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Abstract

Autonomous robots frequently rely on models of their sensing and actions for intelligent decision making. Unfortunately,

in complex environments, robots are bound to encounter situations in which their models do not accurately represent the

world. Furthermore, these context-dependent model inaccuracies may be subtle, such that multiple observations may be

necessary to distinguish them from noise. This paper formalizes the problem of detection and correction of such subtle

contextual model inaccuracies in autonomous robots, and presents an algorithm to address this problem. The solution

relies on reasoning about these contextual inaccuracies as parametric regions of inaccurate modeling (RIMs) in the

robot’s planning space. Empirical results from various real robot domains demonstrate that, by explicitly searching for

RIMs, robots are capable of efficiently detecting subtle contextual model inaccuracies, which in turn can lead to task per-

formance improvement.
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1. Introduction

Robots frequently use models of the behavior of the world

to make intelligent decisions throughout execution. Models

enable robots to reason about the effects of their actions,

and thus to generalize their capabilities to different tasks.

Unfortunately, in many realistic environments, it is infea-

sible to have the perfect knowledge and exhaustive data

required to create globally accurate models. These models,

created by some combination of human design and robot

experience, may reflect the true dynamics of the world rela-

tively accurately in most circumstances, but fail to capture

the dynamics of the world in some specific sets of similar

contexts. This work analyzes the need to detect and correct

these contextual model inaccuracies, and presents an algo-

rithm to do so.

1.1. Illustrative example

Figures 1 and 2 illustrate the concept of contextual model

inaccuracies with a simple example: a golf-putting robot

needs to repeatedly shoot a golf ball into a hole from differ-

ent locations on the field. The robot sometimes succeeds

and sometimes fails, and it has a model of the distribution

of these stochastic outcomes as a function of the shot

source location (Figure 1b). However, during one of its

deployments, an unexpected and imperceptible bump on

the field (Figures 2a and 2c) significantly reduces its

chances of successfully putting the ball whenever it shoots

from behind the bump (Figure 2b), creating a significant

but subtle difference between its model’s predictions and

the observed execution from behind the bump (Figure 2d).

The goal of our work is to enable the robot to autono-

mously detect these discrepancies between its model and

the world, and to adapt its model appropriately. Improving

its model enables the robot to make better decisions, e.g., it

may choose to shoot from more advantageous locations on

the field than from behind the bump.

1.2. General problem characteristics

The simplified golf example illustrates the general class of

problems that this work addresses. First and foremost, it
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addresses domains in which the robot’s model of the

world may be partially inaccurate, usually due to practical

restrictions: the training environment may not be exactly

the same as the deployment environment, or the deploy-

ment space may be too large to explore thoroughly during

training.

We focus on domains in which, even during nominal

execution, the robot’s actions produce stochastic outcomes;

thus, it is necessary to analyze collections of outcome

observations to distinguish between nominal stochasticity

and model inaccuracies. For example, the golfing robot

succeeds or fails stochastically. More generally, we focus

on stochastic outcomes that may be discrete or continuous

multi-dimensional vectors.

Furthermore, we focus on addressing context-dependent

model inaccuracies. For example, the golfing robot’s con-

text is given by the location on the field from which the

robot shoots, and the inaccuracy affects a region of this

space; more generally, the context is given by the multi-

dimensional space of possible states and actions.

1.3. Approach overview

To detect and react to context-dependent model inaccura-

cies in domains with stochastic outcomes, our approach is

to explicitly search for regions of inaccurate modeling

(RIMs) in a feature space of the state–action space of the

robot. For example, in the golf domain, the robot would be

able to determine that the region enclosed by the dashed red

lines in Figure 2d is anomalous, and it would correct its

model appropriately. There are various RIMs consistent

with the observations of Figure 2d; our approach searches

over parametric families of regions, e.g., ellipsoids in our

experiments, to find the most likely RIMs. These regions

are then classified as a true RIMs or not, based on an anom-

aly score given by the observations contained in them.

Finally, the robots correct their models in these RIMs by

treating them as context-dependent behavioral modes with

different outcome distributions.

1.4. Empirical evaluation

We evaluate our algorithms on the illustrative golf domain

as well as two real-robot platforms: the CoBot mobile ser-

vice robots and the CMDragons team of autonomous soccer

robots. In both of these domains, it is infeasible to create

perfect models before deployment, because of the uncon-

strained nature of real world in the case of the CoBot, and

because of the diversity of opponent behaviors in the case

of the CMDragons.

Empirical results show high detection effectiveness in

the golf domain and in the CoBot’s motion model, given a

variety of injected context-dependent subtle inaccuracies.

In a keep-away domain of the CMDragons playing

against themselves, detecting and correcting inaccuracies

in the opponent’s ball interception model lead to significant

improvement in ball-passing performance in timescales

comparable with a single soccer game. Remarkably, the

algorithm detected various inaccuracies in the CMDragons’

models that were not injected, and were previously

unknown to the researchers. For example, the robots auton-

omously learned their opponents could accidentally

Fig. 1. Golf-putting task. Shots stochastically (a) succeed or (c) fail. (b) The robot builds or receives a nominal model of success

probability over the field (lighter shows higher probability). (d) Simulated success and failure samples (white and black circles).
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intercept their passes in certain situations, as further

described in Section 5.

1.5. Article organization

Section 2 formally introduces the problem of context-

dependent model inaccuracy detection and correction, and

analyzes the need to solve it through various real robot

domain examples. Section 3 situates our work within the

execution monitoring, diagnosis, and anomaly-detection

communities. Section 4 presents the core theory and algo-

rithms of our approach: RIM -detection and a monitoring

framework that uses this information to correct the robot’s

models; Section 5 presents empirical support for our pro-

posed approach, by applying it to real robot domains.

Finally, Section 6 summarizes the contributions and dis-

cusses directions for future work.

2. Problem motivation and formulation

This section motivates the need to address the problem of

detecting and reacting to subtle context-dependent model

inaccuracies with various real robot domains (Section 2.1)

and formalizes the problem (Section 2.2).

2.1. Motivating domains

2.1.1. CoBot motion. Autonomous navigation is a key

component of all mobile autonomous robots, and thus hav-

ing an accurate motion model is essential for task perfor-

mance. We therefore explore the problem of context-

dependent model inaccuracies in the motion of the CoBot

autonomous service robots (Veloso et al., 2012) of Figure

3a. The CoBots autonomously perform tasks for the inhabi-

tants of multiple buildings at Carnegie Mellon University

Fig. 3. Robots that serve as motivation and application domains: (a) CoBot service robots; (b) CMDragons soccer robots.

Fig. 2. (a), (c) An imperceptible bump on the field causes a significant inaccuracy in the model of Figure 1b with respect to the true

distribution of (b). (d) Synthetic samples behind the imperceptible obstacle show a significant deviation from the nominal model.
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(CMU). To accomplish high-level tasks, each CoBot

navigates autonomously around the building, which

entails moving and localizing properly (Biswas and

Veloso, 2013).

To move properly, each CoBot uses a model that maps a

desired velocity vcmd into currents to each of its four

wheels. Then, after a short latency time Dt, the CoBot can

obtain feedback about its actual observed velocity vobs
motion from its wheel encoder sensors. Even during nom-

inal execution, these two velocities will not match exactly,

owing to noise in actuation and sensing; this noise is

approximately normally distributed e;N 0,Sð Þ. Thus, the

relationship between the CoBot’s commanded velocity and

its measured velocity is given by

vobs(t)= vcmd(t � Dt)+ e ð1Þ

Although this simple model accurately reflects reality in

a large majority of situations, there are particular contexts

in which it fails to do so. Figure 4a shows an infrequent

scenario: the CoBot’s sensors cannot perceive a table in the

environment, which leads to a collision. Although the colli-

sion cannot be avoided, it can be quickly detected by sharp

inaccuracies in the CoBot’s motion model predictions.

Furthermore, if the table’s position is permanent, the CoBot

should learn that, in that particular place of the building, it

cannot move correctly.

Figure 4b shows a more subtle model inaccuracy: in

particular regions of the Gates–Hillman Center (GHC) a

rough tile floor causes small disturbances in the CoBot’s

motion. Although these disturbances may be too small to

detect from a single run, the CoBot could learn over multi-

ple runs that, in those particular regions of the building,

when it has a non-zero velocity (and especially at high

speeds), its motion model is somewhat inaccurate.

Our goal with the CoBot robot is to enable it to autono-

mously detect such subtle context-dependent inaccuracies

in its motion model. Although the CoBot experiments in

this article focus on inaccuracy detection rather than cor-

rection, we argue that correcting the motion model could

straightforwardly lead to improved performance: the CoBot

could autonomously learn to avoid regions of its building

where its motion model is inaccurate, thus improving its

performance reliability.

2.1.2. Opponent modeling in autonomous robot

soccer. Figure 3b shows the CMDragons team of autono-

mous soccer-playing robots (Mendoza et al., 2016b). These

robots participate in the RoboCup Small Size League

(SSL), competing against other teams of soccer robots

from institutions around the world. Each game of robot

soccer lasts 20 minutes, and each opponent team is usually

only faced once.

Research on the adversarial nature of the SSL has cov-

ered a wide spectrum of topics, from overall team architec-

ture (Browning et al., 2005) to coordinating multiple robots

in the presence of opponents (Mendoza et al., 2016a). Here,

we focus on the particularly difficult problem of adapting

the model of our opponents within a single game. To be

successful, our team needs to have generally accurate mod-

els of the opponent from the beginning of the game, as

state-of-the-art techniques for learning from scratch need

millions of observations to learn to play well (e.g. Stone

et al., 2005b). Thus, we usually assume some reasonable

opponent model, e.g., they intercept a moving ball the same

way our team would.

