
reliable, and speedy, navigation in peopled office/corridor

environments.

7 Conclusions

We have presented the curvature-velocity method for local

obstacle avoidance, which treats the problem as one of

constrained optimization in the velocity space of the robot.

Advantages of this formulation include the ability to

simultaneously control the speed and heading of the robot,

the ease of incorporating constraints from both the

environment and the robot dynamics, and the ability to

handle trade offs between speed, safety, and goal-

directedness.

CVM achieves real-time performance by approximating

how far the robot could travel along a given curvature

before hitting an obstacle. The approximation is a

piecewise constant function, defined by the curvatures

tangent to the obstacles. Additional velocity constraints are

added based on the physical limits of the robot and the

desire to keep it away from obstacles, or at least to travel

slowly when passing nearby obstacles.

The method has been implemented and tested on Xavier, a

synchro-drive robot (it is also applicable to differentially

steered vehicles and to non-holonomic vehicles that travel

along circular arcs). The implementation is quite efficient,

and enables the robot to travel safely in peopled office

environments at speeds up to 60 cm/sec. The limiting factor

in speed appears to be the rate of the sonar sensors (the

limited field of view of the laser prevents it from being the

primary obstacle detection sensor). By improving the cycle

time of our sensors, we expect to approach one meter per

second travel.

Future work based on this method includes finding better

approximations to the distance function and trying out

more sophisticated objective functions. We would also like

to investigate extending the curvature-based velocity space

approach to multi-step navigation planning problems.

This work has shown that by taking vehicle dynamics into

account, and by maximizing an objective function that

trades off speed, safety and goal-directedness, we can

create an efficient, real-time local obstacle avoidance

algorithm that produces safe, smooth, speedy travel in

obstacle-strewn environments.

8 Acknowledgments

Many thanks to Lonnie Chrisman, Richard Goodwin, Sven

Koenig, and Sebastian Thrun for suggestions on the design

and implementation of CVM. Thanks to Greg Armstrong

for running experiments and keeping Xavier healthy. This

research is sponsored by the Wright Laboratory,

Aeronautical Systems Center, Air Force Materiel

Command, USAF, and the Advanced Research Projects

Agency (ARPA) under grant number F33615-93-1-1330.

9 References
[1] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation.

International Journal of Robotics Research, August 1989,
pp. 92-112.

[2] J. Borenstein and Y. Koren. The Vector Field Histogram -
Fast Obstacle Avoidance for Mobile Robots. IEEE Transac-
tions on Robotics and Automation, 7:3, 1991, pp. 278-288.

[3] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hof-
mann, F. Schneider, J. Strikos and S. Thrun. The Mobile
Robot Rhino. AI Magazine, 16:2, Summer 1995, pp. 31-38.

[4] P. Jacobs and J. Canny. Planning Smooth Paths for Mobile
Robots. In Proc. IEEE Intl. Conference on Robotics and
Automation, Scottsdale AZ, May 1989, pp. 2-7.

[5] W. Feiten, R. Bauer and G. Lawitzky. Robust Obstacle
Avoidance in Unknown and Cramped Environments. In
Proc. IEEE Intl. Conference on Robotics and Automation,
San Diego, CA, May 1994, pp. 2412-2417.

[6] D. Fox, W. Burgard and S. Thrun. The Dynamic Window
Approach to Collision Avoidance. Tech Report IAI-TR-95-
13, CS Department, University of Bonn, 1995.

[7] A. Kelly. An Intelligent Predictive Control Approach to the
High Speed Cross Country Autonomous Navigation Prob-
lem, Tech Report CMU-CS-TR-95-33, School of Computer
Science, Carnegie Mellon University, 1995.

[8] O. Khatib. Real-time Obstacle Avoidance for Manipulators
and Mobile Robots. In Proc. IEEE Intl. Conference on Robot-
ics and Automation, St. Louis, MO, March 1985, pp. 500-
505.

[9] J. C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, 1991.

