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Abstract

Robot navigation through non-uniform environments re-
quires reliable motion plan generation. The choice of plan-
ning model fidelity can significantly impact performance.
Prior research has shown that reducing model fidelity saves
planning time, but sacrifices execution reliability. While cur-
rent adaptive hierarchical motion planning techniques are
promising, we present a framework that leverages a richer set
of robot motion models at plan-time. The framework chooses
when to switch models and what model is most applicable
within a single trajectory. For instance, more complex envi-
ronment locales require higher fidelity models, while lower
fidelity models are sufficient for simpler parts of the plan-
ning space, thus saving plan time. Our algorithm continu-
ously aims to pick the model that best handles the current
local environment. This effectively generates a single, mixed-
fidelity plan. We present results for a simulated mobile robot
with attached trailer in a hospital domain. We compare us-
ing a single motion planning model to switching with our
framework of multiple models. Our results demonstrate that
multi-fidelity model switching increases plan-time efficiency
without sacrificing execution reliability.

1 Introduction
Navigating robots must do so efficiently and reliably. Hospi-
tal robots are one example of this. Hospital robots navigate
hallways to deliver medications and linens. These deliveries
could be time sensitive requiring both efficient plan genera-
tion and reliability. Also, delivery robots save time for hos-
pital workers to use towards other tasks. This time is not
saved if employees constantly assist an unreliable robot to
its destination. In this paper we aim to balance execution re-
liability while maintaining efficient planning time in motion
planning.

Reliable execution requires planning models that accu-
rately capture how the robot interacts with the environment.
Complex environments require a more informed model.
These models can be of arbitrary fidelity to better represent
the interaction between the robot and its environment and
often include higher dimensions, dynamics and differential
constraints. However, planning with such models for the en-
tirety of the environment is computationally expensive. Ad-
ditionally, not all environments are equally complex, so for
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planning efficiency, model approximation may be necessary
to achieve tractable global planning times.

Model approximations sacrifice fidelity for computation
efficiency. These approximations are sufficient for simple re-
gions in the task space. They are insufficient, however, for
complex portions of the environment. For example, a model
that considers detailed terrain vehicle interactions is unnec-
essary for flat open spaces, but needed for bumpy ground.
This illustrates a non-uniform execution space where plan
time is saved by leveraging multiple models. Model switch-
ing combines the robustness of a high-fidelity plan with the
efficiency of an abstract representation by using higher fi-
delity models only when necessary.

Our work provides a framework for using a richer set of
motion planning models than previous work. Our approach
attempts to stay as long as possible in the lowest fidelity
model applicable in order to decrease plan computation time
without sacrificing execution quality. We do not introduce a
new motion planner. We use existing motion planners in the
context of switching between multiple robot models. We or-
ganize a given set of planning models into a directed hierar-
chical graph. An initial motion plan is generated in the low-
est model. The approach then detects the parts of the lower
fidelity plan that are infeasible for execution. The partial
plans are repaired using re-planning through higher fidelity
model selection. The model selection process autonomously
selects the most applicable higher fidelity model in the hi-
erarchy. This higher fidelity model is used to locally plan to
an intermediate goal where the previous lower fidelity plan
is resumed. This approach creates a mixed model plan.

We ran experiments in simulated hospital world with a
differential drive robot. Our testing used multiple wheeled
mobile robot planning models. In our results, we demon-
strate failure rates and planning times when using a fixed sin-
gle model versus autonomously switching between models
of varying fidelity. Our approach creates plans that maintain
robustness, and take significantly less time to plan, overall,
than planning from the start using the highest fidelity model.
This improves performance over only using a lower fidelity
model, and reduces planning times over only using the high-
est fidelity model.
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2 Related Work

Models generated in the robotics community increase their
robustness with fidelity. They inspire the use of a multi-
model approach. For instance, there are models for hu-
manoid balancing (Stephens 2007), physics based manipu-
lation models (Dogar et al. 2012), and models for wheeled
robots that more accurately capture real world trajectories
(Seegmiller and Kelly 2014). Early work in motion plan-
ning also recognized that plan savings can be achieved by
sacrificing execution feasibility at plan-time (Sekhavat et al.
1998). This work demonstrated motion plans for a multi-
trailer system where lower model levels ignore more non-
holonomic constraints than their higher planning levels.

