
Particle RRT for Path Planning with Uncertainty

Nik A. Melchior and Reid Simmons

Abstract— This paper describes a new extension to the
Rapidly–exploring Random Tree (RRT) path planning algo-
rithm. The Particle RRT algorithm explicitly considers uncer-
tainty in its domain, similar to the operation of a particle filter.
Each extension to the search tree is treated as a stochastic
process and is simulated multiple times. The behavior of the
robot can be characterized based on the specified uncertainty
in the environment, and guarantees can be made as to the
performance under this uncertainty. Extensions to the search
tree, and therefore entire paths, may be chosen based on the
expected probability of successful execution. The benefit of this
algorithm is demonstrated in the simulation of a rover operating
in rough terrain with unknown coefficients of friction.

I. I NTRODUCTION

The Rapidly–exploring Random Tree (RRT) algorithm [1]
is a popular technique for path planning with kinodynamic
constraints. In simple terms, RRT builds a search tree of
reachable states by attempting to apply random actions at
known–reachable states. Unless the action causes the robot
to make contact with an obstacle or violate some dynamics
constraint, the action is considered successful, and the result-
ing state is added to the tree of reachable states. A simulator
is generally treated as a black box that determines the result
of an action given the robot’s initial state. This allows the
algorithm to be applied to domains where complex system
dynamics make analytic control difficult or impossible. RRT
has been successfully applied to wheeled and legged vehi-
cles, as well as underwater robots and aircraft.

However, this binary decision as to the success of an
action can limit the application of this algorithm in two
important ways. First, it does not allow for ranking or scoring
multiple actions which may succeed from a given initial
state. Actions often have associated costs (such as the energy
or time required for execution), and planning may produce
several paths from start to goal with varying cumulative
costs. High–cost extensions might therefore be avoided in
hopes of finding a better path, but these extensions should not
be ignored completely, because a better path may not exist.
Most RRT implementations at least consider path length in
terms of Euclidean distance travelled, but other notions of
path cost should be incorporated as well.

The second important use for a fuzzy notion of action
success is when knowledge of the obstacles or dynamic
properties of the environment cannot be precisely known.
The application presented in this paper is a rover navigating
through unknown terrain. Stereo vision is used to build a
model of the terrain in the immediate area, but the accuracy
of this model decreases with distance from the rover, and

melchior@cmu.edu, reids@cs.cmu.edu. The Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA 15213-3890.

Fig. 1. A pRRT tree with several particles at each node

occlusions are possible. In addition, characteristics of the
terrain such as the coefficient of friction can be estimated
only roughly, but these characteristics can have substantial
impact on the rover’s behavior, particularly when traversing
rough terrain. Path planning can benefit from explicitly
considering the uncertainty in the terrain to generate paths
with high likelihood of success.

Related work in [2] has considered a changing envi-
ronment in the form of moving obstacles by predicting
the motion of these obstacles. If the obstacles move in
an unexpected manner, the path is simply replanned. One
approach for planning in uncertain terrain [3] ensures that
the planned actions produce the same result for the entire
range of expected values of the unknown conditions. Another
application [4] builds a forest of search trees, using a
different value for each tree.

This paper presents an extension to the RRT algorithm
that directly addresses the issue of plans under uncertainty
with a novel approach. The Particle RRT (pRRT) algorithm
facilitates the creation of an RRT in an uncertain environment
by propagating that uncertainty to the planned path. Each
extension to the search tree is attempted several times under
different likely conditions. Nodes in the search tree are
created by clustering the results from these simulations. The
likelihood of successfully executing each action is quantified
so that the probability of following entire paths may be
determined. An example search tree is shown in figure 1.
Experimental results from simulations are presented, show-
ing that this approach results in paths that are more robust
to uncertainty.



II. A LGORITHM DESCRIPTION

The pRRT algorithm extends the basic RRT algorithm to
operate efficiently in an environment with characterizable
uncertainty. The discussion in this paper considers a rover
driving over terrain whose friction is not known. However,
other types of uncertainty can be incorporated into this
algorithm, such as imprecise action execution or obstacles
whose size or location are uncertain.