Inevitably, some of our assumptions about the oppo-

nents are wrong, which often leads to context-dependent

inaccuracies. The opponents may show strengths and

Fig. 4. Example sources of inaccurate modeling for the CoBot robot’s motion model: (a) collision with imperceptible obstacle; (b)

rough tile floor.
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weaknesses that we could not foresee before the game. For

example, their robots might use a ball-interception skill that

our robots do not possess, but which is only applicable in

particular world configurations; on the other hand, their

defense might be particularly weak against some type of

attack. Both of these would cause our models in particular

sets of similar contexts to be significantly inaccurate.

Furthermore, correcting these can lead to significant per-

formance improvement, e.g., a more accurate model of the

opponent’s interception capabilities leads to better decision

making when our robots choose among different possible

passes.

Both the CMDragons and the CoBots are domains with

stochastic outcome observations, and subtle context-

dependent model inaccuracies. Section 2.2 formalizes these

domains and the problem we address.

2.2. Problem formulation

In our problem, a robot r needs to complete tasks in a con-

tinuous state space S � R
ds , by choosing from a space of

actions A � R
da to apply on the world. Applying action

a 2 A in state s 2 S yields some outcome z 2 Z, according

to some unknown probability distribution P�(zjs, a). The

domain Z of these outcomes may vary depending on the

application: If the robot’s behavior were modeled as a

Markov decision process (MDP) (Bellman, 1957), for

example, z 2 Z would be the state s0 resulting from apply-

ing action a in state s; alternatively, if the robot’s behavior

were modeled as a contextual bandit problem (Slivkins,

2014), z would be the reward observed when applying

action a in state s. Our detection model applies to both of

these formulations as well as others, so we choose the

formulation-agnostic term outcome z.

The robot has a model u0 of the outcome distribution;

ideally, the distribution P(zjs, a, u0) generated by this model

would accurately reflect the true distribution for all states

and actions: 8(s, a) 2 S×Að Þ:P(zjs, a, u0)= P�(zjs, a).
However, it is often the case that a model is not a good pre-

dictor for every state and action. In particular, we are inter-

ested in domains in which there is some subset RSA of the

state–action space in which this model u0 does not accu-

rately describe execution:

9RSA � S×Að Þ: (s, a) 2 RSA $ P(zjs, a, u0) 6’P�(zjs, a)
� �

ð2Þ

To maximize the generality of our approach, we define

this inaccurate subset over contextual features extracted

from the state–action space by a function

x : S×A! X � R
d . In this work, we focus on domains

in which this function is given to the robot, and thus

instead of directly finding RSA, we seek to find R� � X
such that

x(s, a) 2 R� $ P(zjs, a, u0) 6’ P�(zjs, a) ð3Þ

We focus on cases in which R� is made up of a finite set

of regions of state–action space. Many real-world domains

have this characteristic, as motivated in Section 2.1.

Thus, the problem is defined as follows.

Given a list of contextual observations Zx = ½(xt,
zt)jt = 0, . . . ,N �, and a model u0 of nominal execution

Detect the existence of a set of contexts R� as defined

in Equation (3), and

Correct Model u0 into u+, such that

8(s, a) 2 (S×A): P(zjs, a, u+)’P�(zjs, a)½ � ð4Þ

Table 1 summarizes the most commonly used notation

throughout this paper.

3. Related work

Our work is concerned with online detection and adapta-

tion to subtle context-dependent model inaccuracies.

Owing to its online monitoring of the robot’s performance,

we situate it among the execution monitoring community

in Section 3.1. Owing to the contextual nature of the

robot’s observations, and our desire to detect anomalous

sets of observations, we situate it among the anomaly

detection community in Section 3.2.

3.1. Execution monitoring

The problem of execution monitoring, also called fault

detection and identification (FDI), or diagnosis (DX),

depending on the community (Cordier et al., 2004), is con-

cerned with detecting, identifying, and recovering from

failures in execution. Execution monitoring is a well-

established problem in various areas of scientific research,

and the complex and unpredictable nature of robotics

domains has led to increased exploration of the subject in

robotics (Antonelli, 2003; Pettersson, 2005).

Execution monitoring can be divided into model-based

methods, which achieve monitoring using models of the

system, and model-free methods, which detect failures

Table 1. Notation commonly used in this paper.

Notation Meaning

r Robot
s 2 S Robot state
a 2 A Robot action
x 2 X State–action context
x : S×A! X Context feature-extracting function
z 2 Z Outcome observation
zx = (x, z) 2 Zx Contextual observation

u0 2 Q Nominal behavior model

u+ 2 Q Corrected model

P�(zjx) True (unknown) outcome observation
distribution

P(zjx, u 2 Q) Observation distribution according to
model u

Mendoza et al. 5



using only observed data (Hwang et al., 2010). We are

interested in domains in which robots have access to par-

tially accurate models of the world, and thus we focus on

model-based monitoring; however, model-free methods

have also been successfully applied to robotics (Pettersson

et al., 2003, 2005).

We are interested in the problem of detecting contextual

model inaccuracies given a list of stochastic contextual

observations in which the robot’s state st and action at can

be mapped into a context feature point xt, and the outcome

zt is the observation to be monitored. Most work in execu-

tion monitoring has focused on fault detection given a sin-

gle observation zt or a sequence of observations

½ziji = 0, 1, . . . , t�, i.e., using only time as a context that

correlates various observations. Several algorithms have

been developed to address this problem, and their proper-

ties, such as speed of detection and detection power, have

been studied extensively.

Two of the most studied algorithms, sequential probabil-

ity ratio test (SPRT) (Wald, 1945) and cumulative sum con-

trol charts (CUSUM) (Page, 1954), detect faults using

thresholds on the likelihood ratio of residual observations,

given a nominal model u0, and an alternative fault model

u1. These algorithms can be very efficiently computed by

maintaining an aggregate statistic St and updating it in con-

stant time with a new observation zt. However, they require

prior knowledge about the fault model u1, or sets of models

fuig for multiple fault detection (Nikiforov, 1995). In con-

trast, we are interested in problems in which the anomalous

distributions are not known a priori.

The generalized likelihood ratio test (GLRT) approach

(Willsky and Jones, 1976) uses the maximum likelihood

estimate of u1 for detection of faults with unknown para-

meters. Faults are again detected by thresholding a statistic

St. However, in general domains St requires computation

that is not constant, but linear in t.

In our approach, we seek to use similar statistical tech-

niques as these well-established methods. However, the key

difference between our work and these and other time-

series monitoring approaches (Bu et al., 2007; Keogh et al.,

2005, 2002) is that we need to detect inaccuracies that

occur in particular regions of context space. Thus, we must

use methods that consider the full contextual observation

(xt, zt), rather than just the outcome zt.

3.2. Anomaly detection

The anomaly detection community has extensively explored

the problem of finding anomalies in contextual data.

According to a classification proposed in a previous sur-

vey of anomaly detection research (Chandola et al., 2009),

some of the important characteristics of our approach are:

(i) it works on multi-dimensional continuous context data;

(ii) it is semi-supervised, i.e., it assumes that either a nom-

inal model or nominal execution data is given; and (iii)

apart from detecting anomalies, our approach also returns a

measure of confidence on that detection. However, the main

distinguishing characteristic of our work, according to this

classification, is that it detects spatial collective anomalies,

i.e., anomalies that occur in regions of context space, and

which require collections of data for detection, rather than

individual points.

The problem of detecting spatial collective anomalies

has received significant attention from the computer vision

(CV) community, as it can be used to detect anomalous

regions of images, or simply to segment regions that stand

out. Unfortunately, the algorithms developed for CV are not

directly applicable to our problem: images provide dense

observations, in the sense that every pixel in the image pro-

vides an observation that can be used for detection. Thus,

CV techniques often exploit the lattice structure of image

pixels to use graph-based algorithms to extract anomalous

regions of the image (e.g., Felzenszwalb and Huttenlocher,

2004; Shi and Malik, 2000). Thus, we cannot apply these

techniques for our continuous domains with potentially

sparse observations. Furthermore, because CV is highly

focused on 2D or 3D images, CV algorithms are usually

not tractably applicable to problems of higher dimensions,

such as our robotics problems.

3.3. Spatial scan statistics

The spatial scan statistic (Kulldorff, 1997) is an approach

for detecting regions of a multi-dimensional point process

in which the number of observed points is significantly dif-

ferent from the number expected from a given model. This

statistic has a wide range of applications, from forestry to

astronomy (Kulldorff, 1997); however, it has been most

often studied in the context of early disease outbreak detec-

tion. The core idea of the algorithm is to search over a set

of regions of the process domain to find the region Rmax

that, given the set of contextual observations Zx and the

expected nominal model u0, maximizes the following like-

lihood ratio anom(RjZx, u0):

anom(RjZx, u0)=
maxu2QP(Zx(R)ju)

P(Zx(R)ju0)
ð5Þ

where Q is the space of distribution parameters and Zx(R)
are the set of observations seen in R. This approach

searches for the region Rmax most likely to be anomalous,

after which it can perform inference to determine whether

there exists an anomalous region of the domain, and where

the anomaly is located. As originally developed (Kulldorff,

1997), the algorithm for searching over the space of possi-

ble subspaces R is not scalable to higher dimensions,

because it performs an exhaustive search over the space of

circular subspaces to find the one most likely to be anoma-

lous; this search algorithm is feasible for the original con-

text of the algorithm, in which only a 2D space had to be

searched.

More recent work has extended the spatial scan statistics

approach in several directions. A more efficient search

algorithm has been proposed for axis-aligned rectangles
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(Neill et al., 2004), but it does not scale well with the

dimensionality of the domain. Graph-based approaches

(Duczmal and Assuncao, 2004; Tango and Takahashi,

2005) assume some connectivity between the data, which

cannot be easily obtained from sparse observations in

higher dimensions. Fast Subset Scan (Neill, 2012; Neill

et al., 2013), while efficient, limits its search to only sub-

sets of regions of fixed radius around each observation. In

contrast, our method searches over regions with arbitrary

locations, sizes, and orientations.