[10]R. Simmons, Becoming Increasingly Reliable. In Proc. of
2nd Intl. Conference on Artificial Intelligence Planning Sys-
tems, Chicago, IL, June 1994.

[11] R. Simmons and S. Koenig. Probabilistic Navigation in Par-
tially Observable Environments. In Proc. Intl. Joint Confer-
ence on Artificial Intelligence, Montreal, Canada, August
1995, pp. 1080-1087.

intervals (the number of intervals is fewer than the number

of obstacles due to overlapping intervals). The appropriate

velocity constraints are added, and the (tv, rv) point with

the best evaluation is sent to the base computer. The

algorithm, including sensor processing, takes about 12

msecs, running on-board a 66 MHz 486 computer.

CVM depends on a number of parameters, in particular

those of the objective function (Eqn. 5). To determine the

sensitivity of the method to these parameters, we ran a

series of tests in a simulated environment (Figure 8). The

environment was set up to test the method’s ability to both

head out of local minima and to avoid obstacles while

pursuing a goal direction. In each trial, the robot started in

the position and orientation shown, and was told to head

straight ahead; A trial was completed when the robot

crossed the dotted line.

The parameters were systematically varied, with a number

of trials run at each setting. Based on the average time to

finish a trial, we conclude that the method is rather sensitive

to the relative value of the goal heading weight (α3), but is

more or less insensitive to the relative values of the

distance (α2) and progress (α1) weights. The method fared

badly if α3 was zero (aimless wandering) or if the ratio

α3/(α1 + α2) was greater than about 15% (the robot often

got trapped in local minima). Within that range, the

standard deviation within a trial was typically greater than

the different between its mean and that of the best setting,

although the average was slightly better with α1 > α2.

Similar trials were run varying α4, the “extra” weighting

that encourages the robot to turn when it is too far off

heading. The results showed that CVM is relatively

insensitive for values of α4 greater than zero but less than

about 3 (at which point the robot again tends to get trapped

in local minima). The best setting for this environment is

α1=0.6, α2=0.3 and α3=0.1, with α4=1.0 (average

completion time: 67.5s, std: 10.2s), which is what we use

for the results in Figure 8 and on Xavier, reported below.

Figure 8: Testing Sensitivity of CVM Parameters

Traces of various runs on Xavier are shown in Figure 9. To

better accentuate the differences, in the figure the obstacles

(two boxes, a round trash can, and a fire door) are grown by

the robot’s radius, and the robot is a point. In each case, the

robot starts at the top of the figure, facing towards the

bottom, and is commanded to head 90 degrees to its left. In

each case, the robot must skirt the wall and navigate around

three discrete obstacles. We compare CVM running at 30,

45, and 60 cm/sec, and an implementation of the potential

field approach [1] running at 60 cm/sec. Note that, overall,

CVM produces noticeably smoother paths than the

potential field method. In addition, at higher speeds the

robot stays further away from obstacles, and the paths are

somewhat smoother. This is mainly due to the fact that the

“near obstacle” constraints (Eqn. 9) become more

important at higher speeds, which make the robot respond

to objects earlier.

The local obstacle avoidance algorithm is used by several

higher level behaviors. “Wandering” is achieved by always

setting the local goal heading (θg) to zero, which biases the

robot to continue along its current heading. A “head in

direction” behavior is achieved by setting θg to the

difference between the current robot heading and the

desired (global) goal direction. Finally, a “go to goal”

behavior is implemented by transforming the global goal

location to the robot coordinate frame and setting θg to be

the angle between the robot heading and the local goal

point. For this last behavior, we need one additional

extension: If the goal point falls within a curvature interval

whose associated distance is less than the straight-line

distance to the goal (i.e., there are no intervening

obstacles), then the weight for the goal-heading term (α3)

is set very high to “strongly encourage” the robot to head

towards the goal.

