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ABSTRACT 
 
Space mission operations require flexible, efficient and 
reliable plan execution. In typical operations command 
sequences (which are a simple subset of general 
executable plans) are generated on the ground, either 
manually or with assistance from automated planning, 
and sent to the spacecraft.  For more advanced 
operations more expressive executable plans may be 
used; the plans might also be generated automatically 
on board the spacecraft.  In all these cases, the 
executable plans are received by a software system that 
executes the plan.  This software system, often called 
an executive, must ensure that the execution of the 
commands and response of the fault protection system 
conforms to pre-planned behaviour. This paper 
presents a language, called PLEXIL, that is designed 
specifically for flexible and reliable command 
execution. It is designed to be portable, lightweight, 
predictable, and verifiable, and at the same time it is 
more expressive than command sequencing languages 
currently used on space missions.   
 

1. INTRODUCTION 
 
All space missions require execution systems that 
execute commands and monitor the environment. Such 
execution systems vary in sophistication, from those 
that execute linear sequences of commands at fixed 
times, to those that can plan and schedule in reaction to 
unexpected changes in the environment. 
 
The level of autonomy and type of control that 
execution systems are designed for varies greatly  [13]. 
A spacecraft controlled primarily by humans must 
continuously monitor critical systems and report 
important events. An execution system is needed for 

this task since it is impossible for a small team to 
manually keep track of all sub-systems in real time. 
Complex manipulators and instruments used in human 
missions must also execute sequences of commands to 
perform complex tasks. Similarly, a rover operating on 
Mars must autonomously execute commands sent from 
Earth and keep the rover safe in abnormal situations.  
 
Execution systems realize pre-planned actions in the 
real world. Execution systems are particularly useful in 
the presence of uncertainty. Classical execution 
functions include selecting an action from a set of 
possibilities based on the current state of the robot and 
environment and on the outcome of previous actions.  
The capabilities of an execution system typically 
include hierarchical task decomposition, coordinating 
simultaneous actions, resource management, 
monitoring of states, relaying command status, and 
exception handling. One way to view an execution 
system is as an onboard system that takes a plan that 
assumes a certain level of certainty and expected 
outcomes and executes it in a possibly uncertain and 
dynamic environment. 
 
An execution language is a representation of 
commands and plans that provides a representation for 
reasoning about required robot and environment state 
as well as the effects of executed commands. It takes 
into account the interdependence between actions, in 
terms of temporal precedence and other constraints, 
such as resource contention. An execution language 
also provides a representation for monitoring mission 
constraints and encoding appropriate responses if these 
constraints are violated. 
 
Plan execution frameworks vary greatly, due both to 
different capabilities of the execution systems and due 



 2

to relationships with associated decision-making 
frameworks.  The latter dependency has made the reuse 
of execution and planning frameworks difficult, and 
has all but precluded information sharing between 
different execution and decision-making systems. 
 
As a step in the direction of addressing these issues, we 
are developing a general plan execution language, 
called the Plan Execution Interchange Language 
(PLEXIL). PLEXIL extends many execution control 
capabilities of other systems. It is capable of 
expressing concepts used by many high-level 
automated planners and hence provides an interface to 
multiple planners.  
 
The key characteristics of PLEXIL are that it is 
compact, semantically clear, and deterministic given 
the same sequence of inputs.  At the same time, the 
language is quite expressive and can represent simple 
branches, floating branches, loops, time and event 
driven activities, concurrent activities, sequences, and 
temporal constraints.  The core syntax of the language 
is simple and uniform, making plan interpretation 
simple and efficient, while enabling the application of 
validation and testing techniques. 
 
 PLEXIL includes a domain description that specifies 
command types, task expansions, constraints, etc., as 
well as feedback to the higher-level decision-making 
capabilities. In addition, PLEXIL includes a graphical 
user interface that builds upon the Eclipse framework 
 [10] that can be used to manually create PLEXIL plans.  
 
This paper provides an overview of the grammar and 
semantics of PLEXIL. Further details may be found in 
 [7]. It also outlines ongoing work on implementing a 
universal execution system, based on PLEXIL, using 
state-of-the-art rover functional interfaces and planners 
as test cases. 
 