The model choice to plan in creates an inherent tradeoff
between plan-time and execution robustness. Many previous
works use different forms of model switching to address this
balance. Previous work in Variable Level-Of-Detail Plan-
ning, by (Zickler and Veloso 2010), relax the local space
to ignore more complex details that occur far in the future.
Similarly, adjusting the resolution in a plan is a form of
switching. The following works adapt the planning space
resolution locally around the robot, but do not vary the
model fidelity throughout the same plan (Kambhampati and
Davis 1986), (Steffens, Nieuwenhuisen, and Behnke 2010),
(Behnke 2004). Our strategy varies models throughout the
same plan searching directly in continuous space and chang-
ing dimensionality in both the state and action space.

The following paragraphs review previous works which
focus on when to switch between models rather than reason-
ing about what detail the model contains before switching.
Our work contains an additional model selection stage that
most related works do not. This stage determines what detail
level is most applicable for re-planning.

Fixed strategies focus on the when for switching between
levels of detail. This is apparent in (Howard and others
2009) and work that only has two levels, such as a higher
level global plan that guides a low level continuous planner
(Knepper and Mason 2011). Hybrid planning also switches
between a distinct discrete plan and more focused contin-
uous planner (Plaku, Kavraki, and Vardi 2010) as in the
SyClop planning framework. This also occurs in (Choi,
Zhu, and Latombe 1989) where a contingency ”channel”
with many possible motion plans guides a lower-level po-
tential field controller. Other work (Göbelbecker, Gretton,
and Dearden 2011) divides the planning space between task
and observation level plans similar to the division between
global and local planners. They switch between a fast se-
quential ”classical” planner, and more expensive decision-
theoretic planning for abstracted sub problems.

Multi-modal and multi-stage work also contain fixed
switching strategies. Work in (Hauser, Ng-Thow-Hing, and
Gonzalez-Baños 2011) and (Hauser and Latombe 2009)
switch between different planner types based on a modal dis-
cretization, but do not reason explicitly about the detail they
are switching to. Lastly, work by (Sucan and Kavraki 2011)
for task motion multi-graphs also contain predefined points
where switching occurs. The decision of when to switch is
predefined between tasks and the selection criteria is based
on computation time.

Our work resides in the motion planning domain. Work
more similar to ours utilize re-planning and change fidelity
throughout the planning space. One such work graduates
motion primitive fidelity along a state lattice (Pivtoraiko and
Kelly 2008). They change the fidelity between re-plans in
the motion planning workspace. They also recognize that
”partially or completely unknown” regions of the space can
use lower fidelity representations than regions most relevant
to the current problem. The work also claims that previous
multi-resolution work is more systematic while theirs allows
different resolution regions to move over time. The fidelity
around the robot is fixed and moves like a sliding window,
which is different than our mixed fidelity plan.

Our work is mainly inspired by Gochev’s previous
work with adaptive dimensionality (Gochev, Safonova, and
Likhachev 2013) (Gochev et al. 2011) (Gochev, Safonova,
and Likhachev 2012). That work divides the state space into
two parts; a high dimensional and low dimensional graph
with defined transition probabilities. They use a state lat-
tice planner with pre-computed grid transitions. Unlike other
works, they are able to mix the two subspaces into a sin-
gle plan. Our work also has this same effect, of generating
plans that mix dimension spaces, through adaptive switch-
ing. They have a tracking phase (similar to our plan checking
stage) to determine where to insert higher fidelity states in a
low fidelity plan. Our novelty is we use a complete hierarchy
of models. Therefore, our algorithm contains an additional
model selection stage. Also the discrete domains require a
search in the higher space during tracking that is computa-
tionally more expensive than our checking phase.