These behaviors, in turn, form the basis for map-based

navigation schemes [10, 11]. The resulting system exhibits

Figure 9: Traces of Xavier’s Runs

CVM: 30 cm/sec

CVM: 60 cm/sec Pot Field: 60 cm/sec

CVM: 45 cm/sec

(9)

Then, we add the constraint that the translational velocity

falls below the line formed by the points

, :

(10)

This ensures that the robot will not travel at full speed

(tvmax) unless it passes at least S away from the obstacle

(Figure 5b). A similar constraint, using (r + S) in Eqn. 9, is

added for the lower bound of the curvature interval.

Occasionally, the best value of the objective function is to

move very slowly, or not at all (). This often

occurs, for instance, when the robot is surrounded on three

sides by obstacles and its goal heading is straight ahead,

into the obstacle field. To handle such situations, we

Figure 6: Obstacle Safety Constraints

(b)

X

Y

c1
c3

(a)

rv

tv

c3 c1

θr-S

r=1/c3

c2c4

tv = d34/Timp

tv = d12/Timp

c’

tvmax

(x1, y1)
c’

if c 0=() x S y d=;={ } else

{θ d c⋅– c 0<
π d– c⋅ otherwise

=

r 1 c⁄=

x r S–() θcos r+=

y r S–() θ}sin=

c' 2 x⋅ x
2

y
2

+()⁄=

d T
imp

⋅ c d T
imp

⋅ ⋅,() tv
max

c' tv
max

⋅,()

tv
T

impact
tv

max
d–⋅

T
impact

tv
max

c'⋅ ⋅ c d⋅–
--- rv tv

max
c'⋅–() tv

max
+≤

tv 0≈ rv 0≈,

adopted the “rotate away” method of [6], in which the robot

just stops and rotates in place when the best translational

velocity command is nearly zero. This allows the robot to

eventually “see” open space in front of it and move

forward, hopefully enough to move it out of the local trap.

The final extension is necessitated by our choice of

weighting parameters for the objective function. The

chosen weights work well when the robot close to facing

the goal direction (within degrees), but performs

poorly when it is facing in the opposite direction. In such

cases, we want to “strongly encourage” the robot to start

turning around to face the goal direction. We do this by

increasing the weight of the goal-heading term

proportional to how far the robot is from the goal direction.

In particular, we replace α3 in the objective function (Eqn.

5) with . The next section discusses

the sensitivity of the method to this parameter value.

6 Results

The curvature-velocity method (CVM) has been

implemented and tested extensively on the Xavier mobile

robot (Figure 7). Xavier is built on a four-wheel synchro-

drive base, produced by RWI, and has independent control

over translational and rotational velocities. For obstacle

detection, it uses a ring of 24 sonars (data rate of 1-2 Hz)

and a 30 degree field of view front-pointing Nomadics laser

range sensor (data rate of 5-10 Hz). The sonar and laser

data are combined and filtered using a simple 20 cm

resolution histogram grid [2].

The base provides Xavier with dead-reckoning information

at 8 Hz, which is the rate at which the CVM algorithm is

run. When a new report is received, each occupied grid cell

is converted to ego-centric coordinates and processed to

produce curvature constraints. There are typically between

15-30 obstacles, which yield about 10-15 distinct curvature

60±

α
3

1 α
4

θ
g

π⁄() 2
+()

Figure 7: The Xavier Mobile Robot

idea is to break the interval into a small

number of intervals, calculate a constant distance value for

each interval, and then use the min-union algorithm

described above to approximate the overall Dlimit function.

Our approach is to pick the point on the obstacle circle that

is closest to the origin (straight-line distance) and divide

the obstacle into quadrants starting at that point (Figure 5).

Curvature intervals are defined for adjacent points lying

between the minimum and maximum tangent curvatures,

where the distance value of each interval is assigned to be

the minimum of the two endpoint intervals (calculated

using Eqn. 4).

