
V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons, K. Tso, “Plan Execution Interchange Language
(PLEXIL) for Executable Plans and Command Sequences”, International Symposium on Artificial
Intelligence, Robotics and Automation in Space (iSAIRAS), 2005

Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany,
5-8 September 2005 (ESA SP-603, September 2005)

PLAN EXECUTION INTERCHANGE LANGUAGE (PLEXIL) FOR EXECUTABLE PLANS

AND COMMAND SEQUENCES

Vandi Verma(1), Tara Estlin(2), Ari Jónsson(3), Corina Pasareanu(4), Reid Simmons(5), Kam Tso(6)

(1)QSS Inc. at NASA Ames Research Center, MS 269-1 Moffett Field CA 94035, USA,
Email:vandi@email.arc.nasa.gov

(2)Jet Propulsion Laboratory, M/S 126-347, 4800 Oak Grove Drive, Pasadena CA 9110, USA ,
Email:tara.estlin@jpl.nasa.gov

(3) USRA-RIACS at NASA Ames Research Center, MS 269-1 Moffett Field CA 94035, USA,
Email:ajonsson@arc.nasa.gov

(4)QSS Inc. at NASA Ames Research Center, MS 269-1 Moffett Field CA 94035, USA,
Email:pcorina@email.arc.nasa.gov

(5)Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213, USA,
Email:reids@cs.cmu.edu

(6)IA Tech Inc., 10501Kinnard Avenue, Los Angeles, CA 9002, USA,
Email: tso@ia-tech.com

ABSTRACT

Space mission operations require flexible, efficient and
reliable plan execution. In typical operations command
sequences (which are a simple subset of general
executable plans) are generated on the ground, either
manually or with assistance from automated planning,
and sent to the spacecraft. For more advanced
operations more expressive executable plans may be
used; the plans might also be generated automatically
on board the spacecraft. In all these cases, the
executable plans are received by a software system that
executes the plan. This software system, often called
an executive, must ensure that the execution of the
commands and response of the fault protection system
conforms to pre-planned behaviour. This paper
presents a language, called PLEXIL, that is designed
specifically for flexible and reliable command
execution. It is designed to be portable, lightweight,
predictable, and verifiable, and at the same time it is
more expressive than command sequencing languages
currently used on space missions.

1. INTRODUCTION

All space missions require execution systems that
execute commands and monitor the environment. Such
execution systems vary in sophistication, from those
that execute linear sequences of commands at fixed
times, to those that can plan and schedule in reaction to
unexpected changes in the environment.

The level of autonomy and type of control that
execution systems are designed for varies greatly [13].
A spacecraft controlled primarily by humans must
continuously monitor critical systems and report
important events. An execution system is needed for

this task since it is impossible for a small team to
manually keep track of all sub-systems in real time.
Complex manipulators and instruments used in human
missions must also execute sequences of commands to
perform complex tasks. Similarly, a rover operating on
Mars must autonomously execute commands sent from
Earth and keep the rover safe in abnormal situations.

Execution systems realize pre-planned actions in the
real world. Execution systems are particularly useful in
the presence of uncertainty. Classical execution
functions include selecting an action from a set of
possibilities based on the current state of the robot and
environment and on the outcome of previous actions.
The capabilities of an execution system typically
include hierarchical task decomposition, coordinating
simultaneous actions, resource management,
monitoring of states, relaying command status, and
exception handling. One way to view an execution
system is as an onboard system that takes a plan that
assumes a certain level of certainty and expected
outcomes and executes it in a possibly uncertain and
dynamic environment.

An execution language is a representation of
commands and plans that provides a representation for
reasoning about required robot and environment state
as well as the effects of executed commands. It takes
into account the interdependence between actions, in
terms of temporal precedence and other constraints,
such as resource contention. An execution language
also provides a representation for monitoring mission
constraints and encoding appropriate responses if these
constraints are violated.

Plan execution frameworks vary greatly, due both to
different capabilities of the execution systems and due

 2

to relationships with associated decision-making
frameworks. The latter dependency has made the reuse
of execution and planning frameworks difficult, and
has all but precluded information sharing between
different execution and decision-making systems.