3.4. Reinforcement learning

The model-correction problem addressed in this article is

closely related to model-based reinforcement learning

(RL): even though the problem of exploration lies beyond

the scope of this article (but is addressed in separate

research (Mendoza, 2017)), this article presents an

approach to correcting models to improve performance,

which is the goal of model-based RL. Traditional model-

based RL approaches such as the E3 (Kearns and Singh,

2002) and R-MAX (Brafman and Tennenholtz, 2003) algo-

rithms guarantee near-optimal RL in polynomial time in

the case of finite states and actions. However, they do not

address the problem of generalization to unseen state–

actions, and therefore are not applicable to our domains of

interest, in which only sparse observations are available.

Other algorithms for model-based RL have addressed the

problem of generalization, usually via function approxima-

tion techniques (Hester and Stone, 2013; Jong and Stone,

2007; Nouri and Littman, 2009). In contrast to these algo-

rithms, we seek to leverage knowledge about the fact that

our model is accurate with the exception of a few unknown

subspaces of the domain; this knowledge may enable our

algorithms to achieve higher data efficiency than previous

algorithms.

The problem of Multiple Model-based RL (MMRL) of

the world has been explored by previous work, mostly for

cases in which the number of different models is known a

priori (Choi et al., 2001; Doya and Samejima, 2002).

Reinforcement Learning with Context Detection (RL-CD)

(da Silva et al., 2006) addresses a similar problem to ours,

in that they seek to automatically generate new models

throughout execution while performing RL. However, the

switch among their models is temporal, in which only one

model is active throughout space at a time. In contrast, we

wish to infer spatial regions of different behavior, and cre-

ate new models accordingly. Thus, the novelty of our

approach with respect to RL is the discovery of new modes

of behavior in state–action space as regions of anomalous

behavior, and the active characterization of the extent and

behavior of these modes, with the end goal of task perfor-

mance optimization.

4. Approach: search for, detect and correct

RIMs

This section presents our approach to the problem of

detecting and correcting subtle context-dependent model

inaccuracies. Our approach explicitly searches for para-

metric RIMs in the robot’s context space, during execution.

The overall algorithm results in an execution monitoring

framework that enables robots to detect and correct RIMs

online. At a very high level, the algorithm is sketched in

Figure 5. Normally, robots may make decisions based on a

partially inaccurate model of the world (Figure 5a). With

our approach, a monitor compares observations to expecta-

tions extracted from the model; this monitoring can then be

used to correct the model through the parametric RIMs

found (Figure 5a).

Algorithm 1 shows a description of this monitoring pro-

cess, extended from our previous work (Mendoza et al.,

2015). At every time step t of execution, this monitor

receives as input the nominal model of execution u0, the

state st visited by the robot, the action at taken by the

robot, and the observed outcome zt of that action. First, the

algorithm extracts relevant features from state–action space

(line 2). In this work, we assume the feature extraction

function x is given to the robot. Next, the contextual obser-

vation (xt, zt) is added to the set Zx of all observations

(line 3). The monitor proceeds to find RIMs from Zx and

u0 (line 4), and correct the model accordingly (line 5).

Fig. 5. Robot architecture diagrams. (a) Typical sense–plan–act

loop: without monitoring, model inaccuracies persist through

execution. (b) Contributed monitor architecture: our monitor

detects inaccuracies through an execution monitor, and corrects

the robot’s model approximately with parametric RIMs.

Mendoza et al. 7



The core of the algorithm thus lies in detecting and cor-

recting model inaccuracies. We divide this problem into

four components.

Measure of inaccuracy: Intuitively, we wish to detect

and correct regions of context space in which observations

do not match the robot’s model. Because observations are

stochastic, we define this measure statistically: we use a

likelihood ratio measure, widely used in statistics and

anomaly detection (Chan-dola et al., 2009). Section 4.1.1

describes the computation of this measure.

Search space of RIMs: We would like to search over

all possible regions of state space to find inaccurate ones.

Although some non-parametric methods can in fact repre-

sent arbitrarily-shaped boundaries, here we opt for para-

metric approaches, which converge to meaningful results

from sparser observations, at the cost of expressiveness

power. Section 4.1.2 describes the parametric space we use.

RIM search algorithm: Given a search measure and

space, we define the algorithm for searching over this

space. Here, we diverge from previous related work, which

conducts exhaustive searches, and take an optimization-

based approach, better suited for robotics domains. Section

4.2 describes the focused anomalous region optimization

(FARO) (Mendoza et al., 2014) algorithm for domains with

up to one RIM, and Section 4.3 describes the DMAPS

(Mendoza et al., 2015) extension for domains with multiple

RIMs.

RIM correction: Once RIMs are detected, our algo-

rithm corrects these inaccuracies by treating each detected

RIM as an alternate behavioral mode of the system, with a

different outcome observation distribution Section 4.4

describes how we address this in our work (Mendoza et al.,

2015).

4.1. Background: inaccuracy measure and search

space

The problem of detecting RIMs has been explored in non-

robotics contexts, such as disease outbreak detection. From

this previous work (Kulldorff, 1997), we borrow the mea-

sure used to decide whether a RIM is truly inaccurate, and

the idea of using a particular family of parametric regions

as the search space. However, here we derive the specifics

to fit our problem domains.

4.1.1. Inaccuracy measure anom(RjZx, u0). Following

previous work, we define a RIM as a region R such that

the likelihood of the data observed in that region given the

robot’s model is much lower than the likelihood of it given

the best fitting model. Thus, we use a likelihood ratio to

define the inaccuracy measure
1

anom(RjZx, u0) of a region

R given a set of observations Zx = (xi, zi) and a nominal

model u0, as given in Equation (5). This statistical measure

has advantageous detection properties, described in detail

in previous work (Kulldorff, 1997), including a variant of

the uniformly most powerful property, and its indepen-

dence from data that lies outside of R.

This inaccuracy measure depends only on the observa-

tions (xi, zi) contained in R, and not explicitly on the shape

of R itself. This implicitly assumes that we have no prior

information about the likelihood of observing RIMs of par-

ticular shapes, which is a valid assumption in many robotics

domains. Adding such prior information is possible, as

shown in Section 4.3.

Assumptions. To compute the anomaly value of a region,

we make two assumptions.

� We assume a particular set of alternate models û: for all

the states in a RIM, the mean m of the observations has

been shifted by an unknown constant vector d

E zjx, û
h i

= m(xjû)= m(xju0)+ d if x 2 R

m(xju0) otherwise

�
ð6Þ

Although other work (e.g., Neill, 2006) assumes a mul-

tiplicative offset, an additive offset fits our domains best. In

many monitoring applications, zero-mean observations

(e.g., residuals) indicate normal execution; thus, a multipli-

cative constant would not distinguish between normal and

anomalous execution. This assumption results in a simple

analytical form for Equation (5).
2

� We assume independence between observations zi

given the context xi. This assumption, which is valid

given an expressive enough context description, allows

us to decompose the probabilities of Equation (5) into

individual probabilities P(zijxi, u).

With these assumptions, Equation (5) becomes

Algorithm 1. Execution monitor procedure run every time step t of execution.

Input: model u0 of nominal execution, world state st, chosen action at, and observed outcome zt.

Output: corrected model u+.

1:function MONITOR (u0, st, at, zt)
2: xt  x(st, at) 8Extract relevant features
3: Zx  Zx [ (xt, zt) 8Update set of observations (initially, Zx = ;)
4: R  FindAnomalies(Zx,u0) 8Find anomalies

5: u+  UpdateModel(u0,R) 8Correct model
6:end function

8 The International Journal of Robotics Research 00(0)



anom(RjZx,u0)[

max
d

Q
xi2R

P(zijm(xiju0)+ d)
Q
xi 62R

P(zijm(xiju0))

Q
xi

P(zijm(xiju0))

=

max
d

Q
xi2R

P(zijm(xiju0)+ d)Q
xi2R

P(zijm(xiju0))

ð7Þ

The above expression is a general measure of anomaly

for arbitrarily shaped regions R and for arbitrary distribu-

tions P(zjx). To make it more concrete, we now derive the

expression for anom(RjZx, u0) for the normal distribution

P(zijxi, u);N m(xiju),S(xiju)ð Þ. We show the derivation

for the normal distribution because it is one of the most

commonly used. Analogous derivations for other distribu-

tions, and for multiplicative shifts (instead of our additive

shift d), can be found in related work (Neill, 2006). For

brevity, when discussing the nominal model u0, we use the

abbreviations mi[m(xiju0), Si[S(xiju0).
For normal distributions, it is mathematically simpler to

work with the logarithm of the likelihood ratio rather than

with the likelihood ratio itself. As logarithm is monotone,

the region that maximizes one maximizes the other.

Defining an auxiliary variable Dzi[zi � mi, function

F(RjZx, u0)[ ln anom(RjZx, u0) is given by
3

F(RjZx, u0)= max
d

ln

Q
xi2R

P(zijmi + d)Q
xi2R

P(zijmi)

0
B@

1
CA

= max
d

X
xi2R

ln (P(zijmi + d,Si)� ln (P(zijmi,Si)½ �

= max
d

X
xi2R

ln exp � 1

2
(Dzi � d)|S�1

i (Dzi � d)
� �� �� �

�
	

ln exp � 1

2
Dz
|

i S�1
i Dzi

� �� �� �


= max
d

X
xi2R

1

2
Dz T

i S�1
i Dzi � (Dzi � s)|S�1

i (Dzi�d)
h i

= max
d

X
xi2R

d|S�1
i Dzi �

1

2
d|S�1

i d

	 


= max
d

d|
X
xi2R

S�1
i Dzi

� �
� 1

2
d|
X
xi2R

S�1
i

� �
d

" #

ð8Þ

To find d that maximizes this likelihood ratio we find

the point where the derivative with respect to d is equal to

0:

X
xi2R

S�1
i Dzi

 !
�

X
xi2R

S�1
i

 !
dmax = 0

X
xi2R

S�1
i

 !�1 X
xi2R

S�1
i Dzi

 !
= dmax

ð9Þ

Substituting dmax back into Equation (8) gives the final

expression for the quantity to maximize:

F(RjZx, u0)=
1

2

X
xi2R

S�1
i Dzi

 !
|

X
xi2R

S�1
i

 !�1 X
xi2R

S�1
i Dzi

 ! ð10Þ

This expression depends only on the nominal model u0

(through Si and the mi in Dzi) and sufficient statistics of

the observed data (the two distinct sums of Equation (10)).

