
Robust Efficient Robot Planning through Varying Model Fidelity

Breelyn Kane Styler and Reid Simmons
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
{breelynk,reids}@cs.cmu.edu

Abstract

Long-term robot autonomy requires reliable execution
success. Execution success improves by modeling the
real world accurately during planning time. Unfortu-
nately, computing a full plan in highly accurate mod-
els is often intractable since accurate world models in-
crease the dimensionality of the planning space. Addi-
tionally, planning in the highest model is unnecessary
for simple uncluttered parts of the environment. Current
planners achieve tractable planning times by using ap-
proximate models. However, these approximations re-
duce accuracy resulting in decreased execution success.
We introduce an approach that balances planning time
efficiency while maintaining execution success. This is
accomplished by leveraging a varying fidelity model hi-
erarchy. The approach identifies infeasible execution lo-
cations and uses a model selection process to locally
re-plan in the minimum fidelity model necessary to cir-
cumvent the infeasibility. This effectively generates a
single, mixed-fidelity plan. We evaluate the approach
on a simulated differential drive robot that navigates a
constrained environment. The robot maintains its rate of
successful task completion while conserving computa-
tion resources by switching from lower fidelity models
only when needed.

1 Introduction
Autonomous robots leverage planning and models to intel-
ligently operate in the real world. Furthermore, autonomous
robots deployed for long periods need to be robust to fail-
ure. They can minimize runtime failures by reasoning about
models that capture execution feasibility at plan-time. Mod-
els can be arbitrarily complex to better represent the inter-
action between the robot and its environment. These high
fidelity models often include higher dimensions, dynamics
and differential constraints. However, planning with such
complex models is computationally expensive. Therefore,
model approximation may be necessary to achieve tractable
global planning times for complex tasks. The loss of model
fidelity from these approximations leads to increased fail-
ure rates in complex locales of the environment where lower
fidelity models are insufficient.

Model approximations sacrifice fidelity for computation
feasibility. These approximations are sufficient for simple
regions in the task space. For example, a model that con-

siders detailed terrain vehicle interactions is unnecessary for
large flat open spaces. They are insufficient, however, for
complex portions of the environment. For that reason, the
robot’s non-uniform execution space suggests plan savings
by leveraging multiple models. Our work attempts to stay as
long as possible in the lowest fidelity model applicable in
order to decrease plan computation time without sacrificing
execution quality.

Our approach organizes a given set of planning models
into a directed hierarchical graph. These varying fidelity
models, when combined, approximate the continuous high-
est possible real-world model. The approach attempts to de-
tect the parts of the lower fidelity plans that are infeasi-
ble for execution and repair them using re-planning through
higher fidelity model selection. The model selection process
uses prior plans to autonomously select the most applicable
higher fidelity model in the hierarchy. This higher fidelity
model is used to locally plan to an intermediate goal where
the previous lower fidelity plan is resumed. This approach
creates a mixed model plan.

Our approach increases robot robustness by giving robots
the ability to autonomously decide to re-plan in higher
fidelity model representations that inherently incorporate
more information. This will improve performance over only
using a lower fidelity model, and it will reduce planning
times over only using the highest fidelity model. Model
switching combines the robustness of a high-fidelity plan
with the efficiency of an abstract representation by using
higher fidelity models only when necessary.

We ran a series of experiments, in simulation, with a dif-
ferential drive robot, and used wheeled mobile robot motion
planning models for our testing. In our results, we demon-
strate failure rates and planning times when using a fixed sin-
gle model versus autonomously switching between models
of varying fidelity. Our approach creates plans that maintain
robustness, and take significantly less time to plan, overall,
than planning from the start using the highest fidelity model.

2 Related Work
Model generation is prevalent in the robotics community.
For instance, there are models for humanoid balancing
(Stephens 2007), physics based models for manipulation
planning (Dogar et al. 2012), and models for wheeled robots
that more accurately capture real world trajectories (Seeg-

PlanRob 2015

96



miller and Kelly 2014). These previous works demonstrate
different model types that increase robustness as the fidelity
increases. These works inspire the use of a multi-model ap-
proach, but they use hard coded rules for knowing what
model to use, and do not include a switching strategy.

Adjusting the resolution in a plan could be considered a
form of model fidelity switching. The following works adapt
the planning space resolution locally around the robot, but
do not vary the model fidelity throughout the same plan
(Kambhampati and Davis 1986), (Steffens, Nieuwenhuisen,
and Behnke 2010), (Behnke 2004). Our strategy varies mod-
els throughout the same plan and changes the resolution of
both the state and action spaces.

Our use of hierarchical models is inspired by other hi-
erarchical approaches (Fernández-Madrigal and González
2002), (Barbehenn and Hutchinson 1995) as well as hierar-
chical approaches in task motion planning that recognize the
need to consider lower-level motion plans in task space for
plan success (Wolfe, Marthi, and Russell 2010), (Kaelbling
and Lozano-Pérez 2011).

In addition to a model hierarchy our work uses re-
planning to switch between varying fidelity models. This is
motivated by previous work in re-planning. Re-planning is a
technique that has been in symbolic planning since early mo-
bile robots (Fikes, Hart, and Nilsson 1972). The execution
monitoring portion of the planner PLANEX included ways
to regenerate unsuccessful plan actions with different argu-
ments. Re-planning is also prevalent in the motion planning
community. Motion planning uses re-planning in incremen-
tal search (Stentz 1995) (Koenig and Likhachev 2002), and
sampling based algorithms (Bruce and Veloso 2002) (Fergu-
son, Kalra, and Stentz 2006). Our approach re-plans between
different hierarchical levels of the configuration space and
workspace including reasoning about differential constraints

Many previous works focus on when to switch between
models rather than reasoning about what detail the model
contains before switching. Our work contains an additional
model selection stage that most related works do not. This
stage determines what detail level is most applicable for re-
planning.