As a step in the direction of addressing these issues, we
are developing a general plan execution language,
called the Plan Execution Interchange Language
(PLEXIL). PLEXIL extends many execution control
capabilities of other systems. It is capable of
expressing concepts used by many high-level
automated planners and hence provides an interface to
multiple planners.

The key characteristics of PLEXIL are that it is
compact, semantically clear, and deterministic given
the same sequence of inputs. At the same time, the
language is quite expressive and can represent simple
branches, floating branches, loops, time and event
driven activities, concurrent activities, sequences, and
temporal constraints. The core syntax of the language
is simple and uniform, making plan interpretation
simple and efficient, while enabling the application of
validation and testing techniques.

 PLEXIL includes a domain description that specifies
command types, task expansions, constraints, etc., as
well as feedback to the higher-level decision-making
capabilities. In addition, PLEXIL includes a graphical
user interface that builds upon the Eclipse framework
 [10] that can be used to manually create PLEXIL plans.

This paper provides an overview of the grammar and
semantics of PLEXIL. Further details may be found in
 [7]. It also outlines ongoing work on implementing a
universal execution system, based on PLEXIL, using
state-of-the-art rover functional interfaces and planners
as test cases.

2. BACKGROUND

We are using several existing implementations of rover
control systems to drive the design of PLEXIL. One of
these is the Coupled Layer Architecture for Robotic
Autonomy (CLARAty) [14], which is a two layered
software architecture that was developed to enable both
a plug-and-play capability and a tighter coupling of
high level decision making planners and the interface
to hardware. The CLARAty architecture has
successfully enabled interoperability at the functional
layer, which is the interface to the hardware. The
development of the PLEXIL-based execution system in
the CLARAty architecture will provide a level of
interchangeability for the decision layer.

As test cases for the general PLEXIL execution engine,
two different types of planners will be utilized for
generating PLEXIL plans and re-planning based on
feedback information. One is a constructive planner,
called PICO [6], that generates long-term contingent
plans, which are flexible.Since plans contain
contingencies, PICO can be used off-board the rover.
The other is an iterative repair-based planner, called
CASPER [5], which generates fixed plan instances but
can easily re-plan in the face of changes. CASPER is
typically used as an on-board planner. Currently, each
planner interacts with the hardware using different
executives. The executive used with CASPER is based
on TDL [11], which is an extension of the C++
programming language that includes syntax for task
definition, task expansion, temporal constraints,
concurrent execution, monitoring, and fault recovery.
PICO uses the Contingent Rover Language (CRL) [3]
executive which uses a hierarchical representation to
represent simple and floating branches, nesting,
flexible time, and state and resource conditions, but
does not support loops and periodic tasks, or have a
mechanism for providing feedback to planners.

Figure 1: Architectural design where PLEXIL is shown
to interface with the CASPER and PICO planners

3. TRADITIONAL SPACECRAFT
OPERATIONS

In traditional spacecraft operations control commands
are translated into simple sequences and uploaded to
the remote spacecraft.

An example of this mode of operations is the Mars
Exploration Rover (MER) mission [12]. In the MER
mission, plans are built in a mixed-initiative fashion on
Earth. In this process, tools such as the Science
Activity Planner (SAP) [9] and Mixed-initiative
activity planner for the Mars Exploration Rover
mission (MAPGEN) [2] combine automated

On-board planner
(CASPER planner)

Off-board planner
(PICO Contingent Planner)

Universal Executive

CLARAty Functional Layer

Interface Interface

Plan Execution
Interchange
Language (PLEXIL)

 3

capabilities and interfaces for human plan construction.
The resulting plans are translated into command
sequences and uploaded to the Mars rovers.

The on-board flight software on the rovers then
executes the command sequences. In cases where the
outcome of complex commands, such as an arm
placement, is uncertain, the command sequence is
generated so that the plan terminates at this point and
the rover takes a picture and sends it back to Earth.
Rover experts then analyze these pictures and the
telemetry the rover sends back in order to determine
what state the rover is in. Based on this analysis, a new
sequence of commands is generated. The MER rovers
have been extremely successful and have been
operating on Mars for over a year. However, the mode
of operation is fairly cumbersome in part because the
current execution language is fairly impoverished. For
example the current language does not allow naturally
for contingencies, floating plan additions, loops, etc.

