi; andc; are the expected information gain and
path cost of going to cejll This method is both efficient to
compute and a fairly accurate approximation. In seeof
experiments, it was within 15% of the true overfalptained
by counting the actual number of overlapping celid)ile
being hundreds of times more efficient.

The executive is implemented using the Task DeSorip
Language (TDL), an extension of C++ that includes
syntactical support for hierarchical task decomtms, task
sequencing, execution monitoring, and exceptiordtiag
[14]. When the executive receives a bid, it waitshart
while in case other bids arrive. It then assigrskdato all
robots that are either currently unassigned or lsabenitted
new bids (leaving the currently active ones to ture).

1. We found that marginal utility (information gaifivided by cost)
performed less well, tending to favor areas of simbrmation gain
nearby the robot.



Figure 5: Robin, Marian and LittleJohn

Besides assigning tasks, the executive monitork tas
execution, interfaces with a remote GUI, and istaves
exploration with other tasks. In particular, at dmge the
user (through the GUI) can request that one ofrtiets
visit a particular location (e.g., to take a clotmk). The
executive terminates that robot's current task.ssgms
other robots to cover for its loss, assigns anditomthe
new task, and then integrates the robot back ih® t
exploration pool when it is finished.

One important addition to the task assignment #lgoris
the use ohysteresislf a frontier cell for a robot falls within
the information gain region of the robot’s currgraksigned
task, then its expected information gain is dividsdthe
hysteresis ratiqa constant between 0 and 1, usually 0.85).
Lower values for the hysteresis ratio will make ¢iecutive
less disposed to switching tasks. The basic prolietmat,
because the robot is continuously sensing the emvient,
the information gain metric can change drasticaltgr only
small motions. For instance, by the time a robohewxers
to position itself in front of a doorway, it typitahas seen
a large portion of the room. Without hysteresidedng and
completely exploring the room would not have as muc
utility as going somewhere else. While not the nudtie
solution, hysteresis handles the problem fairlylwel

5 Experiments

The multi-robot exploration and mapping system besn
tested extensively using a team of three heteragene
robots — two Pioneer AT robots from RWI and an Urbie
robot from IS Robotics (Figure 5). All three robcse
equipped with Sick laser scanners that have a Eg8pee
field of view. The ATs have a 300 MHz on-board tgpt
running Linux, and all three robots communicatea vi
Breezecom radio links, with off-board Linux workites
that run the rest of the system, including the niapp
planning, and executive modules.

The most extensive testing was in October, 192 iampty
hospital building at Fort Sam Houston, San Antoniq as
part of DARPA's Tactical Mobile Robot (TMR) project
During a five day period, we made repeated runf e
robots, mapping large areas of one floor of thdding.

Figure 6: Map Created by Three Robots (62 x 43 m)

Robots start at left. The three solid lines indidhte robots’ patr
through the environment.

Figure 6 shows one typical run that produced a $23d
meter map in about eight minutes. During these ,rwes
tended to see similar qualitative behavior — oneotob
would head down the initial corridor, while the ethtwo
would explore rooms on opposite sides of the corrid
When the two finished the initial set of rooms,ythveould
move down the corridor to explore openings thatttiied
robot had discovered, but passed by. We also peedtests
where we would teleoperate one of the robots widleing
the other two autonomously explore the areas rgited by
the first.

Some interesting behaviors were observed that are
attributable to the coordination algorithm. For piighree
robots start in the middle of a narrow corridorpttend to
head down the corridor in opposite directions, elfthe
third just waits until one of the others spots amay. This

is because, initially, there are just two distifrontiers, and
assigning one robot to each leaves the third watbxpected
information gain. Another behavior, noted earligthat the
robots sometimes explore adjacent offices that, lewhi
spatially close, are disconnected in terms of imi@tion
gain. Finally, in one instance, we noticed a robaving
trouble getting near an office it was tasked tolesgp A
second robot was tasked to explore further down the
corridor. However, at some point the executive gveap
tasks, since the second robot had fortuitouslyegotioser

to the office than the first. Such flexibility inydamically
coordinating tasks gives our system the abilitgff@iently
explore in a wide variety of situations.