Related work, such as (Howard and others 2009), uses
fixed strategies by focusing on when to switch between lev-
els of detail. This is apparent in work that only has two lev-
els, such as a higher level global plan that guides a low level
continuous planner (Knepper and Mason 2011). Similarly
hybrid planning switches between a distinct discrete plan
and more focused continuous planner (Plaku, Kavraki, and
Vardi 2010) as occurs in the SyClop planning framework.
This also occurs in (Choi, Zhu, and Latombe 1989) where
a contingency ”channel” with many possible motion plans
guides a lower-level potential field controller. Other work
(Göbelbecker, Gretton, and Dearden 2011) divides the plan-
ning space between task and observation level plans simi-
lar to the division between global and local planners. They
switch between a fast sequential ”classical” planner, that
generates an overall strategy, and more expensive decision-
theoretic planning for abstracted sub problems.

Multi-modal and multi-stage work also contain fixed
switching strategies. They switch between different planner

types based on the modal discretization of the motion plan-
ning domain. Multi-modal motion planning for humanoid
manipulation (Hauser, Ng-Thow-Hing, and Gonzalez-Baños
2011) generate trajectories within a single mode and rea-
son about the motion transitions as targets. The levels of
mode ”classes” are pre-defined with such modes as: walk-
ing, reaching left, reaching right etc, each with their own
constraints and dynamics. Work by (Hauser and Latombe
2009) also divides the space into modes based on the differ-
ent dimensions in motion configuration space. They sample
transitive connections between modes but do not reason ex-
plicitly about the detail they are switching to. Lastly, work
by (Sucan and Kavraki 2011) for task motion multigraphs
also contain predefined points where switching occurs. This
work decides between left and right arm motion trajectories
which could be viewed as different models. The decision of
when to switch is predefined between tasks and the selec-
tion criteria is based on computation time. Our model selec-
tion criteria reasons about task success and the point when
to switch to a new model is not predefined.

A work that is more similar to ours graduates motion
primitive fidelity along a state lattice (Pivtoraiko and Kelly
2008). They change the fidelity between replans in the mo-
tion planning workspace. They also recognize that ”partially
or completely unknown” regions of the space can use lower
fidelity representations than regions most relevant to the cur-
rent problem. The work also claims that previous multi-
resolution work is more systematic while theirs allows dif-
ferent resolution regions to move over time. The amount of
fidelity around the robot is fixed and moves like a sliding
window, which is different than our mixed fidelity plan.

Our work is mainly inspired by Gochev’s previous
work with adaptive dimensionality (Gochev, Safonova, and
Likhachev 2013) (Gochev et al. 2011) (Gochev, Safonova,
and Likhachev 2012). That work divides the state space into
two parts; a high dimensional and low dimensional graph
with defined transition probabilities. They use a state lat-
tice planner with pre-computed grid transitions. Unlike other
works, they are able to mix the two subspaces into a sin-
gle plan. Our work also has this same effect, of generating
plans that mix dimension spaces, through adaptive switch-
ing. They also have a tracking phase (similar to our plan
checking stage) to determine where to insert higher fidelity
states in a low fidelity plan. Our novelty is we use a com-
plete hierarchy of models. Therefore, our algorithm contains
an additional model selection stage. In addition, our models
incorporate more than just the state space dimensionality.

3 Approach
Our algorithm for robust plan generation consists of three
main stages that loop:

1. Plan generation.
Here a plan is generated for a particular start and goal state
using a given model.

2. Feasibility detection.
This is the plan checking stage where execution problems
are determined. This stage answers the question of ’when’

PlanRob 2015

97



to switch between models in the plan. 1

3. Model selection.
This stage decides what model to switch to for re-
planning. The model selector reasons over the model
graph to determine what model may be sufficient to re-
pair the plan.

Using the motion planning domain as an example, the
robot’s task is to navigate from a start state to a goal state.
Our system uses an environment map to generate a plan from
start to goal in the lowest applicable fidelity model (Plan
generation). This plan is the initial global plan.

The plan is then checked in the highest fidelity model to
determine parts of the plan that might need repairing (Fea-
sibility detection). Even though the high fidelity model is
complex, checking a single plan does not incur much com-
putation time.

If re-planning is necessary, due to a detected impediment,
the algorithm moves to stage three (Model selection). The
model selector finds the lowest fidelity model that can still
feasibly generate a repaired plan. This gives further compu-
tation savings by using the lowest fidelity model applicable
rather than always switching back to the highest available
model. The re-planning model is selected by re-testing the
partial plan segment, which needs repair, in higher fidelity
models. The first model in which checking of the previous
plan segment is unsuccessful is the model selected for re-
planning. This model is assumed to be a more informative
approximation of the space.

The algorithm then cycles back to stage one. A new plan
is generated in the selected model. The use of the selected
model is localized around the detected impediment by re-
planning to intermediate goals on the remainder of the infea-
sible plan rather than re-planning all the way to the original
goal. This creates a partial plan. The new partial plan is then
merged back into the global plan. The process repeats until
the feasibility detection stage does not find any more imped-
iments. If this is the case, the full global plan is determined
to be executable.