4. REQUIREMENTS FOR EXECUTION
LANGUAGE

The case studies described above have several features
in common that drive the design of an executive
language. For one, the execution system that executes
the language must be efficient. The language should be
interpretable by an execution system that can fit on a
flight processor and must run fast to meet certain
commanding and fault handling timing requirements.

The execution language should support the current
mode of operation, as exemplified by MER, which
involves human operators generating every single
sequence of commands in an offline manner. In
addition, it should also be able to support general
contingent plans that encode alternative sequences of
actions depending on a set of possible situations Mars
may dole out to the rover.

The language should be modular so that commands for
different operations can be encoded independently. In
addition it should support multiple automated
planners. This promotes reuse and good software
engineering practices.

The language needs to be expressive enough to
represent simple branches, floating branches, loops,
time and event driven activities, concurrent activities,
sequences, and temporal constraints. At the same time
the syntax should be simple and uniform, making plan
interpretation simple and efficient, while enabling the
application of validation and testing techniques. The
language should be semantically clear and
deterministic given the same sequence of inputs.

The execution language should be amenable to mixed-
initiative planning. In other words, it should be
possible to translate plans from an automated planner
into plans in the execution language and in addition it
should be possible to manually edit these plans if
necessary.

One important aspect of the interface between planning
and execution systems is the feedback from the
executive to the planner. This is particularly important
for on-board planning systems, which have a tight
integration with the executive. The language should
provide support for specifying what information should
be returned to the planner upon successful or
unsuccessful completion of tasks. For certain planners
feedback should also be provided during task
execution.

The language should easily and naturally interface to
other tools, such as path planners, diagnosis tool, third-
party libraries (e.g., for ephemeris data), etc.

5. PLEXIL

In our design of the PLEXIL plan execution language,
we have endeavoured to incorporate all the
requirements listed above. PLEXIL is based on a
hierarchical representation of execution nodes.
Execution nodes describe both initiation of real-world
actions, and the control of execution. The nodes are
arranged into hierarchical trees where leaf nodes are
action nodes and internal nodes are control nodes. The
execution of each node is governed by a set of
conditions, such as when the node gets activated and
when it is done. Conditions capture temporal
relationships, as well as internal and external
information, such as when the temperature gets above a
certain threshold or when a rock has been seen. When
action nodes are executed, commands are sent to the
rover, whereas when control nodes are executed, they
are expanded to the next level of nodes in the tree.

For example, consider the following PLEXIL plan:

Node:{
 NodeId: SafeDrive;
 Repeat-until-condition:
 Lookup{“Rover:wheelStuck”}==false;
 NodeList:{
 Node:{
 NodeId: DriveOneMeter
 Command: Rover:Drive(1);
 }
 }
}

The plan has one action node (with identifier
DriveOneMeter) that drives the rover one meter by
invoking the command Rover:Drive(1) in the

 4

functional layer. The plan also has one control node
(SafeDrive) that keeps repeating the action node
until the rover is stuck. This is specified by a
Repeat-until-condition that requests
information from the functional layer, via a lookup.

5.1 Language Features

We describe now some of the main features of
PLEXIL. In addition to execution nodes and the
associated conditions, PLEXIL supports declared
variables, assignments to these variables and explicit
node interfaces.

Nodes
There are three types of nodes in PLEXIL.
• Node-list nodes are internal nodes that simply

contain a list of children nodes.
• Command nodes are action nodes that contain

command calls to the functional layer to initiate
real world actions. A command call specifies a
command name and a list of arguments,
conforming to the domain description.

• Assignment nodes are action nodes that perform
assignments to declared variables (i.e. internal
actions).

In addition, each node has a set of Node Attributes.
We discuss some of them below.
• NodeId: A unique symbolic name
• A set of conditions (i.e. Boolean expressions) that

drive the node execution. start condition, end
condition and repeat-until condition determine if
the execution of a node should start, end or repeat,
respectively. pre-condition, post-condition, and
invariant-condition determine whether the node is
executing normally; if any of these conditions fail
to evaluate to true, the node execution is aborted
with a failure indication.