To maximize the objective function, we note that each

curvature interval provides a pair of linear inequalities on

the velocity space. The velocity and acceleration

constraints described in the previous section are also linear

inequalities. Thus, we have a set of linear inequalities and

a linear objective function – a form easily solvable, in

general. In our case, however, there is additional structure

to the problem that can simplify calculations even further:

since the distance value is constant between pairs of

curvature lines and the objective function is monotonically

increasing in tv, the optimal value of the function, for each

curvature interval, lies along the top boundary of the

constraint lines. This leads to a very efficient algorithm: for

each curvature interval, compute the objective function at

each vertex along the upper boundary of the relevant

constraints and choose the overall best value for all the

intervals (with one small extension: we also need to

compute the objective function where the heading error dθ
is zero, that is, where).

Figure 4: Representative Obstacle Distances

distance

curvature
These distance functions correspond to the obstacles in Figure 3a.

dc(curv, obs)

c
min

c
max

,〈 〉

X

Y

Figure 5: Dividing Obstacles Into Quadrants

rv θ
g

T
c

⁄=

5 Extensions

The curvature-velocity method, as described in the

previous two sections, has a few practical problems. First,

due to sensor noise, obstacles may not be precisely where

they are represented internally - thus, we want the robot to

stay clear of obstacles when possible, and to slow down if

it is unavoidable to travel near them. Second, although the

objective function usually does a good job of trading off

goal-directed and obstacle-avoiding behaviors, there are

two situations where it does not work well: when all

choices are equally bad, indicating the robot is stuck, and

when the robot is far off the desired goal heading. In this

section, we describe straightforward extensions to the basic

curvature-velocity method that address each of these

problems.

One simple extension, which helps compensate for sensor

noise, is to grow the obstacles by a safety margin. We use a

relatively small safety margin (5 cm), since the size of the

safety margin is inversely proportional to how narrow an

opening the robot can pass through. Too large a safety

margin and the robot has trouble navigating through

doorways and past people in crowded corridors.

Another extension, adapted from [3, 6], that helps keep the

robot away from obstacles (or, at least, makes it act more

cautiously when traveling near obstacles) is to add a

constraint that makes the maximum allowable translational

velocity proportional to the distance to obstacles.

Specifically, for each curvature interval , we

constrain the maximum translational velocity

so that the robot will be able to travel at least Timp seconds

before hitting an obstacle.

For some curvature intervals , the distance d is

greater than one, or both, of the extreme points dc(c1, obs)

and dc(c2, obs), indicating that the robot will pass nearby an

obstacle if it travels along that curvature extrema (e.g., d1,

the value of interval in Figure 3, is greater than

dc(c3, B)). Although adding a safety margin helps, we

further increase the safety factor by adding a constraint

such that the robot travels at full speed only when it is at

least distance S (e.g., one robot radius) away from all

obstacles.

We determine this constraint by first calculating the

curvature that will pass S away from the obstacle that is

tangent to the curvature c at distance d:

c
1

c
2

,〈 〉 d(,)

tv d T
imp

⁄≤

c
1

c
2

,〈 〉 d(,)

c
1

c
3

,〈 〉

(7)

Note that Eqn. 6 is not defined if the obstacle circle

overlaps the origin (). Since, in reality,

the obstacle and the robot cannot occupy the same space,

this can only occur due to sensor noise or the circular

approximations made in specifying obstacles. Either way,

we deal with such an obstacle by defining its radius robs to

be (where ε is set to a centimeter). We can

then use Eqn. 6 to calculate minimum and maximum

curvatures for all obstacles.

Given the tangent curvatures, a first approximation (this

will be refined subsequently) is to take dv to be constant

between the minimum and maximum curvatures:

(8)

This produces a set of obstacle intervals, each of constant

distance. To compute the piecewise constant

approximation of Dlimit, we find the min-union of these

obstacle intervals by splitting overlapping obstacle

intervals and eliminating the overlapping piece with the

greater associated distance. An efficient algorithm for this

uses the curvature interval data structure ,

where c1 and c2 are two curvatures , and d1,2 is

the constant distance value within that interval.

Geometrically, each curvature interval defines a pair of

lines in velocity space, with the distance value between the

lines being constant (Figure 3).