The next sections describes our definition of model as
well as how the varying fidelity models are organized in a
directed hierarchical graph. Section 3.3 provides more de-
tails about the robust plan generation algorithm.

3.1 Models
Note that the model space is separate from the underlying
robot controller. To illustrate this separation, imagine a per-
son racing a car on switchbacks. They are able to apply a
controlled skid to take tight turns at high speeds by estimat-
ing an internal momentum model. The internal model they
use for their driving plan is separate from the underlying ap-
plication of braking, hitting the gas pedal, and steering that is
necessary for controlling the car. Similarly the robot’s mod-
els provide decision making options through the generation

1For an execution time-only approach the robot can trigger a
failure detection during runtime. This makes sense if failures are
non-detrimental and easily detectable. For this work we focus on
a plan-time approach since we are testing in simulation and not
reasoning explicitly about uncertainty.

of possible plans. The plan then needs to be translated into
control inputs for the robot to execute 2 (see section 4.1).

When we use the word model we describe a three-tuple
{Sr, Se, A} consisting of:

• Sr : set of robot states {s0 . . . s∞}
Example robot states: position, orientation, mass, wheel
slip constraints, etc.

• Se : set of environment states {s0 . . . s∞}
Example environment states: position and orientation of
obstacles, 3D/2D representation, static or dynamic obsta-
cles, etc.

• A : set of actions {a0 . . . a∞}
Example action set: planar motions, equations of motion
that include control inputs and differential constraints,
motion primitives, or other trajectory generation methods,
etc.

Each model includes states and actions that allow the gen-
eration of a plan within that model space. The action space
varies from geometric spatial actions to differential equa-
tions of motion that include input controls. The environ-
ment representation (2D vs 3D) also varies through the state
space. Where the models come from is not relevant to this
paper. We assume they are all provided to us (see, for in-
stance, (LaValle 2006)).

Figure 1: Chassis Directed Model Graph: The graph evolves
from (roughly) left to right, with the root at [x,y]. Note:
States listed do not encompass the entire model and exist
only as labels for the model nodes.

3.2 Model Organization
Ordering the models hierarchically is important for model
selection. For a model to be higher fidelity than another, it
could be a direct superset by including more states in the
space (higher dimensions), or containing more control in-
puts. The more correct a model is at representing the real

2Translation is only necessary for the geometric planar models
for our specific plan following controller. This translation step can
be avoided by planning with directly executable feasible motion
primitives, as was demonstrated in previous state lattice motion
planning work (Pivtoraiko and Kelly 2005). Additionally, some
plan following controllers are robust enough to follow geometric
plans without translation. This is demonstrated in Big Dog (Raib-
ert et al. 2008) where the robot successfully executes plans that
were generated on a two-dimensional grid.

PlanRob 2015

98



world (such as modeling slip), or the larger the space con-
sidered, the higher fidelity the model is.

Our work makes an assumption that lower fidelity models
can be translated into higher models at each layer. This al-
lows the lowest model to be translated into the highest model
through each layer of the graph (see Section 4.1). This trans-
lation capability is necessary for 1) checking the full plan for
errors, 2) model selection, and 3) connecting partial plans
with intermediate goals.

As a concrete example, Figure 1 shows a model graph
with models from the motion planning community for a two-
wheel differential drive robot. The node names are just in-
dicative - the actual models incorporate more information
than just a description of state.

As the models change fidelity the environment and/or
the action space is changed. For example, the added z-
dimension changes only the collision checker to consider
three dimensional objects, an environment change. This is
because the chassis cannot actuate in the z-dimension, so
the addition does not effect the action space. Adding the θ
dimension changes both the state and action space. Colli-
sion checks are now done in θ and the underlying controller
is constrained to s-curve motions. The specific models used
in the experiments are described in more detail in Section
4.1.

3.3 Robust Plan Generation
We start by planning in a default model space, typically
[x,y], and check the plan in the highest fidelity model. If
the plan is feasible, it is sent to the robot for execution. If the
plan is not feasible, the infeasible plan segment is sent to the
model selector. The model space used for the plan segment
that needs repair (initially the [x,y] model) is then the first
node to search from in the model graph.

Algorithm 1 Robust Plan Generation
1: setupPlanSpace()
2: [p , planResult] = generatePlan(m);
3: globalPlan = SAVEPLAN(p, globalPlan);
4: if planResult == success then
5: tm = translateToModel(p, highest);
6: [planCheck, b4repair, afterrepair] = propagateWhileValid(tm, highest)
7: if planCheck == infeasible then
8: m = MODELSELECTOR(globalPlan, b4repair, afterrepair);
9: Goto line 1
10: else
11: executeResult = sendToRobot(globalPlan);
12: if executeResult == failure then Robot failed in execution.
13: else
14: Robot made it to goal!
15: end if
16: end if
17: else
18: Failed to find plan.
19: end if

Our model selection process uses Breadth First Search to
explore the model graph. For each model, we first test the
infeasible plan segment in that new model space. If the test-
ing is unsuccessful, it means the model has information not

present in the original model used to generate the plan. Re-
planning from the segment start to intermediate goals (way-
points) is then performed in that model. If a successful plan
is found, it is merged back into the global plan (Algorithm
4) to be re-checked. This strategy is detailed in Algorithm 1.