This is particularly useful when the context space is discre-

tized and only sufficient statistics of each discrete bin,

instead of all the data points, need to be stored.

Figure 6 and Table 2 illustrate this anomaly measure for

various regions in a one-dimensional context and one-

dimensional observation space. The data in Figure 6 is gen-

erated directly from the nominal Gaussian model u0 defined

by m(u0) and s(u0), except for the data in regions R3 and

R4. In R3, the generated data has been shifted by 3S,

whereas the data in R4 has been shifted by �0:8S. Given

enough data, the anomaly value should therefore be able to

differentiate between nominal regions R1 and R2, and

anomalous regions R3 and R4. Table 2 reveals that this is

indeed the case: the nominal regions have similar values

ln (anom(R1)= 3:3 and ln (anom(R2))= 4:3, whereas the

anomalous regions have significantly higher anomaly val-

ues ln (anom(R3)= 16:8 and ln (anom(R4))= 15:3.

Fig. 6. Illustration of the anomaly value function in a 1D context

and observation space. Data is generated from a nominal

Gaussian model u0, except for points in region R3, which deviate

significantly from u0, and those in R4, which deviate subtly from u0.

Mendoza et al. 9



4.1.2. Search space of RIMs : parametric regions. Although

we would like to search over the space of all possible subre-

gions of state–action space to find RIMs, we choose to

bound the search space to families of parametric shapes.

Previous work on spatial anomaly detection has used various

parametric shapes (e.g., circles (Kulldorff, 1997) or ellipses

(Kulldorff et al., 2006)). Previous work has argued that,

although these regions only represent a small subset of all

possible regions, their detection power extends significantly

beyond the chosen shapes. In addition, parametric shapes

have the advantage of having an explicit concise parameter

space over which to conduct a search.

Throughout our work, we do not assume a particular

choice of parametric shapes, and our algorithms apply to

any parametric shape (rectangles, ellipsoids, cylinders,

etc.). The choice of shape depends on the domain at hand.

In our implementations, we have chosen to use ellipsoids

as the search space for RIMs. Our motivation is that ellip-

soids are a generic convex shape that support arbitrary rota-

tions, translations, and scalings, while requiring only O(d2)
parameters. In a d -dimensional context space, an ellipsoid

can be parameterized by a d -vector u and a d × d positive-

definite matrix A as the set of points that satisfy

(x� u)|A�1(x� u)\1 ð11Þ

Thus, the parameter vector c(u,A) describing a particu-

lar ellipsoid is the linearized form of u and A. As

dim(u)= d (u is a d-vector), and dim(A)= d(d + 1)
2

(A is a

symmetric d-matrix), c has dimensionality of

d + d(d + 1)
2

= 1
2

d2 + 3dð Þ. The search space is then the

space of such vectors c 2 C such that the derived matrix

A is positive definite.

4.2. Detection of a single RIM

In this section, we use the anomaly measure
4

anom(R) and

the parametric search space defined in Section 4.1 to

describe the FARO algorithm for detection of up to one

RIM . Although previous work in spatial anomaly detection

has used similar measures and parametric shapes, we pro-

pose a different algorithm, more suited for online monitor-

ing of execution. As Section 3.3 discusses, previous search

methods include exhaustive search over discretizations of

the optimization space, and other methods that scale expo-

nentially with the dimensionality of the data. Instead, we

propose an optimization-based approach.

Algorithm 2 describes this optimization process. It is an

iterative optimization process that maintains a set R of

most promising candidate RIMs throughout time, bounding

the size of this set to a constant jRjmax; the value chosen

Table 2. Anomaly value function in a 1D context and observation space. The anomaly value for each region depends on both the

number of data points in it and the observed deviation of these from the nominal model u0.

Region Ground truth
(deviation d)

Number of
data points

Observed
deviation

ln (anom(Ri))

R1 Nominal ( d = 0) 22 �0:4s 3.3
R2 Nominal ( d = 0) 3 1:7s 4.3
R3 Anomalous ( d = 3:0s) 3 3:3s 16.8
R4 Anomalous ( d = � 0:8s) 29 �1:0s 15.3

Algorithm 2. FARO algorithm the for detection of a single RIM .

Input: List of contextual observations Zx, nominal model u0, and maximum set size jRjmax.

Output: A RIM Rmax, or ; if no RIM is detected.

1:function FARO ( Zx = (xi, zi)ji = 0, . . . , t½ �, u0, jRjmax)

2: R  R[ ball(xt) 8Seed around latest x. Initially, R= ;.
3: Rmax  ;
4: for R 2 R do

5: R Optimize(R, anom( � ,Zx,u0)) 8Nonlinear optimization

6: if anom(R)ø amax(u
0, jZxj) then 8Statistical test for anomaly

7: Rmax  R
8: end if
9: end for

10: if jRj.jRjmax then
11: Reduce R to its jRjmax elements of highest anom
12: end if
13: return Rmax

14:end function

10 The International Journal of Robotics Research 00(0)



for jRjmax provides a trade-off between the probability of

efficiently converging to the optimal RIM by having more

parallel optimizations, and the computational efficiency of

having fewer optimizations. At every timestep of execution,

the approach begins by seeding a new RIM candidate with

a small region around the most recent observation (line 2).

Then, the algorithm optimizes each candidate RIM using a

nonlinear optimization algorithm (line 5). For this thesis,

we have used the cross-entropy method (CEM) of optimi-

zation (Rubinstein, 1999), but we could replace it with

another optimization algorithm Optimize, that takes as

input a region R (or its parameter vector c(R)) and a value

function anom(�,Zx, u0) to be optimized.

Once every candidate RIM has been optimized, the algo-

rithm must decide whether any of the candidates are statisti-

cally anomalous, and return that candidate as a RIM. This

decision is based on comparing anom(R) with a threshold

value amax(u
0, jZxj), which depends only on the domain

during nominal execution, and on the number of observa-

tions (line 6). This threshold value can be approximately

mapped to a desired rate of false positives in detection

through Monte Carlo simulation (Kulldorff, 1997): we run

FARO in N simulated executions using nominal model u0,

and count the number of simulations n(amaxju0, jZxj) in

which anom(Rmax).amax after jZxj observations:

P anom(Rmax).amax(u
0, jZxj)ju0

� �
’

n(amaxju0, jZxj)
N

ð12Þ

Figure 7 illustrates the establishment of this empirical

threshold value. Figure 7a shows the distribution of maxi-

mum anomaly values obtained from simulations under a

nominal model u0. The figure shows that, for longer runs

of the system, i.e., more observations, the algorithm finds

regions with higher anomaly values even during nominal

execution. This is analogous to observing longer streaks of

heads (or tails) in longer coin flip sequences, and is the rea-

son why the threshold amax depends on the number of

observations received. Figure 7b shows the empirical cumu-

lative distribution function (CDF) of the maximum anomaly

value found for three different observation set sizes. From

these empirical CDFs, the algorithm chooses an appropriate

threshold value for a desired detection error.

Figure 8 illustrates two examples of FARO detecting

RIMs in the simulated golf-robot domain. The larger differ-

ence between nominal and anomalous behavior in Figure

8a translates to detection from fewer anomalous samples

(n = 16) than those required in Figure 8b (n = 114). Section

5 describes thorough evaluations of the detection capabil-

ities of FARO.

4.3. Detection of multiple RIMs

Section 4.2 describes our work on the FARO algorithm,

created to detect RIMs in domains with up to one RIM .

Here, we present the theory and algorithm needed to extend

these ideas to domains that may have multiple RIMs, as

first explained in previous work (Mendoza et al., 2015).

Section 4.3.1 derives the theoretical framework required for

detection of multiple RIMs, whereas Section 4.3.2 puts this

theory into the DMAPS algorithm for detection of multiple

RIMs.

4.3.1. Multiple RIM detection theory. To extend the FARO

algorithm to domains with multiple RIMs, we need to

address two issues: how to address overlapping RIM candi-

dates, and how to encode our prior knowledge that simpler

hypotheses should be favored over more complex ones.

Fig. 7. Using repeated simulations of nominal execution, we obtain an empirical distribution of maximum anomaly values. This

distribution is used to set the threshold anomaly value for detection, given a desired detection confidence. (a) CDF of the maximum

anomaly value observed during nominal execution runs. (b) Anomaly detection threshold for desired detection confidence.
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Overlapping RIMs Trying to directly apply FARO to

domains with multiple anomalies, we quickly run into the

problem of overlapping regions. If each RIM candidate is

treated independently, then many of them will converge to

the same region. To address this, we state the following

assumption.

Assumption 1. The robot’s world may contain several

behavioral modes: one nominal mode defined by u0, and

zero or more unmodeled modes, defined by unknown dis-

tributions u1, u2, . . . , um. Each observation in Zx is pro-

duced by one of these behavioral modes, and the

probability of each mode being active depends on the

observation’s context.

Thus, we will try to find the set of regions R that maxi-

mizes a new anomaly measure Anom(RjZx, u0) in such a

way that each observation in Zx is not attributed to multiple

regions inR.

Occam’s razor Our second assumption is a specific

statement of Occam’s razor.