• Variables: List of local variable declarations.
These variables can be used in the assignments
and conditions in the sub-tree of the current node
(see next bullet).

• Interface: List of variables declared in an ancestor,
“passed” to the node. A child of a node only has
access to the variables declared in the parent that
are explicitly passed via the interface (details in
 [7]).

To control execution, PLEXIL node elements can
access information from external, world states, via
lookups. Each external state is identified by a domain-
specific name. For example,
Lookup{“Rover:wheelStuck”} returns the
value of state “Rover:wheelStuck” when the lookup is
done. Lookups can appear in assignments or in
conditions. There are three classes of lookups:

1) Frequency based lookups provide the requested
value at a specified frequency. e.g. lookup
temperature every 10 minutes.

2) Event based lookups provide the requested value
only when it changes. e.g. return the temperature
when it falls below 0ºC.

3) One time lookups provide the value at the time
they are evaluated. e.g. lookup the current
temperature.

A tolerance may also be specified with frequency and
event based lookups.

An internal PLEXIL event is generated when the value
returned by a lookup (either event-based or frequency
based) has changed (i.e. the previous value is different
from the current value by more than the tolerance, if
specified). Note that a change in value is reported
based only on the information from lookups. The true
state of the world may change at a higher frequency.

In addition to the external states, which are accessed
via lookups, a PLEXIL plan has access to the values of
a number of internal variables, such as the start and
end times for the execution of each node, the status of
completed executions (success or fail), etc.

Types
The domain of variables is extended with additional
values (unknown, fail) to account for failure. As a
result the conditions are interpreted using multiple-
valued logic.

Syntactic Enhancements
To increase usability the language includes syntactic
enhancements for constructs such as if-then-else,
while-loop, macros and tail recursion. The instantiation
of the syntactic enhancements is defined in terms of the
core language features.

Domain Description
The domain description is an external library that
contains the names of state variables, function names
associated with commands, etc. The domain
description defines the interface of the executive with
the functional layer. In addition, it can declare any
general function that may be used for example to
perform complex mathematical computations.

5.2 Node Execution

As mentioned, the execution of PLEXIL nodes is
governed by the various conditions on the nodes, e.g.,
start conditions, end conditions, and invariant
conditions. Due to the nature of these conditions, the
execution is driven by events, which include time
passing, rover and world state changes, and changes in
the values of declared and internal variables.

 5

The semantics of node execution is defined in terms of
node states and event based transitions. The states that
the node can be in are waiting, executing, finishing,
iteration ended, and finished.

 To ensure the right execution context pre-, post-, and
invariant conditions are checked at the start, duration,
and end of the execution of each node. If any of these
conditions fail the node fails and transitions to state
finished.

Execution of each node either succeeds or fails and the
outcome affects further the execution of the plan. For
example, the failure of a node may trigger the
execution of another node that performs some actions
to recover from the failure.

The execution of a plan proceeds as follows. All top-
level nodes are created immediately upon start of plan
execution. Any other node gets created when its
parent-node’s start condition becomes true (and the
parent’s precondition is true at that time). A newly
created node is in waiting state.

In the waiting state the start condition of a node is
monitored. Once the start condition of a node becomes
true it is ready for execution and it transitions to the
executing state.

In the executing state, if the node is a command or an
assignment then corresponding command or
assignment is performed. Otherwise the node creates
its children which all start in waiting state.

If the end condition is met the node transitions from
state executing to iteration ended. The repeat-until
condition is then checked. If the condition is false the
node transitions back to the waiting state else it
transitions to state finished.

There is a distinction between states iteration ended
and finished. Some nodes must execute multiple times
whenever the start condition is satisfied, e.g. a node
that heats a component whenever the temperature falls
below a certain level. State iteration ended represents
the end of a single iteration of node execution. State
finished represents the end of “all” iterations of the
node and the start condition of the node iso longer
monitored. Note that nodes that execute only once have
a repeat-until condition that is set to true. Hence the
state iteration ended immediately transitions to state
finished.

5.3 XML Schema, Grammar, Conversion to Java
for Verification, Plan editor
PLEXIL plans are written in XML [15] for increased

portability. The XML Schema for PLEXIL plans was
developed using the XMLSpy [1] Schema editor.
Castor [4] was used to generate Java code and a parser
for XML plans – which can be analyzed with the Java
PathFinder [8] verification tool. This code will also be
used for automatic test input generation (plans that
conform to the schema will be generated automatically
based on the PLEXIL grammar) for analysis of XML.