As an example of how the model selector works (Algo-
rithm 2), assume that it starts with the first child of the [x,y]
model which is the [x,y,θ] model. The previous [x,y] plan
segment is tested in this model (Algorithm 2, line 8). If the
plan succeeds, we assume that the [x,y,θ] model does not
accurately capture the infeasibility. We then choose the next
child of [x,y], which is [x,y,z], and again test the previous
plan in this higher fidelity model. If the plan again succeeds,
we then try the [x,y,z,θ] model. If testing the previous plan
finally does not succeed, we assume this model captures the
space of the impediment and we select it as the model to
use for re-planning from the start of the infeasible segment.
Based on this approach, it is possible to produce a final plan
that can effectively skip between model tree levels when
choosing the next model (in this example, we skipped from
[x,y] to [x,y,z,θ]).

Algorithm 2 The model selector does a Breadth First Search
by testing old infeasible plan segments in higher fidelity
model spaces until the old plan fails. If the old plan fails,
this indicates the model contains information that may be
relevant to the impediment and that is the model chosen for
re-planning.
1: function MODELSELECTOR(p, b4failIndex, afterfailIndex)
2: mLast = findModelFor(p.getNode(b4failIndex));
3: m = mLast;
4: p = resizePlan(p.getNode(b4failIndex), p.getNode(afterfailIndex));
5: setUsedModel(m); . Last model used becomes root node.
6: m = getNewModelBFS();
7: tm = translateToModel(p,m);
8: planResult = propagateWhileValid(tm, m); . Does collision checking.
9: if planResult == success then
10: Goto line 5
11: end if
12: return m
13: end function

Intermediate Goals Instead of re-planning in a model all
the way to the original goal, the previous plan is potentially
reused by planning to intermediate goals. In particular, the
remaining nodes after the infeasible area are translated to
the currently selected model and set as possible goals. This
effectively creates a goal set to plan to (Algorithm 3). If we
successfully plan to an intermediate goal we can switch back
to using the original plan for the remainder of the plan.

The idea of using waypoints as a cache was also done in
work by (Bruce and Veloso 2002). We expand this for multi-
fidelity nodes and plan reuse. For instance, in Figure 2 a goal
set is created for all unachieved waypoints (1 through goal).
The planner then re-plans to this goal set and finds waypoint
3 is successful. The remaining plan, with this new partial
plan, is sent for the robot to execute.

Planning to an intermediate goal localizes around the in-
feasible location in order to plan in higher fidelity models

PlanRob 2015

99



for less time. The resulting plan to be executed can contain
nodes from different models, creating a mixed model plan.

(a) After model selection, elevate remaining nodes (node after
failure to original goal) to match model selected. Plan to goal set
(1,2,3,4, and original goal)

(b) Successful re-plan to intermediate goal 3, remainder of plan
sent from there to original goal

Figure 2: Localizing around the infeasible area by planning
to intermediate goals, in the new selected model, rather than
re-planning to the original goal.

Algorithm 3 To plan to intermediate goals it is necessary to
elevate the planning model of the remaining nodes in the
plan, after the infeasibility, to be the same as the current
model. This allows the planner to plan to a possible set of
goals rather than a single goal.
1: procedure SETGOALS

2: node = findNodeB4Repair(globalPlan);
3: m = node.getModel();
4: setGoals(translateRemainingNodes(globalPlan,m));
5: end procedure

4 Implementation
This section presents the models from the motion planning
community that we used for our experiments. We also show
translation between the models and how collision check-
ing varies based on the model. Section 4.2 describes the
low-level robot controller, and the collision monitoring tech-
niques we applied for execution.

In our current implementation, the real world is rep-
resented by the Gazebo simulator (http://gazebosim.org/)
which models dynamics by simulating rigid-body physics.
Our test environment contains three dimensional overhangs
of different heights as well as a sliding door that periodically
opens and closes every 10 seconds. Pictures of the door open
and closed are shown in Figure 4 (a) and Figure 4 (b). We
are setting up an environment more complex than the lower
models can handle for the sake of demonstrating the benefits
of different model use.

Plans are generated using the Open Motion Planning Li-
brary (OMPL) (Şucan, Moll, and Kavraki 2012). While

Algorithm 4 A global plan saves the proper model with each
plan node. Partial paths are merged back into the global plan.
When planning to intermediate goals the remainder of the
old plan must also be added to the partial plan.
1: function SAVEPLAN(p, globalPlan)
2: if globalPlan!=empty then
3: planPrepend = findPartial(p.start(), p.end(), globalPlan)
4: planRemainder = findPartial(p.end(), globalPlan);
5: globalPlan = planPrepend + p + planRemainder;
6: addConnectionPoint(planPrepend.end(), p.start());
7: addConnectionPoint(p.end(), planRemainder.start());
8: else
9: globalPlan = p;
10: end if
11: return globalPlan
12: end function

(a) Open door

(b) Closed door

Figure 4: The world with a door that opens periodically on
the right side (every 10 seconds). A large center overhang
the robot cannot go under, and a smaller overhang the robot
can go under.

the underlying motion planner is not so important, we use
Rapidly Exploring RandomTrees (RRTs) to generate mo-
tion plans (LaValle and Kuffner 2001) since RRTs can easily
handle various models, including those with differential con-
straints and dynamics. We defined the RRT distance function
to primarily use the x and y components.

For intermediate goals, θ is added to the distance func-
tion to make sure mixed plans with connection points for θ-
models align properly with previous plans. Also, as a heuris-
tic in RRT planners, the goal is sampled with some probabil-
ity. We probabilistically weight the remaining intermediate
goals linearly based on the inverse of their distance from the
repair segment start. This biases intermediate goals to those
closest to the detected impediment in order to re-use more
of the remaining plan when possible.