Assumption 2. Given two possible sets of RIMs R1 and

R2, both equally well-supported by the observed data, the

smaller set is more likely to be the one generating the

observed data.

For example, a set R1 with a single region that contains

100 anomalous-seeming observations should attain a higher

anomaly value than a set R2 of two regions, each contain-

ing 50 of these observations.

This requirement is achieved when the appropriate prior

knowledge is added to the anomaly value function: given

an alternate distribution û 6¼ u0, the prior probability of

such a distribution is smaller than that of the nominal dis-

tribution P(ûjR)\P(u0jR). Then, our new anomaly value

function for sets of regions is given by

Anom RjZx, u0
� �

[
Y
R2R

maxu2Q P(ujZx,R)

P(u0jZx,R)
ð13Þ

This function implicitly assumes that for any two regions

Ri � X and Rj � X, ‘‘Ri is an anomalous region’’ is condi-

tionally independent from ‘‘Rj is an anomalous region,’’

given the list of observations Zx. In domains in which Zx

is the only source of information about the presence of

anomalous regions, this assumption holds. However, there

may exist domains in which this assumption does not hold:

for example, a domain in which the robots knew in advance

that there exist exactly n anomalous regions. Addressing

these domains is beyond the scope of this work.

The proposed formulation of Equation (13), leads to a

more desirable optimization cost function, which naturally

favors simpler hypotheses, as shown by the following

theorem.

Theorem 1. If all the possible anomalous distributions

û 2 Q are equally likely a priori, then the set Rmax of

regions that maximizes Anom(RjZx, u0) is also the set

that maximizes the simpler function

F RjZx, u0
� �

[
X
R2R

log (anom(RjZx, u0))

" #
�
X
R2R

l(R)

ð14Þ

where l(R)= log P(u0jR)
P(ûjR)

� �
is a function only of R.

Proof. We can expand Equation (13) using Bayes’

theorem:

Anom(RjZx, u0)=
Y
R2R

maxu2Q P(ujZx,R)

P(u0jZx,R)

=
maxu2Q P(Zxju,R)P(ujR)

P(Zxju0,R)P(u0jR)

=
Y
R2R

anom(R)

" # Y
R2R

e�l(R)

" # ð15Þ

Fig. 8. Synthetic data for a RIM (red dashed lines) created by an imperceptible bump (red solid line) in the golf-robot scenario. (a)

P zjx 2 RIMð Þ= 0:2. P zjx 62 RIMð Þ= 0:8. (b) P zjx 2 RIMð Þ= 0:5. P zjx 62 RIMð Þ= 0:8. The robot has different constant

probabilities of success inside and outside of the RIM. White and black circles show successful and failed shots, respectively. Blue

ellipses show the RIMs found by FARO.
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As log (Anom(R)) is a monotonically increasing function

of Anom(R), we maximize log (Anom(R)) instead of

Anom(R):

argmax
R�2X

Anom(R)½ �= argmax
R�2X

log (Anom(R))½ �

= argmax
R�2X

X
R2R

log (anom(R))

" #
�
X
R2R

l(R)

" #

= argmax
R�2X

F(R)½ �

ð16Þ

h

Corollary 1. In a domain in which the prior probability of

region R being anomalous is uniform for all R � X , F(R)
reduces to

F(R)=
X
R2R

log (anom(R))

" #
� ljRj ð17Þ

where l is a constant.

For this work, we assume l to be a constant for all

regions, but incorporating a non-uniform informative prior

is a subject of interest for future work.

We note that, in domains in which RIMs are less prob-

able than nominal behavior, i.e., l(R).0, the cost function

F(R) naturally favors simpler hypotheses with fewer anom-

alous regions.

4.3.2. DMAPS algorithm for detection of multiple

RIMs. Having defined the appropriate anomaly value

function anom(R), this section describes our procedure for

searching for the maximizing region set R�. As with the

FARO algorithm for finding a single RIM, DMAPS uses

an iterative optimization approach with various seeds to

optimize the candidate regions in the set. However, the can-

didate regions are not treated as independent from each

other: each observation only contributes to the anomaly

value of a single candidate region. Furthermore, to encour-

age the consolidation of simpler hypotheses, i.e., fewer

larger RIMs, DMAPS greedily optimizes the current candi-

dates sequentially in non-ascending order of anom(R).
Algorithm 3 describes the sequential optimization pro-

cess of DMAPS. First, the algorithm adds a small candi-

date region around the most recent observation to R in line

2, similarly to the FARO algorithm. This set of regions is

then sorted in non-increasing order of value anom(R) for

sequential optimization. At this point, in line 8, the sequen-

tial optimization over candidate regions begins.

Although this optimization bears resemblance to the

FARO algorithm of Section 4.2, the results derived in

Section 4.3.1 enable the algorithm to keep candidates only

if they add to the total value of the set R.

After optimizing each region in line 9, the decision of

whether to add this region to the final output set is made in

line 10. A region R is only added if it adds value to the opti-

mization cost function F. If a region is added to the candi-

date set, then the observations in that region are removed

from the set Z:R of available observations (line 13) to pre-

vent double-counting of observations. Therefore, for exam-

ple, if the small region created in line 2 is subsumed by a

larger, more anomalous region, the set of observations in

ball(xt) would contain no available observations; it would

thus have a log anomaly value of zero, and would not be

added to the set of candidates.

The end result of the DMAPS algorithm is a set of

regions Rmax found to be the most likely RIMs in the

robot’s context space. This set is not a global optimum of

cost function F(R) for two reasons. First, the CEM optimi-

zation of each region R 2 R finds a locally optimal

Algorithm 3. DMAPS algorithm for detection of multiple RIMs .

Input: List of contextual observations Zx, and nominal model u0.
Output: A set R of potential RIMs, along with their corresponding anomaly values.

1:function DMAPS ( Zx = (xi, zi)ji = 0, . . . , t½ �, u0)
2: R  R[ ball(xt) 8Seed around latest x. Initially, R= ;.
3: R Sort(R) 8Descending order of anom(R)

4: Z:R  Zx 8Observations not yet in a region R 2 R
5:
6: R  ; 8Reset R and F(R)
7: F  0
8: for R 2 R do

9: R Optimize(R, anom( � ,Z:R, u0)) 8Nonlinear optimization.

10: if log (anom(R,Z:R))ø l(R) then
11: R  R[ R

12: F  F + log (anom(R,Z:R))� l(R)

13: Z:R  Z:R � Zx(R) 8Remove observations in R
14: end if
15: end for
16: return R
17:end function
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solution, rather than a globally optimal one. Second, the

greedy sequential optimization over multiple anomalies is

not a globally optimal assignment either, and counter-

examples to its optimality can be found. Nonetheless,

detecting RIMs using DMAPS and correcting the model as

shown in Section 4.4 can significantly improve perfor-

mance in complex real-robot domains, such as that in

Section 5.3.3.

Notes on overlapping regions. We have noted that

DMAPS only counts each data point toward a single RIM

candidate. Therefore, for example, the smaller region in the

non-subtle-anomaly domain of Figure 9a would automati-

cally be discarded by the algorithm, as it contains no points

that are not contained in the larger region with a higher

anomaly value. However, this does not mean that DMAPS

prevents overlap among RIM candidates. In particular,

Figure 9b shows another similar domain, but in which the

two overlapping regions are not redundant with each other.

Even though the points in the intersection between the

regions will only belong to that with the higher anomaly

value, each region individually covers a relevant region of

space. This is also how DMAPS is capable of approximat-

ing RIMs of arbitrary shapes with various parametric

regions.

Comparison with FARO. DMAPS presents an exten-

sion of the FARO algorithm to domains with an unknown

number of RIMs, and thus is most readily applicable to

most real robot domains. However, in domains where no

more than one RIM can exist, FARO could present a con-

vergence advantage, because overlapping hypotheses can

evolve towards different local optima of the same RIM dur-

ing optimization.

4.4. RIM correction

Section 4.3 describes the DMAPS algorithm to find a set

R of RIMs. This section describes how robots can use this

information to correct their planning models. This

corresponds to line 6 in Algorithm 1. In essence, we treat

each RIM as a context-dependent behavioral mode, distinct

from the nominal behavioral mode, in which outcome

observations are distributed differently. Previous work has

explored the problem of learning different behavioral

modes as nodes of an hidden Markov model (Fox et al.,

2006) or a dynamic Bayesian network (Infantes et al.,

2006), depending on the observability of controllable vari-

ables. In contrast with these methods, in which the robots

learn the entire structure of the underlying graph, our

robots begin execution with a model of nominal behavior,

and then learn new behavioral modes in specific contexts

where their models are not accurate.

We seek to compute a corrected model u+ based on the

nominal model u0 and the set R of detected RIMs :

P(zjs, a, u+)[P(zjs, a, u0,R) ð18Þ

We assume that when the robot performs action a in

state s, the world behaves according to its nominal model

u0 or one of the jRj behaviors ui detected by DMAPS. We

denote the set of plausible models as

QR= fu0g [ fuiji 2 1, . . . , jRjg. By the law of total

probability, we obtain

P(zjs, a, u+)=
X

ui2QR

P(zjs, a, ui,R)P(uijs, a,R)
� �

ð19Þ

The distribution of observations is thus a mixture model

of the plausible models in QR, appropriately weighted

depending on how likely the context x= x(s, a) is to be in

each region in R. For clarity, we rename the second factor

in the sum of Equation (19), which corresponds to these

weights, as ai(s, a,R)[P(uijs, a,R). As z is independent

of R given the appropriate model ui, we obtain that

P(zjs, a, u+)=
XjQRj
i = 0

ai(s, a,R)P(zjs, a, ui)
� �

ð20Þ

Fig. 9. Examples of (a) a redundant and (b) a non-redundant set of overlapping regions in domains with non-subtle anomalies.