The min-union algorithm begins with the curvature interval

. For each obstacle, the pair of tangent

curvatures (Eqn. 6) and the associated distance (Eqn. 8) are

computed to form a new curvature interval

cmin

cmax

robs

X

Y

(xobs, yobs)

(xmax, ymax)

(xmin, ymin)

Figure 2: Tangent Curvatures for an Obstacle

x
min

x
obs

r
obs

–() 1 c
min

r
obs

⋅()–()⁄=

y
min

y
obs

1 c
min

r
obs

⋅()–()⁄=

x
max

x
obs

y
obs

+() 1 c
max

r
obs

⋅()+()⁄=

y
max

y
obs

1 c
max

r
obs

⋅()+()⁄=

x
obs
2 y

obs
2 r

obs
2≤+

x
obs

2
y

obs

2 ε–+

d
v

tv rv obs, ,()

min d
c

c
min

obs,() d
c

c
max

obs,(),()

ifc
min

rv tv⁄ c
max

≤ ≤

∞ otherwise

=

c
1

c
2

,〈 〉 d
1 2,(,)

c
1

c
2

≤()

∞– ∞,〈 〉 L(,)

 (Figure 3a). An existing interval

 is modified depending on its relationship

with the new interval (Figure 3b):

• Disjoint: Do nothing

• Contained by (i.e., and): Set

• Contains (i.e., and): If d<d1,2,

split the existing interval into three:

, and

, otherwise do nothing.

• Overlapping: If d<d1,2, split the existing interval

into two, with the result depending on which side of

the intervals overlap occurs: either

and if , otherwise

 and .

Approximating the distance function as constant between

the tangent curvatures is not very good, since dv is really

quite non-linear (Figure 4). In some situations the

approximation is too conservative, especially where the

distance values for the two tangent curvatures are very

different (e.g., obstacle A in Figure 3a). More importantly,

this approximation is often too liberal: the actual minimum

may be less than either tangent curvature distance (e.g.,

obstacle B).

To remedy both these problems, we refine the

approximation of dv to itself be piecewise constant. The

rv

tv

c6

c5

c4 c3

c1

L
L

L

d6

d3 d1

(b)

Figure 3: Curvature Interval Constraints

X

Y

c1

c3

c2
c4

c5

c6

(a)

A

B

c
min

c
max

,〈 〉 d(,)

c
1

c
2

,〈 〉 d
1 2,(,)

c
min

c
1

≤ c
2

c
max

≤
d

1 2, min d d
1 2,,()←

c
1

c
min

≤ c
max

c
2

≤

c
1

c
min

,〈 〉 d
1 2,(,) c

min
c

max
,〈 〉 d(,)

c
max

c
2

,〈 〉 d
1 2,(,)

c
1

c
min

,〈 〉 d
1 2,(,)

c
min

c
2

,〈 〉 d
1 2,(,) c

max
c

2
>

c
1

c
max

,〈 〉 d(,) c
max

c
2

,〈 〉 d
1 2,(,)

(2)

Finally, since sensor range is limited (and to avoid

computing with infinite values), we clip the function D at

some limiting distance L (three meters, in our

implementation):

(3)

In general, computing the obstacle distance function dc(c,

obs) can be very complex for arbitrarily shaped obstacles.

To address this, we approximate obstacles as circles. This

is a reasonable approach given our sensor input: sonar and

laser range readings. Since our robot is also circular,

converting from Cartesian to configuration space obstacles

merely involves increasing the radii of the obstacles by the

radius of the robot. Now, computing dc is straightforward.