Figure 3 shows the plan-time algorithm generation for the
navigation motion planning domain. Each generation stage
of the plan is shown resulting in a final plan which merges

PlanRob 2015

100



(a) (b) (c)

(d) (e) (f)

Figure 3: The dark blue lines connect the waypoints in the path. A plan is generated in the lowest fidelity space (a). The plan
is translated into the highest model and a collision is detected in the plan run in the highest model (b). The light blue arrow
shows the detected collision. The model selector re-plans in a higher selected model (this case [x,y,z]) (c). This partial plan
is merged back into the global plan (d), where another collision is detected when checked in the highest model. The model
selector re-plans a partial plan in the selected model[x,y,z] (e). The final mixed fidelity plan with no more detected repairs is
constructed (f). Note: overhangs projected for illustration purposes.

partial plans from different models.

4.1 Models Used
Our robot has only one subsystem, the chassis, which is dif-
ferential drive and can translate (in 2D x, y space where x
and y are coupled) and rotate in theta (x, y, θ space). The
model state focuses on positions in x, y, z space and SO2
space. Time is added to the state space for models that have
velocities, which allows us to represent dynamic obstacles
that can change position periodically.

For the action space, the underlying ordinary differential
equations specific to a non-holonomic two wheeled vehi-
cle were constructed based on the unicycle model (LaValle
2006). Models with proper velocity space sample the right
and left wheel velocities separately rather than just sample
a linear velocity. Table 1 lists the state, controls, and ac-
tion spaces for the models we implemented. The models
we selected are chosen explicitly to illustrate the benefits of
switching. Models for real world robot use are expected to
be more sophisticated. Figure 5 shows different plans gener-
ated using different models.

The robot’s model fidelity changes in two ways. The fi-
delity of the physical robot changes for collision checking
during planning, and the fidelity of robot motions vary to
better capture the underlying controller. In particular, mod-
els without z treat the environment as 2D, in terms of col-
lision checking, while models with z do full 3D collision
checking. 3

3Note: For our experiments we cut the z-dimension at a par-
ticular low height. The overhangs are not seen in the planner for

Collision Checker We check collisions only if obstacles
inflated by the robot’s bounding sphere intersect the current
state. Table 2 describes how collision checking changes for
different models.

For models with velocity, we use an additional time vari-
able in the state to properly index the environment we are
checking against (doors that are closed or open). Models
without velocity assume the doors are open.

To help account for uncertainty in the robot’s motions, we
create a small buffer around the robot by increasing the robot
footprint 6% in the x and y directions (3% on each side).

Translating Between Models Translation functions ex-
ist to convert states and actions in lower fidelity models
to higher fidelity (see Table 3 for details). For models that
generate actions that are not directly executable by the con-
troller, additional controls are added. This is necessary for
the purely geometric models that have planar motions. For
instance, the [x,y] model space generates plans that have the
robot turn-in-place and follow a straight line to the next way-
point. The translation function adds extra waypoints to en-
able the controller to perform turn-in-place actions.

For checking translated plans in higher models we use the
same propagation function used in the RRT to plan between
waypoints. This forces the use of the same motion equations
and collision checker as the model that is being checked in.

the [x,y] model in Figure 3 during step (a). An alternative is to
project the z-dimension into 2D. Projection is a more conserva-
tive approach since the robot would never consider going under the
overhangs in [x,y]. In both cases, there is information lost to mod-
els that do not consider the z-dimension.

PlanRob 2015

101



(a) x, y (2d environment, planar motions) (b) x, y, z, θ (3d environment, constrained s-
curve motions)

(c) x, y, θ, ẋ, ẏ, θ̇ (2d environment + time,
smoother unconstrained s-curve motions)

Figure 5: Examples of plan generation for three different models.

Table 1: Models Used
Model label States Control Inputs Action Space

[x, y] x and y none straight line motions
and interpolation.

[x, y, z] x, y, and z none straight line motions
and interpolation.

[x, y, θ] x, y, and
theta

sample linear veloc-
ity, u[0], rotational
velocity u[1] found
by dividing by ra-
dius.

Equations of motion.
ẋ = u[0] cos(θ)

ẏ = u[0] sin(θ)

θ̇ = u[1]

[x, y, z, θ] x, y, z,
and theta

sample linear veloc-
ity, u[0], rotational
velocity u[1] found
by dividing by ra-
dius.

Equations of motion.
ẋ = u[0] cos(θ)

ẏ = u[0] sin(θ)

θ̇ = u[1]

[x, y, θ, ẋ, ẏ, θ̇] x, y, theta,
and time

sample left and
right wheel veloci-
ties u[0], u[1].

Equations of motion.

ẋ =
(u[0] + u[1])

2 cos(θ)

ẏ =
(u[0] + u[1])

2 sin(θ)

θ̇ = u[1]− u[0]

[x, y, z, θ, ẋ, ẏ, θ̇] x, y, z,
theta, and
time

sample left and
right wheel veloci-
ties u[0], u[1].

Equations of motion.

ẋ =
(u[0] + u[1])

2 cos(θ)

ẏ =
(u[0] + u[1])

2 sin(θ)

θ̇ = u[1]− u[0]

Since the global plan contains a mix of models, the trans-
lation function loops through the global plan translating par-
tial plans between connection points.