DMAPS would discard the smaller region in (a), but would correctly keep both regions in (b).
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Section 4.4.1 addresses the problem of estimating the

model ui for each RIM, whereas Section 4.4.2 discusses the

estimation of ai. Then, Section 4.4.3 describes how to bring

these together into the final model correction equations.

4.4.1 Estimating observation distributions. Here

P(zjs, a, ui) describes the distribution of observations z
given that the world is in a RIM defined by model ui. For

nominal execution, this is simply the model-given pre-

dicted distribution P(zjs, a, u0).
In the absence of prior knowledge about the distribution

of anomalies, we select the alternate model ui as that from a

set of plausible alternate models û that maximizes the likeli-

hood of the observed data in region Ri:

ui[ argmax
û2Q̂

Y
(xj, zj)2Zx

P(zjjû(xj))
1(xj2Ri)

2
4

3
5 ð21Þ

In particular, for the examples of this article, we assume

that the distribution in each RIM Ri 2 R has the same

shape as u0 but a shifted mean m + d. In the case of

Gaussian distributions, for example, the maximum likeli-

hood distribution ui is given by

P zjs, a, ui
� �

=N m0 s, að Þ+ d Rið Þ,S0 s, að Þð Þ ð22Þ

where m0 and S0 are the parameters predicted by the nom-

inal model u0, and d(Ri) is the maximum likelihood shift in

mean of Equation (9). Although this article focuses on inac-

curacies in the form of a shifted mean, the maximum likeli-

hood variance changes could also be estimated.

4.4.2. Estimating active behavior distributions. Coefficients

ai[P(uijs, a,R) describe the probability of the world being

in each behavioral mode, including nominal behavior, given

that the robot takes action a in state s. The nominal behavior

probability is constrained by the probabilities of the anomalous

modes:

P u0js, a,R
� �

= 1�
XjRj
i = 1

P uijs, a,R
� �

ð23Þ

so we focus on computing the probability of the anomalous

behavioral modes.

The activation probability of each RIM ui depends both

on whether the context x= x(s, a) 2 X lies inside of region

Ri, and on our confidence that Ri is actually a RIM that

behaves according to ui. Thus, the activation probability is

given by

ai(s, a,R)[P(uijs, a,R)= P uijx(s, a) 2 Ri

� �
P x(s, a) 2 Rið Þ

ð24Þ

For this work, P x(s, a) 2 Rið Þ simply indicates whether

a state–action point belongs to region Ri:

P x(s, a) 2 Rið Þ= 1(x(s, a) 2 Ri) ð25Þ

In domains with noisy measurements of s, or with anoma-

lous regions with fuzzy boundaries, a softer definition of

‘‘belonging’’ to region Ri could be more appropriate.

To calculate the confidence value P uijx(s, a) 2 Ri

� �
,

i.e., the probability that Ri is actually a RIM with distribu-

tion ui, we again employ Monte Carlo simulation, similarly

to how we used it in Section 4.2: we note that this confi-

dence is a monotonically increasing function of anom(R),
so there exists a function P : R! R such that

P(anom(Ri))= P(uijs, a,R)= P uijx(s, a) 2 Ri

� �
ð26Þ

We estimate this function empirically using the the empiri-

cal CDF of Figure 7 and denote it by P̂. That is, the esti-

mated probability P̂ of Ri being a RIM is determined by

the number of runs, during nominal execution simulations,

that the maximum anomaly value of a region exceeded

anom(Ri).
Combining these results, Equation (24) becomes

ai(s, a,R)= 1 x(s, a) 2 Rið ÞP̂(anom(Ri)) ð27Þ

4.4.3 Applying model corrections. Having estimated the

distribution P(zjs, a, ui) for each region Ri, and its activa-

tion weight ai, Equation (20) becomes fully defined.

Using normal distributions as described in Section 4.4.1

and ai as defined in Section 4.4.2, we obtain the cor-

rected model:

P(zjs, a, u+)= P(zjm0,S0)

1�
X
R2R

1 x(s, a) 2 Rð Þ P̂ (anom(R))
� � !

+

X
R2R

P zjm0 + d(R),S0ð Þ1 x(s, a) 2 Rð ÞP̂(anom(R))
� �

ð28Þ

Given that x(s, a) can only be part of one anomalous region

by Assumption 1, we obtain the final expression for the dis-

tribution of observations:

P(zjs, a, u+)=

P(zjm0,S0)(1� P̂(anom(R)))+ if9R 2 Rs:t:
P(zjm0 + d(R),S0)P̂(anom(R)) x(s, a) 2 R

P(zjm0,S0) otherwise

8>>><
>>>:

ð29Þ

From this expression, the planner can estimate different

statistics of the predicted distribution of z, such as its

expected value:
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E½zjs, a, u+�=
m0 + d(R)P̂(anom(R)) if9R 2 R s:t: x(s, a) 2 R

m0 otherwise

8><
>:

ð30Þ

The re-estimated model u+ enables robots to adapt

online to detected RIMs in their world. Section 5 empiri-

cally demonstrates the benefits of correcting these RIMs

online.

5. Evaluation

Section 4 describes our theory and algorithm contributions

to online detection and correction of RIMs. This section

describes how we evaluate each of these contributions, with

extended analysis of results presented in previous prelimi-

nary work (Mendoza et al., 2014, 2015).

First, we describe an evaluation of the FARO algorithm

for detection of domains with no more than one RIM . We

test the detection capability of FARO on synthetically gen-

erated data from the golf-putting robot domain (Section

5.1) and real-world data from the CoBot service robots

(Veloso et al., 2012) (Section 5.2). Although the former

provides an easily visualizable testing 2D domain, the latter

provides a more difficult realistic testing domain.

We then proceed to evaluate the DMAPS algorithm for

detection and correction of multiple RIMs in the robot soc-

cer domain (Section 5.3.3). We briefly describe the

interception–keepaway soccer domain, and proceed to

describe the results of applying DMAPS to it.

Our evaluation shows that (a) FARO and DMAPS are

capable of detecting subtle context-dependent model inac-

curacies in a wide variety of domains, and that (b) detecting

and correcting these RIMs online can substantially improve

task performance.

5.1. FARO golf-domain evaluation

We first show experiments and results using synthetic

data from the golf-robot domain described in Section 1.

Figure 10 shows this domain, in which the robot’s task is to

repeatedly shoot a ball into a hole on the far right-hand side

of the field. The domain has one RIM created by an imper-

ceptible bump on the field, which causes the robot to miss

its target more often than expected when shooting from

behind the bump.

Given a bump location, the simulated data from this

domain is generated iteratively as follows: (a) sample a

context 2D point, from the uniform distribution over the

field; (b) if the bump is not between the sampled point and

the hole on the right, sample the shot success from the

nominal distribution u0; (c) if the bump is between the

sampled point and the hole, sample the shot success from

the RIM distribution uR. For these experiments, both the

nominal and anomalous distributions were constant ber-

noulli distributions across the field, with success probabil-

ities p and q, respectively; however, the FARO algorithm

does not require these probabilities to be constant across

the domain.

Experimental setup. The field measures 6m× 4m.

The parameters in this world are the shape and location of

the unperceived bump obs, the probability p of success

during normal execution, and the probability q of success

from locations that are blocked by obs. For each test, obs
is uniformly sampled from a set of linear bumps such that:

(a) the distance between the target and the center of obs is

between 0.1 and 1.5 m; (b) the center of obs is in the field;

and (c) the angle subtended by the endpoints of obs and

the target is between p
16

and p
4

rad. This randomization cre-

ates test RIMs of various shapes, sizes, and orientations.

The observations are given to the robot sequentially, and

FARO is run after every new observation, as specified in

Algorithm 2. Figure 10 shows an example of the evolution

of the most likely RIM as the robot gathers more data.

To evaluate how well FARO approximates RIMs on the

field, we define precision and recall values. Precision com-

putes the fraction of points in the detected region R that are

in the ground truth RIM S; recall computes the fraction of

points in the ground truth RIM S that were detected by R:

precision=
j xi : xi 2 R \ Sf gj
j xi : xi 2 Rf gj ð31Þ

Fig. 10. Most anomalous ellipse found during three stages of execution: (a) ln anom(R)= 10:0, 7 observations; (b)

ln anom(R)= 20:6, 43 observations; (c) ln anom(R)= 40:8, 84 observations. During nominal execution, the robot succeeds with

probability p = 0:8. When shooting from behind the bump, it succeeds with probability q = 0:5.
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recall=
j xi : xi 2 R \ Sf gj
j xi : xi 2 Sf gj ð32Þ

Experiment 1: size of the dataset. The goal of the first

experiment is to determine the effect of the number of

available anomalous data points on the effectiveness of the

detection. To do this, we hold both p and q constant and

keep track of the precision and recall rates of the algorithm

as the number of anomalous data points increases.

Figure 11a show the results of these experiments for

p = 0:8, q = 0:2. Precision and recall both increase rapidly

to about 0.8 with around 10 observations, and then keep

slowly increasing with more data. The anomaly value,

which correlates with the confidence in an anomaly, grows

exponentially as more anomalous data arrives (ln anom(R)
grows linearly). Both anom(R) and the accuracy of the

ellipse approximation increase with the number of anoma-

lous data points.

Precision and recall do not reach 1.0 even when the

ellipse approximates the true anomaly very well, as in

Figure 10c. There are two reasons for this apparently sub-

optimal performance. (1) The true shape of each region

cannot be arbitrarily well-approximated by any single

ellipse; the efficiency of choosing a relatively small para-

meterization (i.e., ellipses) comes with the cost of the

inability to represent regions arbitrarily well: we note, how-

ever, that DMAPS partially addresses this problem, because

multiple ellipses can significantly improve the approxima-

tion. (2) If there are missed shots outside of the truly anom-

alous region, an ellipse that includes those shots has a

higher value than an ellipse that does not, and conversely

with successful shots that are inside of the anomalous

region; thus, for finite numbers of observations, the ellipse

that maximizes anomaly is not necessarily the one that best

matches the true anomaly region.