A. Basic RRT Algorithm

The Rapidly-exploring Random Tree (RRT) algorithm is a
randomized algorithm useful for exploring large states spaces
that cannot be searched exhaustively. The algorithm, listed
in figure 2 and depicted in figure 3, iteratively chooses a
random pointp in the state space and attempts to extend the
current search tree toward that point. The RANDOMSTATE
function may choose from a uniform distribution over the
state space, but it typically includes some bias toward the
goal. The extension is performed by considering the random
point p, and its nearest neighborq, within the treeT . The
algorithm owes its rapid exploration to the bias implicit in
this procedure. A nodeq is extended only when it is the
nearest neighbor of the random pointp. This means thatp
must lie within the Voronoi region ofq, and nodes on the
frontier of the search tree generally have the largest Voronoi
regions.

The NEWSTATE function determines an actionunew that
observes any dynamic constraints on the robot, and which,
when applied to the robot at stateq, results in some new state
xnew. It is important to note thatxnew is in the direction ofp
from q, butxnew andp are not expected to coincide. Indeed,
it would be quite a coincidence if they did, since the RRT
algorithm does not require that the inverse kinematics of the

BUILD RRT(xinit)

1: T .init(xinit)
2: while (xgoal 6∈ T ) do
3: {p, q} ← SELECTEXTENSION(T );
4: EXTEND(T , p, q)
5: ReturnT

SELECTEXTENSION(T )

1: p← RANDOM STATE();
2: q ← NEARESTNEIGHBOR(p, T );
3: Return{p, q}

EXTEND(T , p, q)

1: if (NEW STATE(p, q, xnew, unew)) then
2: T .addvertex(xnew);
3: T .addedge(q, xnew, unew);

Fig. 2. The RRT algorithm

x
new

p

q

Fig. 3. An RRT extension

robot be known. Only the forward kinematics are required to
determinexnew given q and unew. If NEW STATE finds a
new state and action without violating dynamic constraintsor
colliding with an obstacle, the new state and action are added
to the tree. Thus, NEWSTATE typically makes a binary
decision as to the success of an extension, even when there
is uncertainty in the environment, and thus in the outcome
of a simulation. It is this disparity that we seek to remedy.

This process of selecting a node to extend and executing a
simulation repeats until a state within some tolerance of the
goal,xgoal, is added to the tree. Since RRT is a randomized
algorithm, there is no guarantee that the goal will be found,
even when a feasible path exists. In addition, due to the
nature of exploration and extension used to generate the
search tree, the final path may be jagged and meandering.
Modest efforts to smooth the generated path are usually
applied in order to generate more natural motion. Both
these problems, though, are often addressed by using random
restarts.

B. Particle Extensions

To the RRT framework, we introduce a particle–based ex-
tension technique, similar to the prediction step of a particle
filter. In short, the pRRT algorithm operates by simulating
each extension multiple times under various likely condi-
tions. The resulting states are grouped into similar clusters,
and each cluster is treated as a single node in the tree. Thus,
nodes in the tree are comprised of distributions of states
(approximated using particles), rather than individual states.
The likelihood of reaching a particular node as the result of
an extension can be calculated based on the likelihood of
the conditions which generated the particles underlying its
distribution. While generating the search tree, we can use the
calculated likelihood of nodes to bias the search, and when
the goal is reached, we can evaluate the likelihood of the
entire generated path based on the nodes in the path.

During the EXTEND step, an actionunew is chosen as
usual to apply to the known–reachable stateq. In the applica-
tion domain described in this paper, the coefficient of friction
for the terrain is not known with certainty, so we simulate
the execution of the chosen action using several likely values.
In general, the uncertain parameter, or parameters, may be
represented as a single variableF, and we assume that a



probability density function (PDF) is available from which
to sampleF. In fact, F may have a different distribution in
different parts of the state space. For simplicity of notation,
we assume here thatF is represented by a single PDF. The
technique of repeated simulation can always be applied since
it requires no additional knowledge about the kinematics of
the robot beyond the ability to simulate an action, and this
capability is already required by the basic RRT algorithm.
Within the framework introduced by [5], this uncertainty is
in the realm of environment sensing. Uncertainty in initial
configuration sensing can also be trivially incorporated bythe
same method. To incorporate uncertainties in the remaining
categories of configuration and environment predictability
would require altering the forward simulator such that each
step is stochastic rather than deterministic.