4.2 Execution
Robot Controller Angular and linear velocity controls are
sent for the robot to execute. Controls are matched by having
separate PID controllers for each wheel. The robot executes
these controls until it is within epsilon of the next waypoint
or it crosses a line segment that goes through the next way-
point perpendicular to the robot’s heading. The robot follows
smoother curves by modifying the commanded linear veloc-
ity to be a function of the angular error when the angular
error is greater than some epsilon.

The controller also uses a correction in angular velocity

Table 2: Collision Checking
Model label States Collision Checking

[x, y] x and y in x and y, with 2D obstacles.
[x, y, z] x, y, and z in x, y, and z with 3D obstacles.
[x, y, θ] x, y, and theta in x, y, and theta with 2D obsta-

cles.
[x, y, θ] x, y, z, and theta in x, y, z, and theta with 3D ob-

stacles.
[x, y, θ, ẋ, ẏ, θ̇] x, y, theta, and time in x, y, and theta with 2D obsta-

cles indexed by time.
[x, y, z,θ, ẋ, ẏ, θ̇] x, y, z, theta, and

time
in x, y, z, and theta with 3D ob-
stacles and indexed by time.

for better path following. It adjusts the robot to turn towards
the next waypoint when within some small linear distance
(0.6) and then turn towards the next planned theta within an
even smaller linear distance (0.1).

Execution Monitor We use a Gazebo contact sensor to
simulate the robot’s bump sensor. If the robot bumps into
anything a failure message is sent to indicate failure dur-
ing execution. This failure signal can be used to initiate re-
planning, using a variant of Algorithm 1.

(a) Test 1 start and end (b) Test 2 start and end

Figure 6: The start and end positions for the simulation runs.

5 Experimental Results
We ran experiments in the simulator world for two different
start and end states as shown for Test1 and Test2 in Figure 6.
Test1 requires the robot to traverse through more obstacles,
take more turns, and navigate more overhangs than Test2.
Test2 focuses on the dynamic sliding door. It places the robot
closer to the doors and changes the goal to be directly behind
the doors.

PlanRob 2015

102



Table 3: Translation
Model label Translate to La-

bel
Translation

[x,y] [x,y,z] add z
[x,y] [x,y,θ] add theta by finding arctan from next

waypoint and get linear and angular ve-
locity from distance to next waypoint.

[x,y,z] [x,y,z,θ] add theta by finding arctan from next
waypoint and get linear and angular ve-
locity from distance to next waypoint.

[x,y,θ] [x,y,z,θ] add z.
[x,y,θ] [x,y,θ, ẋ, ẏ, θ̇] convert linear and angular velocity to left

and right wheel velocities. Time variable
calculated through state propagation.

[x,y,z,θ] [x,y,z,θ, ẋ, ẏ, θ̇] convert linear and angular velocity to left
and right wheel velocities. Time variable
calculated through state propagation.

[x,y,θ, ẋ, ẏ, θ̇] [x,y,z,θ, ẋ, ẏ, θ̇] add z.

We ran three test types. First we ran all six models inde-
pendently without allowing switching, as shown in Table 4.
Then we demonstrate our approach using Algorithm1 and
always starting in the lowest model. We refer to these results
as ’switch all’ shown in Table 5. Lastly, for comparison, we
ran tests that only switch between the lowest and highest
model, again always starting in the lowest model.

For all tests we recorded the planing time mean and
std deviation for 100 runs. We also display the percentage
of successful executions that occurred for running the fi-
nal produced plan in simulation, without execution time re-
planning.

To produce good plans, we generated 30 RRT plans and
chose the best (shortest) one for execution.

Note that we are constructing scenarios that are more
likely to fail in the lower fidelity models to show the effi-
cacy of our approach. In normal practice we would expect
the initial model (in this case [x,y]) to fail rarely.

Table 4 shows the percentage of successful executions
to the goal for each model (without switching) as well as
their average planning times. We see that as the models in-
crease in fidelity the mean plan-time over 30 runs increases.
The time change in adding the z-component is less than that
of theta since this is purely a geometric change which has
collision checking in three-dimensions rather than two. The
search space does not change. For models that incorporate
theta, collision checking is done using theta. Additionally,
theta is sampled and the linear velocity is sampled to con-
strain motion to s-curves. This increases the state search
space for waypoint targets and the action space. The two
highest fidelity models take the longest since they sample
both the right and left wheel velocities as well as incorporat-
ing time in the state which adds additional collision checks
for sliding doors. This also creates a larger search space
which increases the branching factor causing higher plan-
ning times.

Test1 starts in front of a long overhang. Models that in-
clude the z-dimension are the most beneficial for this test.
Additionally, since this test ends near the sliding door veloc-

ity models played a minor role in task success.

Figure 7: An example of a plan generated in model
[x, y, z, θ, ẋ, ẏ, θ̇] for Test2.

In Test2, success rates are much higher for models with
velocity since they do properly model the time space (note
that models that do not consider time assume the sliding
doors are always open). Figure 7, is an example of a path
generated in the model [x,y,z,θ, ẋ, ẏ, θ̇]. Note that the ve-
locity decreases as the robot nears the doors (as evidenced
by the smaller distance between waypoints), waiting for the
doors to open, and then increases again to rush through the
doors before they close.