2. BACKGROUND 
 
We are using several existing implementations of rover 
control systems to drive the design of PLEXIL.  One of 
these is the Coupled Layer Architecture for Robotic 
Autonomy (CLARAty)  [14], which is a two layered 
software architecture that was developed to enable both 
a plug-and-play capability and a tighter coupling of 
high level decision making planners and the interface 
to hardware. The CLARAty architecture has 
successfully enabled interoperability at the functional 
layer, which is the interface to the hardware. The 
development of the PLEXIL-based execution system in 
the CLARAty architecture will provide a level of 
interchangeability for the decision layer. 
 

As test cases for the general PLEXIL execution engine, 
two different types of planners will be utilized for 
generating PLEXIL plans and re-planning based on 
feedback information.  One is a constructive planner, 
called PICO  [6], that generates long-term contingent 
plans, which are flexible.Since plans contain 
contingencies, PICO can be used off-board the rover.  
The other is an iterative repair-based planner, called 
CASPER  [5], which generates fixed plan instances but 
can easily re-plan in the face of changes. CASPER is 
typically used as an on-board planner.  Currently, each 
planner interacts with the hardware using different 
executives.  The executive used with CASPER is based 
on TDL  [11], which is an extension of the C++ 
programming language that includes syntax for task 
definition, task expansion, temporal constraints, 
concurrent execution, monitoring, and fault recovery. 
PICO uses the Contingent Rover Language (CRL)  [3] 
executive which uses a hierarchical representation to 
represent simple and floating branches, nesting, 
flexible time, and state and resource conditions, but 
does not support loops and periodic tasks, or have a 
mechanism for providing feedback to planners. 

 
 

 

Figure 1: Architectural design where PLEXIL is shown 
to interface with the CASPER and PICO planners 

 

3. TRADITIONAL SPACECRAFT 
OPERATIONS 

 
In traditional spacecraft operations control commands 
are translated into simple sequences and uploaded to 
the remote spacecraft.  
 
An example of this mode of operations is the Mars 
Exploration Rover (MER) mission  [12]. In the MER 
mission, plans are built in a mixed-initiative fashion on 
Earth.  In this process, tools such as the Science 
Activity Planner (SAP)  [9] and Mixed-initiative 
activity planner for the Mars Exploration Rover 
mission (MAPGEN)  [2] combine automated 
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capabilities and interfaces for human plan construction.  
The resulting plans are translated into command 
sequences and uploaded to the Mars rovers. 
 
The on-board flight software on the rovers then 
executes the command sequences. In cases where the 
outcome of complex commands, such as an arm 
placement, is uncertain, the command sequence is 
generated so that the plan terminates at this point and 
the rover takes a picture and sends it back to Earth. 
Rover experts then analyze these pictures and the 
telemetry the rover sends back in order to determine 
what state the rover is in. Based on this analysis, a new 
sequence of commands is generated. The MER rovers 
have been extremely successful and have been 
operating on Mars for over a year. However, the mode 
of operation is fairly cumbersome in part because the 
current execution language is fairly impoverished. For 
example the current language does not allow naturally 
for contingencies, floating plan additions, loops, etc.   
 

4. REQUIREMENTS FOR EXECUTION 
LANGUAGE 

 
The case studies described above have several features 
in common that drive the design of an executive 
language.  For one, the execution system that executes 
the language must be efficient. The language should be 
interpretable by an execution system that can fit on a 
flight processor and must run fast to meet certain 
commanding and fault handling timing requirements.   
 
The execution language should support the current 
mode of operation, as exemplified by MER, which 
involves human operators generating every single 
sequence of commands in an offline manner. In 
addition, it should also be able to support general 
contingent plans that encode alternative sequences of 
actions depending on a set of possible situations Mars 
may dole out to the rover. 
 
The language should be modular so that commands for 
different operations can be encoded independently. In 
addition it should support multiple automated 
planners. This promotes reuse and good software 
engineering practices. 
 
The language needs to be expressive enough to 
represent simple branches, floating branches, loops, 
time and event driven activities, concurrent activities, 
sequences, and temporal constraints.  At the same time 
the syntax should be simple and uniform, making plan 
interpretation simple and efficient, while enabling the 
application of validation and testing techniques. The 
language should be semantically clear and 
deterministic given the same sequence of inputs.  
 

The execution language should be amenable to mixed-
initiative planning. In other words, it should be 
possible to translate plans from an automated planner 
into  plans in the execution language and in addition it 
should be possible to manually edit these plans if 
necessary.   
 
One important aspect of the interface between planning 
and execution systems is the feedback from the 
executive to the planner. This is particularly important 
for on-board planning systems, which have a tight 
integration with the executive. The language should 
provide support for specifying what information should 
be returned to the planner upon successful or 
unsuccessful completion of tasks. For certain planners 
feedback should also be provided during task 
execution.   
 