3 Planning Models and Organization
Our planning models include information for generating a
continuous motion trajectory from a start to goal configura-
tion subject to vehicle and obstacle constraints. It contains a
robot model, environment model, and collision checker. The
robot model contains vehicle constraints. The environment
model represents obstacles in the planning workspace.

Robot models contain a state vector [x(t) | x ∈ Rn], op-
tional control input [u(t) | u ∈ Rn], and a system of motion
equations of the form ẋ = f(x(t), u(t), t). These equations
describe the mapping of motions from u(t) to x(t), subject
to kinematic and dynamic constraints. Robot models also de-
scribe the robot geometry which can contain aspects such as
shape, mass, material, and coefficient of friction. The mod-
els we use in this paper consider only the shape attribute and
contain both first and second-order differential motion equa-
tions

Environment models describe the obstacle geometry rep-
resented in two or three dimensions. These models also con-
tain time dependent features such as traffic lights or auto-
matic doors.

The unique variables used to describe the configuration
of the robot at any point in time is described by the vector
�q. Where �q = [x(t), u(t)]T for a particular t. We use this
configuration vector to label the models.

A final model property is that there exists a lossless trans-
lation between models. This allows lower fidelity models to
translate into higher order spaces. For example, [x y] can
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translate into [x y z] by assuming a constant z, but [x y z] can
not translate into [x y θ] due to the loss of the third dimen-
sion. Therefore, if a lossless translation exists from model A
to model B, then model B is higher fidelity than model A.

The ability to translate one model into another without
losing information forms a partial ordering. The organiza-
tion forms a finite acyclic directed model graph G(�q, E)
connecting low fidelity models to higher fidelity models
which often contain more constraints. Once all edge pairs
are found between models the graph can be reduced to form
the final hierarchy. The final partial ordering is the transi-
tive reduction of the initial directed acyclic graph of models
(Aho, Garey, and Ullman 1972). This is also known as the
minimum equivalent graph, (Moyles and Thompson 1969),
where the final model graph has as few edges as possible
while maintaining the same reachability relation as the orig-
inal graph. As a simple example, Figure 1 shows the orga-
nization of four wheeled robot models: M4 = �q = [x y z θ],
M1 = �q = [x y], M3 = �q = [x y z], and M2 = �q = [x y θ]. By
definition, an edge is drawn between models with lossless
translation as shown on the left side of Figure 1. Redundant
edges are then eliminated, the right side of Figure 1, to cre-
ate the directed graph’s transitive reduction which maintains
the longest edge paths.

Figure 1: Transitive Reduction of original model graph.

4 Planning with Multiple Models

Our robust plan generation algorithm consists of four main
stages that loop:

1. Motion plan generation.
A plan is generated for a particular start and goal state
using a given model.

2. Feasibility detection.
This is the plan checking stage where execution problems
are determined. This stage answers the question of when
to switch between models in the plan.

3. Model selection.
This stage decides what model to switch to for re-
planning. The model selector reasons over the model
graph to determine what model may be sufficient to re-
pair the plan.

4. Multi tree re-planning
For probabilistic completeness guarantees, re-planning
starts from multiple previous points along the plan to-
wards a goal set.

Algorithm 1 Robust Plan Generation
1: [p , planResult] = generatePlan(m);
2: if planResult == success then

3: globalPlan = savePlan(p, globalPlan);
4: tm = translateToModel(p, highest);
5: [planCheck, b4repair, after] = propagateWhileValid(tm, highest)
6: if planCheck == infeasible then

7: m = MODELSELECTOR(globalPlan, b4repair, after);
8: [p, planResult] = multiTreeReplan(globalPlan, b4repair, after, m);
9: Goto line 2
10: else

11: executeResult = sendToRobot(globalPlan);
12: end if

13: else

14: Failed to find plan.
15: Goto line 7
16: end if

Motion Plan Generation

The purpose of this work is not to construct a new motion
planner. We use Rapidly Exploring Random Trees (RRTs)
from the sample based motion planning community to gen-
erate motion plans (LaValle and Kuffner 2001) since RRTs
can handle various models, including those with differential
constraints and dynamics.