Table 4: Results for single model runs with no switching.
Model success % plan-time

mean(s)
plan-time
std dev

Test 1 (From x=-2, y=-2 to x=6.0, y=2.0). Includes overhangs.
[x,y] 19% 0.13 0.01
[x,y,θ] 20% 79.0 25.5
[x,y,z] 67% 1.79 0.52
[x,y,z,θ] 87% 93.0 19.1
[x,y,θ, ẋ, ẏ, θ̇] 17% 110.2 30.2
[x,y,z,θ, ẋ, ẏ, θ̇] 90% 158.5 43.3
Test 2 (From x=2.0 , y=-1.0 to x=6.0 to y=-2.0). Includes moving door.
[x,y] 35% 0.10 0.01
[x,y,θ] 46% 56.1 14.6
[x,y,z] 44% 1.22 0.33
[x,y,z,θ] 52% 81.1 19.5
[x,y,θ, ẋ, ẏ, θ̇] 73% 162.2 51.1
[x,y,z,θ, ẋ, ẏ, θ̇] 75% 194.2 58.2

Table 5: Switching results.
Model success % plan-time

mean(s)
plan-time
std dev

Test 1 (From x=-2, y=-2 to x=6.0, y=2.0). Includes overhangs.
Switch all 90% 2.44 8.44
Switch lowest and highest 86% 17.4 23.0
Test 2 (From x=2.0 , y=-1.0 to x=6.0 to y=-2.0). Includes moving door.
Switch all 85% 128.2 127.7
Switch lowest and highest 80% 149.4 146.3

Table 5 shows the results of our switching algorithm. Note
that in these results mean planning time also includes the
time it took for selecting the next appropriate model to re-
plan in. However, model selection times are negligible. Our

PlanRob 2015

103



algorithm, ’switch all’, produces success rates comparable
to that of the highest fidelity model, but with much more
efficient planning times. For comparison, we also evaluated
a more traditional approach where the system switches be-
tween only two models (the lowest and highest fidelity mod-
els). The traditional approach produces success rates compa-
rable to our full switching approach, but the plan times are
higher.

The plan-time gains for switching were higher for Test1
than Test2. This is due to which models were selected dur-
ing plan-time to switch to. The models selected for switch-
ing with Test2 were most often the velocity models since
infeasibility was often detected in the time dimension. This
causes the times to be higher on average. Additionally, plans
with impediments detected directly in front of the sliding
doors tend to take much longer to repair since the robot can-
not travel backwards. Test1 switched more often to lower
models with the ’z’ dimension which gave a larger plan-
time savings. This is most evident when compared with the
switching between only the highest and lowest model. In
many parts of the Test1 space the highest model is not nec-
essary for task success.

In general, switching creates plans with mean times lower
than the highest fidelity model and higher than the lowest
fidelity model. Intermediate goals further improve planning
times. This is evident in the results for switching between
the low and high model in Test1. The mean planning time
is much lower because the highest model is only necessary
for a short detour in the space. Switching with all models
created plans with mean times lower than just switching be-
tween the low and high models without sacrificing execu-
tion success. The switching tests also contained a handful
of cases which failed to generate a plan. This suggests addi-
tional evaluations for completeness and guarantees.

The fact that the robot still fails in our highest model dur-
ing execution 20-25% of the time means the framework can
still be extended to additional models. For instance, assum-
ing instantaneous velocity and acceleration caused the robot
controller to vary from the plan. A model that can capture
this would reduce the failure rates even more. In cases where
it is difficult to model the information necessary to approx-
imate the underlying controller, it would also be possible to
add uncertainty.

6 Future Work
The architecture allows for expansion to additional models.
The model graph can include other robot subsystems such as
models for a manipulator, or those that combine manipulator
and chassis motions. We would also like to include models
with simple physics such as friction for object interaction,
and forces for pushing. The architecture allows models that
are intractable over the full plan generation to still be used
locally which would increase robot robustness by enabling
even higher success rates.

We observed that if the robot controller did not follow the
generated plan exactly time state synchronization drifts. If
this occurred when the robot was passing near the sliding
doors, during a state change, it most certainly caused a fail-
ure. At other times it had little effect. The ability to add un-

certainty as a buffer around time, would allow the robot to be
more conservative when deciding to pass the doors. There-
fore, we would like to investigate how uncertainty fits into
the model hierarchy and selection process. We recognize in-
creasing uncertainty, such as a very large robot footprint,
can cause the robot to be conservative and think it cannot
traverse through a narrow area. This is why we would also
like to investigate different levels of uncertainty coverage.
We believe varying uncertainty is another form of varying
fidelity and will give the robot more choices to increase suc-
cess when applicable.

Lastly, we would like to combine the execution-time ver-
sion of the approach with our plan-time approach for real-
robot application. Execution time is important for obtain-
ing information that is not available during plan-time. This
could be due to uncertainty in the world or sensing abili-
ties. An execution time approach would focus the algorithm
towards the failure recovery domain. Information acquired
during execution is then provided to the planner allowing the
robot to switch to models it previously did not have enough
information for. This would continue to provide a more ro-
bust plan.

7 Conclusions

We present an approach that leverages a multi-fidelity model
graph to produce a mixed-model plan. This plan finds a good
balance between decreased planning time and increased ro-
bustness by giving the robot the ability to re-plan in a more
detailed model to provide a more accurate representation of
reality. Just as the robot’s operation space is non-uniform,
containing a mix of simple and complex areas, our algorithm
tries to capture the space with a mix of low and high fidelity
models generating an efficient plan that does not sacrifice
execution success.

Our tests show that the algorithm improves computation
time while obtaining comparable performance to planning
always in the highest fidelity model. The average overall
planning time (initial plus re-plans) is greater than the av-
erage time for [x,y] planning alone, but still less than the av-
erage for the higher fidelity spaces. Switching between mul-
tiple models is also cheaper than just switching between the
lowest and highest model. Our switching tests localize plan-
ning around the infeasible location without sacrificing the
probability of successful executions.