For a robot at the origin facing the positive y-axis, given

that the curvature c intersects the obstacle at (xi, yi), we get

(Figure 1):

(4)

Given these physical and environmental constraints on the

velocity space, commands for the robot are chosen by

optimizing an objective function. From the desiderata in

Section 1, it is clear that the objective function should

prefer higher speeds, curvatures that travel longer before

hitting obstacles, and should try to orient the robot to head

in the desired goal direction. We represent these criteria

with a simple linear objective function, in which each term

is normalized between zero and one:

(5)

The speed term simply indicates a preference for traveling

faster, all else being equal. The dist term indicates a

D tv rv OBS, ,() min
obs OBS∈ d

v
tv rv obs, ,()=

D
limit

tv rv OBS, ,() min L D tv rv OBS, ,(),()=

θ
y

i
x

i
1 c⁄–()⁄()atan c 0<

π y
i

x
i

1 c⁄–()⁄()atan– c 0>

=

d
c

c obs,()
y

i
c 0=

1 c⁄ θ⋅ c 0≠

=

Figure 1: Obstacle Distance Calculations

(xi, yi)

X

Y

dc(c, obs)

θ
r = 1/c

f tv rv,() α
1

speed tv() α
2

dist tv rv,() α
3

head rv()+ +=

speed tv() tv tv
max

⁄=

dist tv rv,() Dlimit tv rv OBS, ,() L⁄=

head rv() 1 θ
g

rv T
c

⋅– π⁄–=

preference for traveling longer distances along the given

curvature (rv/tv) without hitting obstacles. The head term is

the error in goal heading. It is defined to be the difference

between the desired goal heading θg (in the robot’s local

reference frame) and the heading the robot will achieve if

it turns at rv radians per second for some time constant Tc

(our implementation sets Tc to one second).

The α values indicate the relative weight to be given to

each term in the objective function. With this objective

function the robot can exhibit various behaviors, depending

on the α weights and the distribution of obstacles, ranging

from slowing down to turn sharply and avoid an obstacle,

to traveling at full speed, but turning earlier to avoid the

same obstacle. Section 6 presents our experimental results

on the sensitivity of the method to the choice of α values.

4 Real-Time Implementation

The curvature-velocity method, as presented in the

previous section, meets all of our criteria for local obstacle

avoidance, except one: it is not computationally efficient. It

is hard to compute Dlimit, even with the simplifying

assumption of circular obstacles. Also, given a general

formulation of Dlimit, it is time consuming to optimize f,

even with approximation techniques such as simulated

annealing. In this section, we describe implementation

details that address the computational concerns.

Real-time performance is achieved by approximating Dlimit

with a finite set of intervals, each of which has constant

“distance to impact.” This set of such curvature intervals is

determined by using the curvatures tangent to obstacles to

divide the velocity space into regions of constant distance,

and by further dividing overlapping regions such that the

distance associated with each interval is the minimum

distance of all overlapping regions. Minimum and

maximum velocity and acceleration constraints are added

to the space and, for each curvature interval, the vertex

points along the upper boundary of the constraints are

evaluated (since the point that maximizes the objective

function is guaranteed to lie along the upper boundary).

The robot chooses the command that maximizes the

objective function over all curvature intervals.

We compute Dlimit (Eqn. 3) using an approximation of the

velocity-distance function dv (Eqn. 1). Note that, for a

given obstacle obs, dc(c, obs) is infinite outside the

curvatures tangent to the obstacle. Thus, we need consider

only those curvatures between cmin and cmax (Figure 2):

(6)

The intersection points (needed to compute dc, Eqn. 4) are:

c
min

2 x
obs

y
obs

–() x
obs
2

y
obs
2

r
obs
2

+ +⁄=

c
max

2 x
obs

y
obs

+() x
obs
2

y
obs
2

r
obs
2

+ +⁄=

like the Potential Field approach, does not account for the

fact that when robots turn they typically move along arcs,

rather than in straight lines. In cluttered environments, this

neglect of vehicle dynamics can be critical.

While methods that take vehicle dynamics and non-

holonomic constraints into account have been studied in

the context of off-line path planning [4, 9], such methods

are generally too computationally expensive for fast local

obstacle avoidance.