Two elements are required for an extension step: the
starting state for the simulation (the nodeq in figure 3),
and the destination (the pointp in figure 3) or, equivalently,
the nominal actionu used to extendq toward p. When
extending from a particle node — a node that includes
multiple particles — we have two primary options for the
starting state. We might simply use the weighted mean of
the state variables of each particle to represent the node,
and execute all extensions from this state. This mean state,
q, is an estimate of the mean of the true PDF at particle
node,q. That is, it is an estimate of the mean if this particle
node included an infinite number of particles. This is the
best estimate of the true state of the robot at this node of
the tree under the uncertainty considered by the algorithm.
The weight of each particle used for computingq is the
probability that the condition used to compute that extension
is the true condition. Let us denote the particles contained
in the nodeq as q1, q2, · · · , qn. Each particleqi has an
associated value of the parameterF, which we denoteFqi

.
F ∗ will represent the true value ofF. Using this notation,
we can calculate the weighted mean state of a particle node
by:

Fs =
∑

qi∈q

P (Fqi
= F ∗)

q =
1

Fs

∑

qi∈q

(P (Fqi
= F ∗)qi) (1)

Since several extensions will be attempted, we also have
the option of sampling the starting state for an extension
from the PDF at the nodeq. If we were to approximate
the true, continuous PDF by fitting a function such as a
Gaussian to the particles atq, we could sample the starting
state from this distribution. However, we expect to have few
particles at each node. In fact, some nodes may only have a
single particle, so the statistical basis for fitting a continuous
function is somewhat precarious. Instead, we may choose to
sample proportionally from the discrete set of particles. This
has the added benefit of ensuring that the state from which
we extend is truly feasible, since it has been calculated as
the result of a simulation rather than interpolation between
true particles.

The choice of strategy for choosing a starting state, either
by calculating the mean state or by discrete sampling, is
explored in section III. Once this choice is made, the action
used to extend towardp can be calculated as usual. In the
EXTEND step of the algorithm, we apply this action to
the starting state or states using forward simulation multiple
times in order to produce new particles. For each simulation,
we apply a value ofF sampled from its PDF. The states that
result from successful simulations are clustered as described
below before they are added to the tree.

C. Clustering

The underlying purpose of clustering is to group parti-
cles that are substantially similar. Although particles within
clusters will differ somewhat, we wish to detect qualitative
bifurcations in the tree caused by the changing values of
F. Otherwise, the mean valueq, used to extend the node,
becomes a poor approximation of the distribution of particles
within that node. The example trajectories in figure 4 illus-
trate significant bifurcations in the path of the rover. In this
example, the rover is moving along a ridge line toward the
goal represented by a cylinder. If the coefficient of friction is
sufficiently large, the rover can ascend the slope and reach
the goal. For progressively smaller coefficients of friction,
the rover slips down the hill as it moves. Depending on how
much it slips, it may impact, or pass to the left or right of the
rock ahead of it. These semantically different cases should
be represented as different nodes in the planning tree.

Clustering is accomplished using a hierarchical clustering
tree [6] with a weighted Euclidean distance metric. Since we
are interested in the position (x, y) and yaw (θ) of the robot,
we have chosen to use the following distance metric:

d =

√

α ∗ (δx2 + δy2) + β ∗ δθ2

where α and β are scaling factors used to normalize the
units of measurement when determining the difference be-
tween particles. The hierarchical clustering tree algorithm
uses this metric to iteratively agglomerate the particles and
clusters separated by the shortest distance. The distance
between particles is straightforward to calculate, but the
distance between clusters may be calculated by a variety
of strategies. The results section below will examine the
difference in performance between two strategies known as
single and complete linkage [7]. Single linkage computes the
distance between two clusters as the minimum of all pairwise
distances between particles in the clusters, while complete
linkage uses the maximum.

The dendrogram in figure 5 illustrates the operation of
the algorithm on the particles from figure 4. Particles are
numbered along the horizontal axis, and distances are rep-
resented on the vertical. The iterative algorithm builds the
dendrogram from the bottom up. The closest particles in this
case are 8 and 9, so these are combined first, as represented
by the horizontal line segment near the lower left corner of
the diagram. The next closest particles are joined together
until all particles have been combined into a single cluster.



(a) Simulation (b) Plot

Fig. 4. Trajectories with qualitatively different endpoints

Fig. 5. Dendrogram produced by the hierarchical clusteringtree algorithm

In this case, the final agglomeration combines particle 1 with
a cluster containing all other particles.