The language should easily and naturally interface to 
other tools, such as path planners, diagnosis tool, third-
party libraries (e.g., for ephemeris data), etc. 
 

5. PLEXIL 
 
In our design of the PLEXIL plan execution language, 
we have endeavoured to incorporate all the 
requirements listed above.  PLEXIL is based on a 
hierarchical representation of execution nodes.  
Execution nodes describe both initiation of real-world 
actions, and the control of execution.  The nodes are 
arranged into hierarchical trees where leaf nodes are 
action nodes and internal nodes are control nodes.  The 
execution of each node is governed by a set of 
conditions, such as when the node gets activated and 
when it is done. Conditions capture temporal 
relationships, as well as internal and external 
information, such as when the temperature gets above a 
certain threshold or when a rock has been seen. When 
action nodes are executed, commands are sent to the 
rover, whereas when control nodes are executed, they 
are expanded to the next level of nodes in the tree.   
 
For example, consider the following PLEXIL plan: 
 
Node:{  
 NodeId: SafeDrive; 
 Repeat-until-condition:  
            Lookup{“Rover:wheelStuck”}==false; 
 NodeList:{ 
  Node:{  
   NodeId: DriveOneMeter 
   Command: Rover:Drive(1); 
  } 
 } 
} 
 
The plan has one action node (with identifier 
DriveOneMeter) that drives the rover one meter by 
invoking the command Rover:Drive(1) in the 
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functional layer.  The plan also has one control node 
(SafeDrive) that keeps repeating the action node 
until the rover is stuck. This is specified by a 
Repeat-until-condition that requests 
information from the functional layer, via a lookup. 

5.1 Language Features 
 
We describe now some of the main features of 
PLEXIL. In addition to execution nodes and the 
associated conditions, PLEXIL supports declared 
variables, assignments to these variables and explicit 
node interfaces. 
 
Nodes 
There are three types of nodes in PLEXIL.   
• Node-list nodes are internal nodes that simply 

contain a list of children nodes.   
• Command nodes are action nodes that contain 

command calls to the functional layer to initiate 
real world actions. A command call specifies a 
command name and a list of arguments, 
conforming to the domain description. 

• Assignment nodes are action nodes that perform 
assignments to declared variables (i.e. internal 
actions). 

 
In addition, each node has a set of  Node Attributes. 
We discuss some of them below. 
• NodeId: A unique symbolic name 
• A set of conditions (i.e. Boolean expressions) that 

drive the node execution. start condition, end 
condition and repeat-until condition determine if 
the execution of a node should start, end or repeat, 
respectively. pre-condition, post-condition, and 
invariant-condition determine whether the node is 
executing normally; if any of these conditions fail 
to evaluate to true, the node execution is aborted 
with a failure indication. 

• Variables: List of local variable declarations. 
These variables can be used in the assignments 
and conditions in the sub-tree of the current node 
(see next bullet). 

• Interface: List of variables declared in an ancestor, 
“passed” to the node. A child of a node only has 
access to the variables declared in the parent that 
are explicitly passed via the interface (details in 
 [7]).  

 
To control execution, PLEXIL node elements can 
access information from external, world states, via 
lookups. Each external state is identified by a domain-
specific name. For example,   
Lookup{“Rover:wheelStuck”} returns the 
value of state “Rover:wheelStuck” when the lookup is 
done.  Lookups can appear in assignments or in 
conditions. There are three classes of lookups: 

1) Frequency based lookups provide the requested 
value at a specified frequency. e.g. lookup 
temperature every 10 minutes. 

2) Event based lookups provide the requested value 
only when it changes. e.g. return the temperature 
when it falls below  0ºC. 

3) One time lookups provide the value at the time 
they are evaluated. e.g. lookup the current 
temperature. 

A tolerance may also be specified with frequency and 
event based lookups.  
 
An internal PLEXIL event is generated when the value 
returned by a lookup (either event-based or frequency 
based) has changed (i.e. the previous value is different 
from the current value by more than the tolerance, if 
specified). Note that a change in value is reported 
based only on the information from lookups. The true 
state of the world may change at a higher frequency. 
 
In addition to the external states, which are accessed 
via lookups, a PLEXIL plan has access to the values of 
a number of internal variables, such as the start and 
end times for the execution of each node, the status of 
completed executions (success or fail), etc. 
 