Recently, however, several local obstacle avoidance

methods have been reported that do incorporate vehicle

dynamics, choosing steering commands rather than travel

direction. The Steering Angle Field method [5], like our

own, uses the curvatures tangent to obstacles to constrain a

continuous space (in their case, the one-dimensional space

of steering angles). The curvatures and associated arc

distances are used to prohibit travel over ranges of steering

angles. The method calculates constraints for several

distance thresholds, and tries to travel along the freest

dimension. Speed control is an iterative “negotiation”

process between the pilot module and the local obstacle

avoidance module, as opposed to our method, in which

speed and turn rate are chosen simultaneously, as the point

in velocity space that maximizes the objective function.

A similar method for high-speed indoor navigation that

operates in velocity space was developed somewhat earlier,

but independently [3]. This method looks at a discrete set

of arcs, constrained by the vehicle dynamics, and chooses

one that most closely heads in the goal direction, while

ensuring that the robot does not hit an obstacle within a few

seconds of travel. The original method used a two-step

approach to pick curvatures and velocities; subsequently,

they have adopted our one-step method for simultaneously

choosing curvatures and velocities [6]. A similar approach

has been developed for outdoor navigation [7]. Here, full

vehicle dynamics are considered, so the path is not

necessarily a circular arc, a traversability measure is

calculated for each path, and the one with the best value is

chosen. Both these methods have the problem that, in

analyzing only a discrete set of arcs, good paths may “fall

through the cracks” and not be considered.

3 The Curvature-Velocity Method

We formulate the local obstacle avoidance problem as one

of constrained optimization in the velocity space of the

robot. The velocity space of a robot is the set of controllable

velocities. For synchro-drive robots, such as our own, the

velocity space has the orthogonal dimensions of

translational (tv) and rotational (rv) velocities.1 By

1. For differentially steered vehicles, the velocity space of left (vl) and

right (vr) velocities is easily transformed into the tv/rv space:

; , where w is

the robot’s lateral wheelbase.

rv vr vl–() w⁄= tv vl vr–() vr vl–()⁄() w 2⁄⋅=

constrained optimization, we mean that the robot chooses

the (tv, rv) pair that maximizes some objective function,

while meeting all constraints on allowable velocities.

There are several advantages to this formulation of the

local obstacle avoidance problem. First, by operating in

velocity space we can simultaneously control the speed and

heading of the robot, and can come up with solutions that

correspond directly to commands to control the robot. By

treating the problem as one of constrained optimization, we

can easily incorporate constraints from the environment

and robot dynamics, and can come up with formulations

that, for instance, trade off speed for safety.

To begin with, we assume that the robot always travels

along arcs of a circle, whose curvature is given by c = rv/

tv, where a positive curvature denotes clockwise motion.

Thus, each point in velocity space corresponds to motion of

constant curvature in Cartesian space. While this is actually

just an approximation, due to effects of acceleration, such

effects are negligible given the relatively slow speeds and

high accelerations of most indoor mobile robots [6].

The physical limitations of the robot impose two types of

velocity-space constraints. One is that the robot has

maximum rotational and translational velocities:

, , , . In

our formulation, we also add the constraint to

prohibit backwards motion. Limitations on rotational and

translational accelerations, ramax and tamax, supply other

constraints. Given the robot’s current velocities, rvcur and

tvcur, and some time interval Taccel (which is chosen based

on the cycle time of the CVM algorithm), we add three

more constraints that give the achievable velocities in the

next time step:

The obvious other constraint on tv is not added for safety

reasons: We want to ensure that tv = 0 is always a reachable

part of the space.

An important source of constraints is imposed by the

obstacles in the environment. We can transform Cartesian

space obstacles into velocity space constraints as follows:

First, convert the obstacle to configuration space and, for

all curvatures c, calculate the distance dc(c, obs) that the

point robot would travel before hitting the obstacle obs.