The results also show there is not always a single best
model to use, but rather that it depends on the situation. For
example, even though modeling the differential constraints
of the robot is higher fidelity than a purely geometric model,
that model will not help if the real problem is not consid-
ering the z dimension (e.g. if overhangs exist in the world).
This is why it is important to have a separate model selection
stage that can reason about which model should be used for
repair. This is increasingly important as robots, their tasks,
and their environments become more complex. We believe
that, especially as these complexities increase, selecting the
most appropriate model to plan in is important for robust,
tractable planning.

PlanRob 2015

104



References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest paths trees. Robotics and Automa-
tion, IEEE Transactions on 11(2):198–214.
Behnke, S. 2004. Local multiresolution path planning. In
Robocup 2003: Robot Soccer World Cup VII. Springer. 332–
343.
Bruce, J., and Veloso, M. 2002. Real-time randomized
path planning for robot navigation. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, vol-
ume 3, 2383–2388. IEEE.
Choi, W.; Zhu, D.; and Latombe, J.-C. 1989. Contingency-
tolerant robot motion planning and control. In Intelligent
Robots and Systems’ 89. The Autonomous Mobile Robots
and Its Applications. IROS’89. Proceedings., IEEE/RSJ In-
ternational Workshop on, 78–86. IEEE.
Dogar, M. R.; Hsiao, K.; Ciocarlie, M.; and Srinivasa, S. S.
2012. Physics-based grasp planning through clutter. In In
RSS. Citeseer.
Ferguson, D.; Kalra, N.; and Stentz, A. 2006. Replanning
with rrts. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, 1243–
1248. IEEE.
Fernández-Madrigal, J.-A., and González, J. 2002. Mul-
tihierarchical graph search. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24(1):103–113.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial intelligence
3:251–288.
Göbelbecker, M.; Gretton, C.; and Dearden, R. 2011. A
switching planner for combined task and observation plan-
ning. In AAAI.
Gochev, K.; Cohen, B.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2011. Path planning with adaptive dimen-
sionality. In Fourth Annual Symposium on Combinatorial
Search.
Gochev, K.; Safonova, A.; and Likhachev, M. 2012. Plan-
ning with adaptive dimensionality for mobile manipulation.
In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, 2944–2951. IEEE.
Gochev, K.; Safonova, A.; and Likhachev, M. 2013. Incre-
mental planning with adaptive dimensionality. In Twenty-
Third International Conference on Automated Planning and
Scheduling.
Hauser, K., and Latombe, J.-C. 2009. Multi-modal motion
planning in non-expansive spaces. The International Jour-
nal of Robotics Research.
Hauser, K.; Ng-Thow-Hing, V.; and Gonzalez-Baños, H.
2011. Multi-modal motion planning for a humanoid robot
manipulation task. In Robotics Research. Springer. 307–
317.
Howard, T. M., et al. 2009. Adaptive model-predictive mo-
tion planning for navigation in complex environments.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
1470–1477. IEEE.

Kambhampati, S., and Davis, L. 1986. Multiresolution path
planning for mobile robots. Robotics and Automation, IEEE
Journal of 2(3):135–145.
Knepper, R. A., and Mason, M. T. 2011. Improved hier-
archical planner performance using local path equivalence.
In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, 3856–3861. IEEE.
Koenig, S., and Likhachev, M. 2002. D* lite. In AAAI/IAAI,
476–483.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kin-
odynamic planning. The International Journal of Robotics
Research 20(5):378–400.
LaValle, S. M. 2006. Planning algorithms. Cambridge
university press.
Pivtoraiko, M., and Kelly, A. 2005. Efficient constrained
path planning via search in state lattices. In International
Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space.
Pivtoraiko, M., and Kelly, A. 2008. Differentially con-
strained motion replanning using state lattices with gradu-
ated fidelity. In Intelligent Robots and Systems, 2008. IROS
2008. IEEE/RSJ International Conference on, 2611–2616.
IEEE.
Plaku, E.; Kavraki, E.; and Vardi, M. Y. 2010. Motion plan-
ning with dynamics by a synergistic combination of layers of
planning. Robotics, IEEE Transactions on 26(3):469–482.
Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R.; et al.
2008. Bigdog, the rough-terrain quadruped robot. In Pro-
ceedings of the 17th World Congress, volume 17, 10822–
10825.
Seegmiller, N., and Kelly, A. 2014. Enhanced 3d kinematic
modeling of wheeled mobile robots.
Steffens, R.; Nieuwenhuisen, M.; and Behnke, S. 2010.
Multiresolution path planning in dynamic environments for
the standard platform league. In Proceedings of 5th Work-
shop on Humanoid Soccer Robots at Humanoids.
Stentz, A. 1995. The focussed dˆ* algorithm for real-time
replanning. In IJCAI, volume 95, 1652–1659.
Stephens, B. 2007. Humanoid push recovery. In Humanoid
Robots, 2007 7th IEEE-RAS International Conference on,
589–595. IEEE.
Sucan, I. A., and Kavraki, L. E. 2011. Mobile manipulation:
Encoding motion planning options using task motion multi-
graphs. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, 5492–5498. IEEE.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82. http://ompl.kavrakilab.org.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task
and motion planning for mobile manipulation. In ICAPS,
254–258.

PlanRob 2015

105