We start by planning in a default model space, typically
[x,y] (Algorithm 1, line 1). The robot’s task is to navigate
from a start to goal state. Our system uses an environment
map to generate a plan from start to goal in the lowest appli-
cable fidelity model. This is the lowest possible model that
successfully generates an initial global plan given the current
environment. This produces a plan in the form of a series of
waypoints, such as that shown in Figure 2 (a).

Feasibility Detection

The plan is then checked in the highest fidelity model to de-
termine parts that might need repairing (Algorithm 1, line
6). Even though the high fidelity model is complex, check-
ing a single plan does not incur much computation time. If
the plan is feasible, that is there are no detected collisions, it
is sent to the robot for execution. If the plan is not feasible,
the infeasible plan segment is sent to the model selector. In
Figure 2 (b), an infeasibility is detected between waypoints
four and five.

Feasibility is determined by checking the lower plan in
the highest model. Checking in the highest model requires
a translation step to match the configuration inputs of the
higher model, and collision checking between between the
robot and obstacles in the environment along the plan.

Feasibility checking is inexpensive because it does not
require a new search. The lower plan checks in the higher
model along the previous plan’s waypoints. For example a
lower model considers only geometric constraints while a
higher model considers dynamic constraints.

Model Selection

The model selector then determines the appropriate model
to re-plan in. For efficiency, we plan from waypoint four to-
wards waypoint five to get back on the previous path as early

560



as possible, Figure 2 (b). The model space used for the plan
segment (between waypoint four and five) that needs repair
(initially the [x,y] model) is the first node to search from
in the model graph. The model selector finds the lowest fi-
delity model that can still feasibly generate a repaired plan.
This gives further computation savings by using the lowest
fidelity model applicable rather than always switching back
to the highest available model.

Our model selection process (Algorithm 2) uses Breadth
First Search to explore the model graph. For each model, we
first test the infeasible plan segment in that new model space.
If the testing is unsuccessful, it means the model has infor-
mation not present in the original model used to generate the
plan, and is then selected as the re-plan model.

It is important to note that the re-plan model contains in-
formation relevant to the detected infeasibility. We define
a more informative model as one that contains information
useful for re-planning in the current environment context.
This means that not all higher fidelity models are useful for
re-planning. For example, a higher fidelity model that rea-
sons about velocities and slip constraints contains more in-
formation than a model that represents the z-dimension of
environment obstacles. The model which contains z is more
applicable to a world with a tall robot which must navigate
overhangs even though it does not have the most informa-
tion.

As an example of how the model selector works (Algo-
rithm 2), assume that it starts with the first child of the M1 =
[x,y] model which is the M2 = [x,y,θ] model. The previous
[x,y] plan segment is tested in this model (Algorithm 2, line
8). If the plan succeeds, we assume that the [x,y,θ] model
does not accurately capture the infeasibility. We then choose
the next child of [x,y], which is M3 = [x,y,z], and again test
the previous plan in this higher fidelity model. If the plan
again succeeds, we then try the M4 = [x,y,z,θ] model. If
testing the previous plan finally does not succeed, we as-
sume this model captures the space of the infeasibility and
select it as the model to use for re-planning. In this approach
it is possible to produce a final plan that effectively skips be-
tween model tree levels when choosing the next model (in
this example, we skipped from [x,y] to [x,y,z,θ]).

Multi Tree Re-planning and Intermediate Goals

Infeasibilities vary in size and closeness to previous plan
waypoints. Therefore, our re-planning stage accounts for
planning from multiple starts and towards multiple goals that
vary in distance from the infeasibility guaranteeing proba-
bilistic completeness. To accomplish this, waypoints along
the globally maintained plan, Figure 2 (a), before the infea-
sibility are considered the starts of re-plan trees. Similarly,
remaining waypoint nodes after the infeasibility are consid-
ered intermediate goals.