Experiment 2: magnitude of inaccuracy. To determine

the effect of the magnitude of the inaccuracy on the algo-

rithm’s performance, we analyze the number of data points

required for the detector to reach a particular threshold of

high anomaly confidence, as the anomalous distribution q

approached the normal distribution p = 0:8. Figure 11b

shows the results of this experiment. The number of data

points required to be certain of an anomaly appears to

increase exponentially as the anomalous distribution gets

closer to the normal distribution. This highly super-linear

result is expected, as the number should go to infinity as

q! p, at which point the distributions are indistinguish-

able. Furthermore, it is noteworthy that the precision and

recall rate stay close to constant for a given anomaly thresh-

old. This suggests that the precision and recall performance

of the detector is approximately independent of the magni-

tude of the failure, given an anomaly threshold amax.

5.2. FARO CoBot motion evaluation

We also evaluate FARO by introducing inaccuracies in the

CoBot’s motion model domain described in Section 2.1.1.

We define the motion state of the CoBot by its translational

and rotational position and velocities:

x[½x y f _x _y _f�|; the observations of execution

are z[½D _x D _y D _v�, the vector difference between the

CoBot’s measured velocity, obtained from its wheel enco-

ders, and its expected velocity, based on its velocity

Fig. 11. Synthetic data experiments results: (a) precision, recall and anomaly value with varying number of anomalous data points;

(b) precision, recall and number of anomalous points when threshold anomaly was passed. Blue dashed lines indicate standard error

bars. The black dashed line is the highest anomaly value observed during nominal execution.
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command and its state. These observations, which are exe-

cution residuals, are expected to be near zero during nom-

inal execution. We obtain the variance of these

observations during nominal execution.

To evaluate the FARO detector, we inject four types of

RIMs in the CoBot’s motion, as the real robot completes

navigation tasks around the building.

Encoder failure. Every time the CoBot moves, one of

its wheel encoders observes (1� e)d, at each timestep,

where d is the displacement of the wheel returned during

nominal execution. This failure mode evaluates FARO for

RIMs that occupy the whole domain physical domain, and

any points in velocity space that are non-zero.

Collision. During an otherwise normal run of the robot,

a sudden collision happens. This failure mode evaluates

FARO for very small, localized RIMs of context space.

Corridor failure. The wheel encoders fail by returning

(1� e)d, as above, but only in a particular corridor of the

building. Thus, the context in which this RIM is active is

the particular corridor in physical space, and any non-zero

velocities.

Left turn failure. The robot’s execution is nominal

except when it turns left (i.e., _f.0), in which case each of

its wheels moves only at (1� e)v for a velocity command

v. As the robot turns only at intersections or when it needs

to face a doorway, this failure mode tests the algorithm

when small clusters of anomalous points happen infre-

quently and far apart.

With the exception of the collision anomaly, these fail-

ures were injected into the software of the CoBot’s wheel

encoder firmware. For each of these scenarios, we com-

manded the robot to autonomously navigate to several

offices in its building, while keeping FARO running. The

route that the robot chooses depends on its autonomous

navigation algorithms (Biswas and Veloso, 2013). Table 3

summarizes the results of running the algorithm under the

different failure modes, with e = 0:05.

The algorithm shows high precision and recall for each

of the experiments. The variance in the precision and recall

rates is small but not insignificant, indicating that some

runs were probably more difficult than others. For example,

recall may be higher for a run in which the robot goes down

the bad corridor in the same direction multiple times than

for a run in which it went down and up the bad corridor: in

the latter case, the ellipse had to expand over a gap between

regions with f’a and those with f’p + a, where a is

the angle of the corridor itself.

The experiment that stands out in terms of results is the

Bad turn left, for which the recall rate is significantly lower

than the others. This is because the anomaly happens in

very disjoint regions of context space (only when the robot

needs to turn left), with no data between them. This also

explains why the final recall in this failure mode is lower

than at the time of detection: more disjoint anomalous

regions were visited after the time of detection, and some

of them were not joined to the main ellipse. This problem

is due to the local optimum limitation of our approach, dis-

cussed in Section 4. Related research in the field has

addressed the problem of RIM detection in high-

dimensional spaces (Mendoza et al., 2016c).

5.3. Detecting and correcting multiple RIMs in

robot soccer

We evaluate the DMAPS detection algorithm of Section

4.3 and the benefits of model correction as presented in

Section 4.4 on a complex sub-problem of the robot soccer

domain introduced in Section 2.1.2. The domain, which we

call interception–keepaway, is inspired by the keepaway

domain introduced for 2D robot soccer simulation (Stone

et al., 2005b). We proceed to describe the interception–

keepaway problem in Section 5.3.1, then we describe the

application of DMAPS in this domain in Section 5.3.2, and

finally we evaluate its efficacy in Section 5.3.3.

5.3.1. Interception–keepaway domain. In the keepaway

benchmark domain (Stone et al., 2005a), a team of n kee-

pers tries to keep the soccer ball within a bounded 2D

region, and away from a team of m takers, who try to gain

possession of the ball. The task is divided into episodes,

each beginning with the robots and the ball in particular

semi-random positions on the field (Stone et al., 2005a).

An episode ends when the ball leaves the bounded region

or it is held by one of the takers for a significant period of

time, at which point a new episode begins. Robots are

rewarded for each time step an episode persists.

Keepaway has been used extensively in the simulation

league of robot soccer, but we extend it to a real robot

domain with the SSL robots. Unlike simulation, real robots

Table 3. CoBot experiment results. For each experiment, we present statistics at the time the anomaly threshold (two times the largest

anomaly observed during normal execution) was surpassed, and statistics at the time the robot was stopped.

RIM Anomaly threshold = 40.2 End of experiment

jZj Precision Recall anom Precision Recall

Encoder 5868:2 1:060:0 0:7660:15 337614 1:060:0 0:9260:03
Collision 4:562:1 1:060:0 0:8160:09 1, 535654 1:060:0 0:8560:03
Corridor 60611 0:9460:0 0:7760:15 199628 0:9760:01 0:9060:02
Left turn 3165:1 1:060:0 0:7960:07 203622 0:8060:18 0:4760:12
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cannot run millions of trials to approach an optimal policy.

Running real robot trials takes human effort, causes wear

on the robots (changing their dynamics in the process), and

cannot be sped up. Robots thus need to adapt online and

from sparse observations, especially to perform well against

unknown opponents in realistic timescales.

Interception–keepaway robot behavior. Figure 12

shows this interception–keepaway domain with three kee-

pers and two takers. The keepers try to maintain possession

of the ball by performing passes that they believe will not

be intercepted by the takers. The takers focus on intercept-

ing passes from the keepers. While the ball is not in motion,

one taker positions itself between the keeper k0 in posses-

sion of the ball and its most open teammate, at a small dis-

tance from k0; the remaining takers position themselves

between k0 and its remaining teammates ki, at a small dis-

tance from ki. When a pass is performed, the taker with the

shortest interception time tries to intercept the pass.

Performance evaluation. Performance is measured by

the completion rate of passes as n(success)
n(success)+ n(failure)

. We define

a successful pass as one in which the ball touches a keeper

before it touches a taker or goes out of bounds, whereas a

failed pass is one in which the ball touches a taker before it

touches a keeper or the ball goes out of bounds.

5.3.2 Model correction for keepaway. We focus on the pas-

ser’s decision-making problem. Each time a keeper receives

the ball, it must choose where to pass next to maintain pos-

session. The physical state of the world s is a vector of size

dim(s)= 6n + 6m + 4 containing the 2D translational coor-

dinates li and 1D rotational coordinates fi of each robot,

their first time derivatives vi, and the ball’s 2D location lb
and velocity vb.

5

The actions available to the robot are the

legal velocities vb (jvbjł 8 m
s
) at which it can kick the ball,

discretized by magnitude and direction.

We monitor the expected probability of success of

passes, P(z= 1js, a, u0), where an observation of z= 1

means the pass succeeded and z= 0 means the pass failed.

The nominal model u0 is based on the planner’s estimate of

the time ti(li, vi, lb, vb) that each robot i would need, starting

at location li with velocity vi, to intercept a moving ball

starting at location lb with velocity vb. Given such an esti-

mate (e.g., Biswas et al., 2014)), the model computes the

keepers’ time to ball tk :

tk(lb, vb)= min
i2keepers

ti(li, vi, lb, vb) ð33Þ

and similarly tt for takers. We thus define the nominal

model u0 as

P(zjs, a= vb, u
0)= F

tt(lb, vb)� tk(lb, vb)

st

� �
ð34Þ

where F denotes the standard normal cumulative distribu-

tion, and st is an uncertainty factor. That is, we model the

probability of success as being entirely dependent on which

robot has the shortest interception time, plus normal noise.

To conclude the definition of the monitor from

Algorithm 1, we must define a feature extraction function

x(s, a) (see line 2). For each expectation ei about taker

robot i, we extract a five-dimensional feature vector:

x(s, a)= (l0i, v
0
i, jvbj) ð35Þ

where l0i and v0i are the location and velocity of robot i rela-

tive to the ball at the time the pass starts, rotated by the

direction of the pass. By excluding features of the keepers

and the other takers, to keep the context space of a man-

ageable dimensionality, we implicitly assume that the only

source of inaccurate modeling is the intercepting taker

robot’s behavior.

Algorithm 1 is thus fully defined for keepaway, and runs

each time a pass ends, providing corrections to the planner.

The planning model used here is a simple one, as the

focus of this paper is performance improvement through

execution monitoring, rather than optimal planning. We use

a greedy planner that chooses the action that maximizes the

expected immediate reward. In keepaway, that means the

passing robot maximizes the expected probability of suc-

cess of its next pass, and does not plan for multiple passes

in the future. In practice, then, the planner always chooses

the action that maximizes Equation (30), where m0 is given

by the expectation of Equation (34). Section 5.3.3 presents

an empirical evaluation of this monitor.