To augment the robot tests, we ran experiments in
simulation to compare the effects of different nemsbof
robots in different types of environments. The dator
realistically models the environment and a robot's
interaction with it, so that the programs used eal robots
can be used with the simulator without modification
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Figure 8: Results from Single-Corridor Environment

Previously, we demonstrated the performance inerézest
obtains using coordinategersusuncoordinated robots [2].
In the current experiments, we varied the numbeobbts
from one to three, and used five different envirents. In
the two office-like environments (Figure 7, A andZm x
20m) and the obstacle-free environment (C, 20mm)2@/e
ran ten simulations for each number of robots.tRerother

two environments (D and E, 20m x 20m), we used ten

different randomly generated maps, and ran onelation
with each.

While our primary performance metric is the timeded to
completely explore the environment, it is alsorgérest to
see how the coverage evolves over time. It mighhbease
that most of an environment is mapped quickly, @il
takes a long time to cover a few last spots aetite For this
reason, we report the time it takes to cover 50,980and
100 percent of the environment.

Figure 8 presents the results for the single-corriaffice
environment (A). It shows that two robots perform
significantly better than one, while there is natah gain in
having three robots instead of two. The resultsendar for
two parallel corridors (B). There, two robots cao ip
separate directions at the beginning, each exganre part
without any overlap. While a third robot can assigially
in the exploration of one of the corridors, oncael@ must
travel a long way in order to help explore the ottwridor.
In many cases, the other robots do not arrivenire tio help
out.

In contrast, in the random environments, there ssnaller
gain when going from one to two robots and a laggen
when going from two to three robots (Figure 9), paned
with the results from the office-like environmentBhe
apparent reason is that the obstacles in the emmieat help
in spreading the robots out.
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Figure 9: Results from 15% Random Obstacles
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Figure 10: Results from Obstacle-Free Environment

Surprisingly, in the obstacle-free environmentethrobots
actually take longer to complete the task, on ay@réhan
two (Figure 10). This seems to be because theyumd
interfering with one another [6, 8]. In contrast, this
environment multiple robots have demonstrable pe@sit
effects on map accuracy. With few features, theotolget
little help in localizing. This has the greatesipamat when
there is only one robot exploring — in fact, in 3@¥the
trials the robot failed to complete the mappingktas
successfully (i.e., the resultant map was qualiédyi
wrong). With multiple robots, however, the addedsse
information helps significantly: For two robots, lprone
failure was observed (10%) and with three robots, n
failures were observed.

6 Future Work and Conclusions

While we have extensive test results, we still need
quantify the effects of various design decisiomgjuding
the effects of hysteresis, the way information taeris
estimated, and the definition of expected inforomtyain
itself. We also intend to quantify the performarafethe
greedy method of task assignment, comparing it twem
sophisticated algorithms such as A* or stochastéreh.

In both simulation and actual tests, robots areefones
idle because their discounted utilities are beloke t
minimum threshold. Instead of just staying whereythare,
they could position themselves strategically so tas
minimize the expected distance they would havedoel
once they are assigned a task. While for a singhetr a



good idle location is one that minimizes the averagth
cost to all the frontier cells, the problem is mudrder if
there are several idle robots.

Fundamentally, the approach described in this paper
limited in two respects. First, with respect to miag, we
currently assume that the robots begin in view poéo
another and are told their initial (approximate)atige
location. More sophisticated techniques are neefded
mapping and localization when the robots need togme
maps where the coordinate transform is initiallknown
and the robots need to find out where they ardivelto one
another. Second, with respect to exploration, weecly
assume it is sufficient to consider the utilityexfploring a
single point. The approach ignores both the factt th
information is gainedkn routeand that moving to a given
area may facilitate, or possibly hinder,
exploration. We are investigating more sophistidate
algorithms that estimate information gain alopgths
which we believe will improve overall performance
significantly.

In conclusion, we have presented an approach tt-noblot
exploration and mapping that explicitly coordinatdw
robots, based on estimates of expected informatdmand
the cost of exploration. This approach, which baiidch our
previous work, has demonstrated the types of paidoce
improvements that multiple robots can provide. This
includes both reduced exploration time and incréase
mapping accuracy. While improvements are inevitdble
this important area, we now have a benchmark faatvi$
attainable from an effective use of coordination.
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