A PLEXIl plan editor has been developed, which
allows users to create new plans or to modify existing
ones, through a graphical interface. In the future the
Java PathFinder tool will be used in conjunction with
the plan editor – the intention is to check the newly
modified plans.
For further details on the syntax, semantics, and tools
for PLEXIL see [7].

6. UNIVERSAL EXECUTIVE

In order for the PLEXIL language to be useable, an
execution system is required to interpret it. We are
currently developing such an execution system, called
the Universal-Executive. This is in a collaborative
effort between researchers at NASA Ames Research
Center, NASA’s Jet Propulsion Laboratory and
Carnegie Mellon University. In particular, the
Universal Executive is being designed to facilitate
reuse and inter-operability of execution and planning
frameworks.

The input to the Universal-Executive will be a PLEXIL
representation of an execution control instance and a
description of relevant domain information. Having an
interpreted encoding of the domain information makes
the Universal Executive independent of the specific
mission context in which it is being used. The
Universal Executive will be capable of executing
multiple nodes concurrently. When action nodes are
executed, commands are sent to the rover, whereas
when internal nodes are executed, they are expanded to
the next level of nodes in the tree.
During plan execution, PLEXIL also enables
monitoring of different state and resource information
as well as command status. This information can be
used to direct execution and/or can be relayed to other
decision-making capabilities (i.e., planners).

The expressiveness of the language enables the
Universal Executive to handle dynamic outcomes and
environmental uncertainty. The executive can also
provide execution information and outcomes back to
higher-level systems. Consequently, it can be used
both as a stand-alone execution-only system, and as an
execution system coupled with an external planner
[13].

 6

7. EXAMPLE

Consider the stylized example shown in Table 1.

Figure 2 and Figure 3 show an example where
alternate options in the same PLEXIL plan above are

executed based on different sensed states of the world.
In Figure 2 the drive times out and a Navcam image is
taken. Execution in Figure 3 follows an alternate path
since in this scenario the target is reached. A Pancam
image is taken instead based on the same PLEXIL
plan. The domain specification given for this scenario
contains the following mapping:

Commands: void rover_drive(int
speed);
 void rover_stop();
 void take_navcam();
 void take_pancam();
 void turn_on_heater();
StateNames: temperature,
target_in_view;

Here, Commands are function calls provided by the low
level interface to the rover (functional layer) and
StateNames are sensed or derived values that can be
accessed from the functional layer.

Figure 2: An example execution where the drive times
out.

Figure 3: An example execution where the target is
reached.

Note that the actual code sent to the Universal
Executive will be in XML, which is a fairly standard
representation for information exchange, but is not
easy to read.
Example PLEXIL syntax for executing the above
scenario is shown in Table 2.

8. CONCLUSION

We believe that PLEXIL could provide richer
representations for executable plans on spacecraft, with
minimal added effort or risk.

Using PLEXIL and a corresponding execution system
would enable context-sensitive control that can take
into account the current state of the rover and
environment and the outcome of previous actions,
while at the same time including complex monitoring
of plan specific constraints. PLEXIL offers a fully
general contingency plan representation. For example
completely different sequences may be executed in
response to different states. In addition it also has
floating contingencies, which are commands that are
not in the sequences, but get executed when certain
conditions are met.

Each PLEXIL plan can potentially be verified
individually. In addition, it is possible for human
experts to evaluate the range of scenarios that may
result from a PLEXIL plan.

This is ongoing work and we are reporting on part of
the language that is being defined. There are related
execution systems and languages such as APEX [16],
Reactive Model-based Programming Language
(RMPL) [17], and TDL [11].