Then, define the distance function for an obstacle in

velocity space as:

(1)

Given a set of obstacles OBS, the cumulative distance

function is defined as:

tv tv
max

≤ tv tv
max

–≥ rv rv
max

≤ rv rv
max

–≥
tv 0≥

rv rv
cur

ra
max

T
accel

×()–≥

rv rv
cur

ra
max

T
accel

×()+≤

tv tv
cur

ta
max

T
accel

×()+≤

d
v

tv rv obs, ,()
d

c
rv tv⁄ obs,() if tv 0≠()

∞ otherwise

=

The Curvature-Velocity Method for Local Obstacle Avoidance

Reid Simmons

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a new method for local obstacle avoidance by

indoor mobile robots that formulates the problem as one of

constrained optimization in velocity space. Constraints

that stem from physical limitations (velocities and

accelerations) and the environment (the configuration of

obstacles) are placed on the translational and rotational

velocities of the robot. The robot chooses velocity

commands that satisfy all the constraints and maximize an

objective function that trades off speed, safety and goal-

directedness. An efficient, real-time implementation of the

method has been extensively tested, demonstrating

reliable, smooth and speedy navigation in office

environments. The obstacle avoidance method is used as

the basis of more sophisticated navigation behaviors,

ranging from simple wandering to map-based navigation.

1 Introduction

We address the problem of local obstacle avoidance for

mobile robots operating in unknown, or partially known,

environments. While this problem has been studied by

several other researchers, we have a number of desiderata

that necessitate a new approach to the problem. Several

desiderata are common to most existing methods:

• The robot should navigate safely, even in the face of

noisy sensors and dead-reckoning error.

• The robot should be goal-directed while trying to

avoid obstacles.

• The method must be computationally efficient, to run

in real-time on-board the robot.

In addition, we have a number of desiderata that are often

not addressed by other methods:

• The dynamics of the robot should be taken into

account, to enable it to travel at high speeds in

crowded environments.

• The method should explicitly try to maximize

forward progress of the robot.

• The method should simultaneously control both the

direction and speed of the robot.

Our approach, the Curvature-Velocity Method (CVM),

addresses all these concerns. The main distinctions of the

method is that it operates in the velocity space of the robot,

rather than Cartesian or configuration space, and it chooses

commands by maximizing an objective function that trades

off vehicle safety, speed, and goal-directedness. The

method presumes that the robot can control both

translational and rotational velocities, but cannot turn

instantaneously. Rather it travels along arcs of circles. This

formulation includes synchro-drive robots, differentially

steered robots, and many non-holonomic vehicles. While

our formulation neglects the effects of accelerations, in

practice it is a good approximation for indoor mobile

robots traveling at walking speeds.

The curvature-velocity method works by adding

constraints to the velocity space and choosing the point in

that space that satisfies all constraints and maximizes an

objective function. Constraints derive from physical

limitations on the robot’s velocities and accelerations, and

from sensor data that indicate the presence of obstacles.

The latter are used to represent, for each possible curvature,

how far the robot can travel before hitting an obstacle.

To achieve real-time performance, the curvature distance to

obstacles is approximated with a piecewise constant

function. This approximation divides the velocity space

into a discrete number of regions, each of which has

constant distance to impact. The method finds the point in

each region that maximizes the objective function. The

overall maximal point is used to command the robot.

Several simple extensions make the basic method more

robust to sensor noise and reduce the possibility of the

robot getting stuck. Tests on our indoor mobile robot

demonstrate that it produces speedy, smooth and safe travel

in peopled office environments.

2 Related Work

Several well-known local obstacle avoidance methods

work by computing a direction for the robot to head in, but

do not take vehicle dynamics into account. For example,

Potential Field approaches [1, 8] use vector sums of

repulsive and attractive features to compute a desired robot

heading. Speed control is sometimes handled by choosing

velocity proportional to the magnitude of the potential

vector. The Vector Field Histogram method [2] improves

on this approach by computing a one-dimensional polar

histogram, which is then processed to detect open areas for

the robot to travel through. Robot velocity, chosen after the

direction has been selected, is proportional to the distance

to obstacles ahead. While this method produces smoother

travel and can handle both narrow and wide openings, it,