The remaining waypoints along the path, Figure 2 (c),
form a set of intermediate goals. We sample from this multi-
goal set based on an inverse distance metric from the previ-
ous infeasibility to encourage returning to re-using the pre-
vious path. This allows the algorithm to concurrently plan to
all remaining intermediate goals, and be more efficient with
path re-use. Using waypoints as a cache was also done pre-

Algorithm 2 The model selector does a Breadth First Search
by testing old infeasible plan segments in higher fidelity
models until the old plan fails. If the old plan fails, this in-
dicates the model contains information that may be relevant
to the infeasibility and it is chosen for re-planning.
1: function MODELSELECTOR(p, b4failIndex, afterfailIndex)
2: mLast = findModelFor(p.getNode(b4failIndex));
3: m = mLast;
4: p = resizePlan(p.getNode(b4failIndex), p.getNode(afterfailIndex));
5: setUsedModel(m); � Last model used becomes root node.
6: m = getNewModelBFS();
7: tm = translateToModel(p,m);
8: planResult = propagateWhileValid(tm, m); � Does collision checking.
9: if planResult == success then

10: Goto line 5
11: end if

12: return m
13: end function

WP2
WP3

WP4 WP5 WP6 WP7WP1

S
G

(a) Example global path.

WP2
WP3

WP4 WP5 WP6 WP7WP1

S
G

(b) Infeasibility exists between waypoints four and five.

WP5 WP6 WP7

S
G

(c) Waypoints five, six, and seven form a goal set to plan
towards. They are probabilistically sampled using an in-
verse distance metric from the infeasibility.

WP1 WP2
WP3

WP4

S
G

(d) Waypoints one, two, three, and four are the starts of
multiple re-plan trees. A tree is grown each cycle based
on probabilistically sampling the starts using an inverse
distance metric from the infeasibility.

(e) Re-planning concurrently plans from multiple start
trees towards a set of intermediate goals.

Figure 2: Localizing around the infeasible area by generat-
ing multiple re-plan trees towards intermediate goals, in the
new selected model, rather than re-planning to the original
goal.
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viously, (Bruce and Veloso 2002). We expand this for multi-
fidelity nodes and plan reuse.

For completeness guarantees, we also plan from all pre-
vious waypoints. In Figure 2 (d), we generate start trees us-
ing all previous waypoints since it may not be possible to
find a plan from the waypoint start closest to the infeasi-
bility to any goal. Planning from previous waypoints could
be done sequentially but we create a multi-tree set that con-
currently generates trees from all previous start waypoints.
The growth of each tree towards the goal set, Figure 2 (e),
also uses an inverse distance metric from the infeasibility to
probabilistically sample what tree to expand next.

The initial globally maintained plan contains nodes of
multiple model types. Consequently, it may not be possible
to re-plan in the selected model for all previous nodes along
the global path. Since all models have at least one common
ancestor (such as M4 in Figure 1), previous waypoints along
the global path are elevated to this common model before re-
planning occurs. Additionally, the remaining nodes after the
infeasible area are translated to the currently selected model
and set as possible goals.

The first re-plan tree that connects to an intermediate goal
(Motion Plan Generation) creates a partial plan. The new
partial plan is then merged back into the global plan. There-
fore, this re-planning phase may create shortcuts connecting
start trees earlier in the path to later intermediate goals. The
process repeats until the feasibility detection stage does not
find any more impediments. If this is the case, the full global
plan is executable

Probabilistic Completeness Guarantees We assume a
model hierarchy exists where every model has at least one
common ancestor of higher fidelity. Therefore, there exists
a highest fidelity model that is an ancestor of all models.
Additionally, we assume the model implementations use
steering functions for the control input (Kunz and Stilman
2015).

Definition:
For probabilistic completeness, the probability that the
highest fidelity model tree will find a solution approaches
one as the number of tree states approaches ∞. To illustrate
this, we must show in the worst case our algorithm generates
a planning tree from the start of the space in the highest
fidelity model in finite time.

Show: N path waypoints are generated in the lowest
model (Ml) (Algorithm 1, Line 1). A lower bound of N − 1
edges are checked in the highest fidelity model (Mh, Ml

<Mh) (Algorithm 1, Line 5). If an infeasibility is found the
model selected for re-planning always increases in fidelity.