Types 
The domain of variables is extended with additional 
values (unknown, fail) to account for failure. As a 
result the conditions are interpreted using multiple-
valued logic. 
 
Syntactic Enhancements 
To increase usability the language includes syntactic 
enhancements for constructs such as if-then-else, 
while-loop, macros and tail recursion. The instantiation 
of the syntactic enhancements is defined in terms of the 
core language features.   
 
Domain Description 
The domain description is an external library that 
contains the names of state variables, function names 
associated with commands, etc. The domain 
description defines the interface of the executive with 
the functional layer. In addition, it can declare any 
general function that may be used for example to 
perform complex mathematical computations.  
 

5.2 Node Execution 
 
As mentioned, the execution of PLEXIL nodes is 
governed by the various conditions on the nodes, e.g., 
start conditions, end conditions, and invariant 
conditions.  Due to the nature of these conditions, the 
execution is driven by events, which include time 
passing, rover and world state changes, and changes in 
the values of declared and internal variables.  
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The semantics of node execution is defined in terms of 
node states and event based transitions. The states that  
the node can be in are waiting, executing, finishing, 
iteration ended, and finished. 
 
 To ensure the right execution context pre-, post-, and 
invariant conditions are checked at the start, duration, 
and end of the execution of each node. If any of these 
conditions fail the node fails and transitions to state 
finished. 
 
Execution of each node either succeeds or fails and the 
outcome affects further the execution of the plan. For 
example, the failure of a node may trigger the 
execution of another node that performs some actions 
to recover from the failure. 
 
The execution of a plan proceeds as follows. All top-
level nodes are created immediately upon start of plan 
execution.  Any other node gets created when its 
parent-node’s start condition becomes true (and the 
parent’s precondition is true at that time).  A newly 
created node is in waiting state.  
 
In the waiting state the start condition of a node is 
monitored. Once the start condition of a node becomes 
true it is ready for execution and it transitions to the 
executing state. 
 
In the executing state, if the node is a command or an 
assignment then corresponding command or 
assignment is performed. Otherwise the node creates 
its children which all start in waiting state.  
 
If the end condition is met the node transitions from 
state executing to iteration ended. The repeat-until 
condition is then checked. If the condition is false the 
node transitions back to the waiting state else it 
transitions to state finished. 
 
There is a distinction between states iteration ended 
and finished. Some nodes must execute multiple times 
whenever the start condition is satisfied, e.g. a node 
that heats a component whenever the temperature falls 
below a certain level. State iteration ended represents 
the end of a single iteration of node execution. State 
finished represents the end of “all” iterations of the 
node and the start condition of the node iso longer 
monitored. Note that nodes that execute only once have 
a repeat-until condition that is set to true. Hence the 
state iteration ended immediately transitions to state  
finished. 
 

5.3 XML Schema, Grammar, Conversion to Java 
for Verification, Plan editor 
PLEXIL plans are written in XML [15] for increased 

portability. The XML Schema for PLEXIL plans was 
developed using the XMLSpy [1] Schema editor. 
Castor [4] was used to generate Java code and a parser 
for XML plans – which can be analyzed with the Java 
PathFinder [8] verification tool. This code will also be 
used for automatic test input generation (plans that 
conform to the schema will be generated automatically  
based on the PLEXIL grammar) for analysis of XML. 
 
A PLEXIl plan editor has been developed, which 
allows users to create new plans or to modify existing 
ones, through a graphical interface. In the future the 
Java PathFinder tool will be used in conjunction with 
the plan editor – the intention is to check the newly 
modified plans.  
For further details on the syntax, semantics, and tools 
for PLEXIL see  [7]. 
 

6. UNIVERSAL EXECUTIVE 
 
In order for the PLEXIL language to be useable, an 
execution system is required to interpret it. We are 
currently developing such an execution system, called 
the Universal-Executive. This is in a collaborative 
effort between researchers at NASA Ames Research 
Center, NASA’s Jet Propulsion Laboratory and 
Carnegie Mellon University. In particular, the 
Universal Executive is being designed to facilitate 
reuse and inter-operability of execution and planning 
frameworks. 
 