5.3.3. DMAPS evaluation on interception–keepaway. To

empirically demonstrate our model correction framework,

we implemented it on the robot soccer domain of Section

2.1.2. The algorithm was extensively evaluated using a rea-

listic PhysX-based simulator, which employs the same

interface to the AI as the real world does, models the robots

at the component level, and simulates physics to high detail

Fig. 12. Interception–keepaway domain. The keepers (yellow

solid circles) attempt to maintain possession by passing to each

other, while the takers (blue dashed circles) try to steal

possession by intercepting passes.
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(e.g., it models the angular momentum imparted on the ball

when a robot touches it with its spinning dribbling mechan-

ism). As we seek to improve high-level robot decisions,

rather than low-level controllers, simulation is a particularly

useful means of obtaining statistically significant results,

which can then be corroborated on the real robots.

Evaluation metrics. The first metric by which we eval-

uated the model-correction framework is task performance

(TP). The ultimate goal of our monitor is to improve TP in

environments with RIMs, which makes it a natural metric

to evaluate our framework. TP was measured by the aver-

age pass completion rate of a particular model u as

TP(u)=
n(successju)

n(successju)+ n(failureju) ð36Þ

Although TP is an intuitive evaluation metric, it is highly

dependent on the task at hand. For example, improving TP

by 1% in a task that originally had 50% success rate is

much less meaningful than improving TP in a task that

originally had 98% success rate. An evaluation metric that

more objectively measures model correction performance is

the failure reduction rate (FRR) of the corrected model u+

with respect to the baseline model u0:

FRR(u+, u0)= 1� 1� TP(u+)

1� TP(u0)
ð37Þ

FRR measures the expected percentage of failures that were

eliminated by correcting the model. A perfect learner, in a

task for which perfect performance is achievable, would

eventually reach FRR= 1.

A different metric used for evaluation is model predic-

tion accuracy (MPA). Although improvement in TP is the

main goal, we are also interested in evaluating how well the

predictions made by the corrected model match the execu-

tion. Modeling the world accurately is important to enable

robots to generalize to different tasks in the same domain.

For example, models acquired during keepaway learning

could generalize to passing in the wider problem of full

soccer. MPA was measured by the average likelihood of

observations given the model used for prediction of that

observation:

MPA(u)=
1

jZj
X

(x, z)2Z
P(zjx, u) ð38Þ

For all of our performance metrics, and throughout our

experiments, we use as a baseline the original model u0.

When analyzing results, we keep in mind the timescale

of the learning process in which we are most interested. A

game of robot soccer lasts 20 minutes (1,200 seconds).

During our keepaway tests, we measured that robots com-

pleted, on average, around 0.45 passes per second.

Therefore, the upper limit number of passes they could per-

form in a game is around 540. A considerable portion of

that time will be spent not passing (e.g., opponent

possession, dead time between plays, shots on goal).

However, this estimate lets us narrow our timescale of

interest to the order of 100 passes. The experiments con-

ducted here thus focused on such timescales.

Experimental results. First, we conducted extensive

simulation tests to determine in a statistically significant

way the evolution of TP(u+) and MPA(u+) as the monitor

acquires new observations. Figure 13a shows a moving

average (window size 50) measurement of TP and FRR as

a function of how many passes the robots have performed,

demonstrating an evident performance improvement as the

model is corrected with experience. Performance quickly

improves with the first few observations: the first data

point shows FRR’0:1, i.e., there is a 10% reduction in

failures within the first 50 observations. Furthermore, as

new pass results are observed, performance keeps improv-

ing, achieving a FRR of about 40% within the first few

hundred passes. Conducting less-extensive experiments on

the real robots showed a similar trend, as shown in Figure

13b. Baseline and adaptation performance were both higher

in simulation than in the real robots, owing to the compli-

cations added by the real world.

To evaluate MPA adequately, we ran experiments in

which the robots ignored model corrections suggested by

the execution monitor. This allowed us to evaluate the pre-

dictive performance of the monitor without the confound-

ing factor of altered robot behavior. We evaluate MPA

exclusively for points inside of detected RIMs, as this is

where model improvement is expected to occur due to our

monitor. For points that lie outside of the detected RIMs,

the model (and, thus, MPA) remains unchanged by the

monitor.

Figure 14a shows MPA(u+) evaluation for simulation.

With model correction, observations show a significantly

better fit to the model than without correction. The ideal

Fig. 13. Moving average of passing performance evaluation as a

function of number of passes performed: (a) simulation; (b) real

robots. The shaded area shows the 95% confidence interval; the

dotted black horizontal line indicates average baseline

performance.
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MPA= 1 is only achievable by distributions with zero var-

iance, which is certainly not the case in our keepaway

domain. The realistic goal of the monitor is not to reach

MPA= 1, but to show significant improvement over the

initial global model. Figure 14b shows less-extensive real-

robot test results, which show a similar trend as simulation.

These results support the efficacy of our framework for

short-term task performance and prediction accuracy

improvement. Anecdotal evidence from this domain also

suggests a different benefit of our approach: system

designers may interpret the context and effect of these

RIMs to understand the limitations and flaws in the

designed models. After conducting the experiments above,

the model designers found that the discovered RIMs corre-

sponded to flaws in the design of their simple prediction

model of Equation (34). Some RIMs corresponded to

inadequacies in the computation of navigation times tk and

tt, whereas others corresponded to inadequacies in the sim-

plified assumption that the probability of success corre-

sponds exclusively to a smoothly varying function of

tt � tk . An example of this oversimplification occurs when

an taker is directly between the ball and a keeper, but very

close to the keeper: the simple model indicates that a pass

to that position would very slightly favor the taker, as their

interception times are almost equal, i.e., tt � tk is very

small and negative; in reality, because the taker is directly

blocking the keeper, its probability of interception is much

larger than the keeper’s probability of success. This type of

knowledge, acquired solely due to autonomous RIM detec-

tion, has been incorporated into the source code of the

CMDragons, making them a stronger team for future

competitions.

6. Conclusion

This paper presents an approach for online detection and

correction of subtle context-dependent inaccuracies in

robots’ models. Subtle context-dependent model inaccura-

cies arise in a wide variety of complex autonomous robot

problems. Here, we have motivated the study of this prob-

lem with three domains: an illustrative simple golf-putting

robot, whose model has inaccuracies due to imperceptible

bumps on the field; a mobile service robot whose motion

model is inaccurate due to a variety of internal and external

reasons that affect it only in particular contexts; and a team

of soccer-playing robots whose model of the opponent’s

likelihood of pass interception is inaccurate in some con-

texts, previously unknown to the researchers.

Owing to the subtlety of these model inaccuracies, the

robots need to analyze sets of observations to find them,

rather each observation in isolation. Owing to the context-

dependency of the inaccuracies, the robots need to reason

about the correlation between observations along various

dimensions of their context space, such as time, position,

and velocity.

We have presented an approach that explicitly searches

for parametric RIMs to determine whether the robot’s

model is inaccurate in particular regions of its context

space. This online approach relies on nonlinear optimiza-

tion to find the region of context space that maximizes an

anomaly value function anom, given the observations con-

tained in that region. Once this region is found, the algo-

rithm decides whether this region is truly anomalous based

on a threshold, tuned to achieve a particular detection

power. We have then presented an algorithm to detect mul-

tiple such anomalous regions, and to correct the robot’s

model based on such detections.

Empirical evidence shows the effectiveness of this algo-

rithm at detecting subtle context-dependent model inac-

curacies in our three test domains. In the simple golf-

putting scenario, the algorithm successfully detected bumps

in various locations of the field. In the CoBot’s motion sce-

nario, the algorithm successfully detected a failing wheel

encoder, a collision, a corridor in which the CoBot’s motion

is flawed and a robot that has subtle problems when trying

to turn left. Finally, in the robot soccer domain, the algo-

rithm was able to detect inaccuracies in the passing model

of the team, and to improve performance significantly

within the time span of one soccer game, by correcting

these detected inaccuracies. Remarkably, these inaccuracies

were previously unknown to the researchers, and their

detection has led to improvements in the CMDragons’

models and algorithms.

Our three target domains provide evidence for the gen-

eral applicability of our approach. Our algorithm can be

applied to other model-based autonomous robot domains in

which the robot’s stochastic models can be verified by exe-

cution observations, and in which subtle context-dependent

model inaccuracies may exist. Our future work will address

the problem of applying these techniques to domains with

very high-dimensional context spaces, such as early detec-

tion of anomalies in spacecraft with hundreds of sensors.

Fig. 14. Moving average of prediction accuracy MPA(u+), as a

function of observations inside of RIMs : (a) simulation; (b) real

robots. The shaded area shows the 95% confidence interval; the

dotted black horizontal line indicates average baseline MPA(u0).
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Notes

1. Because our work is strongly inspired by work on anomaly

detection, we interchangeably use the terms inaccuracy mea-

sure, which reflects our specific purposes, and anomaly mea-

sure, which reflects the broader context for which this

measure has been used.

2. In future work, we will also consider inaccuracies that affect

the variance of observations rather than the mean.

3. Unfortunately, capital letter S is the standard symbol for both

summations and covariance matrices. Although we have

retained this notation, we try to avoid confusion by always

placing summation indices under S, whereas covariance

matrices are indexed by a subscript to the right of S.

4. When clear from context, we omit Zx or u0 from

anom(R,Zx,u0).
5. For this paper, we have chosen to focus on ground passes,

thus the third dimension of the world is ignored; also missing

is the ball spin and the robots’ internal states.
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Cordier MO, Dague P, Lévy F, Montmain J, Staroswiecki M and
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