The Worst Case: An infeasibility is detected (Algorithm
1, line 6) in the last edge. (Algorithm 2, afterFailIndex = N-
1). If the next model selected, (Mn), fails the model check
then all previous start waypoints are elevated to at least
the fidelity of Mn, and new re-plan trees of this dimension
are initialized. If the partially re-planned path (Algorithm
1, Line 8) continues to detect infeasibilities, then by BFS
(Algorithm 2, line 6), the re-plan tree will continue to get

elevated until reaching Mh. Also, if a plan is not found dur-
ing multi-tree re-planning, the model search will still select
a higher fidelity model (Algorithm 1, line 6). Therefore, in
the worst case all previous model edges are elevated to Mh

during tree re-planning generating a tree from the start to the
elevated goal set in Mh.

5 Implementation

Differential Drive Robot Models with Trailer

We use seven different wheeled robot models in our testing.

1. �q = [x, y] = XY
The first model is geometric with no control inputs. It is
collision checked in a 2D environment model.

2. �q = [x, y, θ] = XY θ
This model includes θ and constrains motions to s-curves.
The linear velocity is held constant. It is collision checked
in x, y, and θ environment model.

3. �q = [x, y, θ, θtrailer] = XY θθ1
This model generates the same motions as model 2, but
also includes calculating motion for a trailer. The trailer’s
motion is calculated using θtrailer. The collision checker
checks x, y, θ, and the robot trailer.

4. �q = [x, y, θ, t, uv, uw] = XY θV
This model samples the continuous space of linear and
angular velocities ( where uv = sampled linear velocity
control and uw = sampled angular velocity control). Ac-
celerations are assumed to be infinite. Collision checking
now includes a time variable used to index time-sensitive
obstacles such as swinging doors.

5. �q = [x, y, θ, θtrailer, t, uv, uw] = XY θθ1V
This model is the same as model 4, but now includes ad-
ditional collision checking and motion for a trailer.

6. �q = [x, y, θ, t, v, w, ua, uα] = XY θV A
This model samples the continuous acceleration space
(where ua = sampled linear acceleration controls and uα =
sampled angular acceleration control), and now the linear
(v) and angular (u) variables become part of the state. It
collision checks in x, y, θ, and a time state which indexes
time-sensitive obstacles.

7. �q = [x, y, θ, θtrailer, t, v, w, ua, uα] = XY θθ1V A
This model is an extension of model 6 which includes the
trailer.

Models with sampled linear and angular velocities use the
standard differential drive motion equations.

ẋ = uv cos(θ)

ẏ = uv sin(θ)

θ̇ = uw

Models that include the trailer have an extra equation for
the trailer’s theta: θ̇trailer = (uv/l) sin(θ − θtrailer).

Models with sampled acceleration use a double integrator
in their motion equations where velocities become part of
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the state.

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = w

v̇ = ua

ẇ = uα

Figure 3: Transitive reduction of full model graph.

Different models create different motion trajectories as
shown in Figure 4. The XY path (Figure 4(a)) contains
straight line geometric motions. The XYθθ1 path (Figure
4(b)) models the trailer and follows s-curve motions. Finally,
the XYθVA path (Figure 4(c)) varies accelerations creating
a smoother trajectory.

Translation

Plan translation is also necessary for checking paths in dif-
ferent models. In our work, there is a distinction between
translating between models and translating between plans.
As discussed previously in Section 3, the definition of how
a hierarchy is formed includes a lossless translation function
which describes translation to higher fidelity models. Un-
fortunately, this does not include all information necessary
when checking between plans. Models that include passive
states are re-propagated from the start along the path. This
is one step of plan translation. Examples of passive states
include the additional robot trailer position, and indexing
in the environment by time. Another example is modeling
non-infinite accelerations in higher models. The robot needs
to propagate the actual velocities since it may not reach the
desired velocity by the next waypoint.