The input to the Universal-Executive will be a PLEXIL 
representation of an execution control instance and a 
description of relevant domain information.  Having an 
interpreted encoding of the domain information makes   
the Universal Executive independent of the specific 
mission context in which it is being used. The 
Universal Executive will be capable of executing 
multiple nodes concurrently. When action nodes are 
executed, commands are sent to the rover, whereas 
when internal nodes are executed, they are expanded to 
the next level of nodes in the tree. 
During plan execution, PLEXIL also enables 
monitoring of different state and resource information 
as well as command status.  This information can be 
used to direct execution and/or can be relayed to other 
decision-making capabilities (i.e., planners). 
 
The expressiveness of the language enables the 
Universal Executive to handle dynamic outcomes and 
environmental uncertainty.  The executive can also 
provide execution information and outcomes back to 
higher-level systems.  Consequently, it can be used 
both as a stand-alone execution-only system, and as an 
execution system coupled with an external  planner 
[13]. 
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7. EXAMPLE  
 
Consider the stylized example shown in Table 1.  
 
Figure 2 and Figure 3 show an example where 
alternate options in the same PLEXIL plan above are 

executed based on different sensed states of the world. 
In Figure 2 the drive times out and a Navcam image is 
taken. Execution in Figure 3 follows an alternate path 
since in this scenario the target is reached. A Pancam 
image is taken instead based on the same PLEXIL 
plan. The domain specification given for this scenario 
contains the following mapping: 
 
Commands: void rover_drive(int 
speed); 
          void rover_stop(); 
          void take_navcam(); 
          void take_pancam(); 
          void turn_on_heater(); 
StateNames: temperature, 
target_in_view; 
 
Here, Commands are function calls provided by the low 
level interface to the rover (functional layer) and 
StateNames are sensed or derived values that can be 
accessed from the functional layer. 
 

 
 

Figure 2: An example execution where the drive times 
out. 

 

 
 

Figure 3: An example execution where the target is 
reached. 

Note that the actual code sent to the Universal 
Executive will be in XML, which is a fairly standard 
representation for information exchange, but is not 
easy to read.  
Example PLEXIL syntax for executing the above 
scenario is shown in Table 2. 
 

8. CONCLUSION 
 
We believe that PLEXIL could provide richer 
representations for executable plans on spacecraft, with 
minimal added effort or risk.  
 
Using PLEXIL and a corresponding execution system 
would enable context-sensitive control that can take 
into account the current state of the rover and 
environment and the outcome of previous actions, 
while at the same time including complex monitoring 
of plan specific constraints. PLEXIL offers a fully 
general contingency plan representation. For example 
completely different sequences may be executed in 
response to different states. In addition it also has 
floating contingencies, which are commands that are 
not in the sequences, but get executed when certain 
conditions are met. 
 
Each PLEXIL plan can potentially be verified 
individually. In addition, it is possible for human 
experts to evaluate the range of scenarios that may 
result from a PLEXIL plan.  
 
This is ongoing work and we are reporting on part of 
the language that is being defined.  There are related 
execution systems and languages such as APEX  [16], 
Reactive Model-based Programming Language 
(RMPL)  [17], and TDL  [11].  
 
 

Drive Navcam

Heat Heat

Temp: 

Time: 0 5 10 

Target 

Drive Pancam 

Heat Heat

Temp: 

Time: 0 5 10 

Target 

• Drive rover 
− Until target in view, or 
− Until time-out at time 10 

• Take Navcam 
− After drive, if drive timed out 

• Take Pancam 
− After drive, if target in view 

• Heat up to 10 ºC 
− Whenever temperature below 0ºC

Table 1: Example plan 
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Figure 4: Plexil Plan Editor 

 

 

 

 

Node: { 
 NodeID: DriveToTarget; 
 Boolean drive_done, timeout; 
 
 NodeList: { 
 
  Command: rover_drive(10); 
 
  When   
  AbsoluteTimeWithin:{10, POSITIVE_INFINITY} 
   Sequence:{ 
    Command: rover_stop(); 
    Assign: timeout=true; 
  } 
 
  When  
  Lookup{“target_in_view”,Frequency=10}==true; 
   Sequence:{ 
     Command: rover_stop(); 
     Assign: drive_done=true; 
   } 
   
  When timeout==true 
   Command: take_navcam(); 
 
  When drive_done==true 
   Command: take_pancam(); 
 
  Node:{ 
 NodeID: Heater; 
 StartCondition: Lookup{“temperature”}<0 
 EndCondition: Lookup{“temperature”}>=10 
    RepeatUntilCondition: false; 
    Command: turn_on_heater(); 
  } 
 } 

} 

Table 2. PLEXIL  for example from Table 1 