Drive Navcam

Heat Heat

Temp:

Time: 0 5 10

Target

Drive Pancam

Heat Heat

Temp:

Time: 0 5 10

Target

• Drive rover
− Until target in view, or
− Until time-out at time 10

• Take Navcam
− After drive, if drive timed out

• Take Pancam
− After drive, if target in view

• Heat up to 10 ºC
− Whenever temperature below 0ºC

Table 1: Example plan

 7

9. REFERENCES

[1] Altova, XMLSpy toolkit, http://www.altova.com
[2] Bresina J., Jónsson A, Morris P., Rajan K.,

Activity Planning for the Mars Exploration
Rovers, The International Conference on
Automated Planning & Scheduling (ICAPS),
2005.

[3] Bresina J.L. and Washington, R., Robustness via
Run-time Adaptation of Contingent Plans, In
Proceedings of the AAAI-2001 Spring Syposium:
Robust Autonomy. Stanford, CA

[4] Castor, The Castor Project, http://www.castor.org
[5] Chien S., Knight R., Stechert A., Sherwood R.,

Rabideau G., Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,
International Conference on Artificial Intelligence
Planning Systems (AIPS 2000). Breckenridge,
CO. April 2000

[6] Dearden R., Meuleau N., Ramakrishnan S., Smith
D., and Washington R., Incremental Contingency
Planning, ICAPS-03 Workshop on Planning
under Uncertainty, Trento, Italy, June 2003.

[7] Estlin T., Jónsson A., Pasareanu C., Simmons R.,
Tso K., Verma V., PLEXIL – The Language,
NASA Technical Memorandum.

[8] Java Pathfinder ,
http://javapathfinder.sourceforge.net

[9] Jeffrey S. Norris, Mark W. Powell, Marsette A.
Vona, Paul G. Backes, Justin V., Mars
Exploration Rover Operations with the Science
Activity Planner, International Conference on
Robotics and Automation 2005.

[10] Object Technology International Inc., Eclipse
Platform Technical Overview, White Paper, July
2001.

[11] Simmons R. and Apfelbaum D., A Task
Description Language for Robot Control,
Proceedings of Conference on Intelligent
Robotics and Systems, Vancouver Canada,
October 1998.

[12] Squyres S., Roving Mars: Spirit, Opportunity, and
the Exploration of the Red Planet, Hyperion
Press.

[13] Verma V., Jónsson A., Simmons R., Estlin T.,
Levinson R., Survey of Command Execution
Systems for NASA Robots and Spacecraft, Plan
Execution: A Reality Check Workshop at The
International Conference on Automated Planning
& Scheduling (ICAPS), 2005

[14] Volpe R., Nesnas I. A. D., Estlin T., Mutz D.,
Petras R., Das H., The CLARAty Architecture for
Robotic Autonomy. Proceedings of the 2001 IEEE
Aerospace Conference, Big Sky Montana, March
10-17 2001.

[15] Yergeau F., Cowan J., Bray T., Paoli J., Sperberg-
McQueen C., Maler E., Extensible Markup
Language (XML 1.1), W3C Recommendation, 4th
February 2004.

[16] Freed M., Managing Multiple Tasks in Complex,
Dynamic Environments. In Proceedings of the
1998 National Conference on Artificial
Intelligence. Madison, WI. 1998

[17] Williams B. C., Ingham M., Chung S. H., and
Elliott P. H., January 2003. Model-based
Programming of Intelligent Embedded Systems
and Robotic Space Explorers, invited paper in
Proceedings of the IEEE: Special Issue on
Modeling and Design of Embedded Software,
vol. 9, no. 1, pp. 212-237.

 8

Figure 4: Plexil Plan Editor

Node: {
 NodeID: DriveToTarget;
 Boolean drive_done, timeout;

 NodeList: {

 Command: rover_drive(10);

 When
 AbsoluteTimeWithin:{10, POSITIVE_INFINITY}
 Sequence:{
 Command: rover_stop();
 Assign: timeout=true;
 }

 When
 Lookup{“target_in_view”,Frequency=10}==true;
 Sequence:{
 Command: rover_stop();
 Assign: drive_done=true;
 }

 When timeout==true
 Command: take_navcam();

 When drive_done==true
 Command: take_pancam();

 Node:{
 NodeID: Heater;
 StartCondition: Lookup{“temperature”}<0
 EndCondition: Lookup{“temperature”}>=10
 RepeatUntilCondition: false;
 Command: turn_on_heater();
 }
 }

}

Table 2. PLEXIL for example from Table 1