Another consideration with plan translation is how to im-
prove the plan fidelity to account for what the controller does
when checking paths. For example, our [x y] model requires
turn in place actions to be added for higher fidelity spaces
where θ is actually modeled. This creates feasible controls
for the planner to check. Additionally, the plan is translated
to more closely match the controller by augmenting angular
velocity to stay along the path during checking. This forces
a check of the path that most closely resembles the robot’s
actual path during execution.

(a) Example XY path: notice that this lower model
has turn-in-place waypoints that take it through a
tight hallway.

(b) Example XYθVA: notice that this higher model
chooses to plan around the gurneys.

Figure 4: Examples of paths generated using different mod-
els.

Controller

Angular and linear velocity controls are sent for the robot to
execute. Controls are matched by having separate PID con-
trollers for each wheel. The robot executes these controls un-
til it is within epsilon of the next waypoint or it crosses a line
segment that goes through the next waypoint perpendicular
to the robot’s heading. The robot follows smoother curves
by modifying the commanded angular velocity to be a func-
tion of the angular error when the angular error is greater
than some epsilon. It adjusts the robot to turn towards the
next waypoint when within some small linear distance (0.6)
and then turn towards the next planned theta within an even
smaller linear distance (0.1).

6 Hospital Simulation Experiments

We ran single model runs over various environments. These
single runs were compared for plan time and success rates
with the multi-model switching strategy. Below, we describe
the different environments for each experiment.

Robot

The robot geometry models are shown without (Figure 5 (a))
and with the trailer (Figure 5 (b))).

Environments

The real world is represented by the Gazebo simulator
(http://gazebosim.org/) which models dynamics by simulat-
ing rigid-body physics. We model a typical hospital envi-
ronment with automated swinging doors and gurneys in the
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(a) Robot Model. (b) Robot Model
with Trailer.

Figure 5: The robot model.

hallways. The swinging doors are meant to show the im-
portance of planning with velocity and acceleration and the
gurney world shows the importance of modeling the trailer
through turns.

Swinging Doors The pictures in Figure 6 show the three
swinging doors stages checked in the collision checker when
time is part of the state space. The door is activated when the
robot is in front of the doors within 2m of the x-axis and 1m
of the y-axis.

An example path generated in this world using the high-
est acceleration model is shown in Figure 7. The black rect-
angles highlight the door opening that must be collision
checked at different time intervals. The waypoints are closer
together before the door, then they become farther apart as
the robot accelerates through the door opening.

(a) The doors are closed before and after being
opened.

(b) The doors partially
opening or closing.

(c) The doors fully
opened.

Figure 6: Swinging doors world and various stages of the
door opening and closing.

Gurney The gurney world contains multiple hospital gur-
ney obstacles placed in a hallway that the robot must plan

Figure 7: A path generated in the swinging doors world us-
ing model XY θθ1V A.

through. (Figure 8).

(a) Gurney world.

(b) Gurney world zoomed in.

Figure 8: A hospital environment with multiple gurneys.

7 Results

We ran experiments in the simulator world for each environ-
ment as shown in Table 1 and Table 2. This was done for all
seven models, with and without switching, for 100 runs.

To produce good plans, we generated 20 RRT plans and
chose the best (shortest) one for execution. Note that we
are constructing scenarios that are more likely to fail in the
lower models to show the efficacy of our approach. In stan-
dard execution we would expect the initial model (in this
case [x,y]) to fail rarely.

Swinging Door

Table 1 contains the swinging doors environment runs. It
shows the percentage of successful executions to the goal
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for each model (without switching), switching among all
models, and their average planning times. We see that as the
models increase in fidelity the mean plan-time over 20 runs
increases. Models for this world that sample velocity and ac-
celeration controls incur higher plan-times. This is due to the
additional collision checking necessary for the time states
with the swinging doors in these higher models.

Table 1: Swinging doors results for no switching single
model runs and switching in swinging doors world.

Model success % plan-time
mean(s)

plan-time
std dev

Test (From x=-2, y=-2 to x=3.0, y=-2.0).
[x, y] 69% 0.08 0.03
[x, y, θ] 77% 2.76 0.7584
[x, y, θ, θ1] 53% 2.86 0.9416
[x, y, θ, V] 98% 11.13 4.91
[x, y, θ, θ1 ,V] 100% 44.65 14.29
[x, y, θ, V, A] 99% 14.39 5.97
[x, y, θ, θ1, V, A] 100% 52.7 19.5

Test (From x=-2, y=-2 to x=3.0, y=-2.0). Swinging doors.
Switch all 98% 6.89 12.27

Gurney

Table 2 contains the gurney environment runs. It also shows
the percentage of successful executions to the goal for each
model (without switching), switching among all models, and
their average planning times.

The gurney switching results had higher average mean
planning times than expected, but this is due to the breadth
first order during model selection. Multiple models may be
applicable to infeasibilities found, and since we use breadth
first search, re-planning occurred first in the non-trailer mod-
els. This increased average planning time. This suggests fu-
ture work on a more informed method for choosing model
selection based on the environment rather than breadth first
search.

Table 2: Gurney results for no switching single model runs
and switching in gurney world.

Test (From x=-2.5, y=-2.0 to x=3.0, y=-1.5).
[x, y] 53% 0.08 0.05
[x, y, θ] 42% 2.47 0.49
[x, y, θ, θ1] 95% 4.21 0.62
[x, y, θ, V] 88% 6.98 2.31
[x, y, θ, θ1 ,V] 98% 15.48 6.7
[x, y, θ, V, A] 87% 12.84 1.95
[x, y, θ, θ1, V, A] 99% 27 6.38

Test (From x=-2.5 , y=-2.0 to x=3.0 to y=-1.5). Gurney World.
Switch all 94% 8.8 10.36

We also found that seeding plans with the lowest model
(with already initial poor success rates) sometimes created
paths to areas where higher models infrequently planned
towards. This caused more re-planning and higher aver-
age plan times. Re-planning in very constrained spaces in-

creased plan time due to the difficulty sample based algo-
rithms have in tight spaces such as hallways. This can be
improved by varying the multi tree expansion sampling met-
ric (currently an inverse distance).

Our work assumes the highest model matches the real
world as closely as possible, if this does not occur it in-
creases the presence of false positive and false negative re-
sults. A false positive result occurs when the highest model
used to check the path detects a collision, but the robot
would have executed the path successfully. For example, this
can occur in the swinging doors world where door states are
discretized with each time-step, but in reality door swing is
continuous. A false negative result occurs when the highest
model checker does not detect a collision but the robot en-
counters an execution failure. This can occur in the gurney
world where we are not effectively modeling trailer dynam-
ics, such as mass, which could increase or decrease trailer
swing as compared to the highest model. False positives and
negatives have adverse effects. False positives increase plan-
ning times since re-planning may occur unnecessarily, and
false negatives decrease overall switching success rates. We
are currently working to match the highest model checker as
closely as possible to the underlying real world controller.
We are confident that this would minimize the occurrence of
these values aligning our results with the theory of properly
balancing low plan-times with high execution success rates.

8 Conclusions and Future Work

We presented an approach which leverages a multi-fidelity
model graph to produce a mixed-model plan. This plan finds
a good balance between decreased planning time and in-
creased robustness by giving the robot the ability to re-plan
in a more detailed model to provide a more accurate rep-
resentation of reality. Just as the robot’s operation space is
non-uniform, containing a mix of simple and complex areas,
our algorithm tries to capture the space with a mix of low
and high fidelity models. Our tests attempt to improve com-
putation time and achieve similar success performance (of
the higher models) in this example domain. Our switching
tests also localize planning around the infeasible location.

The results also show there is not always a single best
model to use, but rather that it depends on the situation. For
example, even though modeling the differential constraints
of the robot is higher fidelity than a purely geometric model,
that model will not help if the real problem is not considering
the z dimension (e.g. if overhangs exist in the world), or the
trailer’s shape in tight turns. This is why it is important to
have a separate model selection stage that can reason about
which model fidelity should be used for repair.
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