Although agglomeration continues until all particles are
linked, we must determine how much aggregation is actually
appropriate for each set of particles. We locate the link in
the tree which combines the most dissimilar subtrees by
searching for the largest difference in distances between
successive agglomerations. This link and all following links
are disregarded, while any links made previously are used to
determine the particle clustering. This cutoff is represented
by the dashed horizontal line in figure 5. In this case, the
particles have been split into five clusters.

In tests, we found that this approach performs better
than the Gaussian clustering of the k–means algorithm [8].
The hierarchical clustering tree allows us to calculate fewer
parameters since we do not need to directly estimate the
means and covariance matrices of each cluster. This is
especially important since we are clustering only a handful

of points.

D. Node and Path Probability

The particles at each node provide an estimate of the
distribution of values ofF that allow the robot to reach that
state. By combining this with a prior distribution overF, the
probability of reaching any particular node, or indeed the
probability of following an entire path, may be calculated.
In this way, the growth of the tree structure can be biased
toward generating paths that are more likely to be followed
by the robot.

To bias the search, we adapt Urmson’s hRRT technique for
heuristically biasing RRT growth [9]. The heuristic modifies
the SELECTEXTENSION function of the RRT algorithm.
Rather than simply accepting a random point,p, in the state
space and its nearest neighbor,q, in the tree, the hRRT
technique chooses to extend proportional to the quality of
the nodeq. In our case, the quality ofq is defined as:

qquality =
qprob −m

1.0−m
(2)

where qprob is the probability of reachingq from the root
of the tree, andm is the minimum probability of all leaf
nodes of the search tree. A random value,r is drawn from a
uniform distribution between 0 and 1. Ifqquality > r, the pair
of pointsp andq are accepted and an extension is attempted.
Otherwise, a new pair of points are chosen. Alternately, we
might keepp and try the next nearest neighbor in the tree [9].
The random valuer is used to promote the use of extensions
from high quality nodes without excluding the possibility of
extending lower quality nodes should the algorithm become
stuck in a situation where reaching the goal at all is unlikely.

The effectiveness of the quality heuristic might be im-
proved if we could calculate not only the probability of
reaching a node from the root of the tree, but also an estimate



of the probability of reaching the goal from this node. This
would produce a heuristic in the style of A∗ [10] that would
estimate the probability of successfully travelling from start
to goal through any particular node. However, any estimate of
the probability–to–go must be optimistic, meaning it cannot
underestimate the possibility of completing the path from
any state. Without exploring all options from this state, the
only admissible heuristic is 1.0, which does not provide
any additional information. Future work may investigate
whether non–admissible heuristics improve the runtime of
the algorithm without significantly affecting path quality.

In practice, we found that the probability of reaching nodes
of the tree drops quickly with path length. This causes the
algorithm to favor making extensions from nodes near the
root, even when reasonably likely nodes exist closer to the
goal. In order to encourage more extensions from nodes
far from the root, the path probabilityqprob is normalized
using the path length. We substituten

√
qprob in the quality

calculation, wheren is the depth of nodeq in the tree. This
improves the runtime since node quality does not drop so
quickly as the distance from the root increases. However,
the effect of averaging the path probability over the length
of the path may allow the effect of a single unlikely node
to go unnoticed in a long path of otherwise likely nodes.
Test results in the next section illustrate the effects of this
tradeoff.

III. T ESTING AND RESULTS

The pRRT algorithm has been implemented and tested in
simulation using several rover navigation scenarios. Testing
began with fairly simple domains like the slope in figure
6. Situations like these allow us to verify that the decisions
made by the pRRT algorithm reflect a concern for consistent
execution regardless of friction. The robust path represented
in this image by the string of spheres advances along flat
ground, makes a wide turn, then climbs the slope head–on.
Since the rover is capable of climbing over rocks, a shorter
path is possible by crossing the slope at an angle. However,
taking advantage of these capabilities would result in a less
robust path.

Additional tests were conducted in more complicated
environments, such as the terrains shown as contour plots
in figure 7. The rover’s starting position is marked with a
star, and the goal is marked with a circle. These terrains
were chosen as representative of situations that real rovers
are expected to encounter, but they are also meant to illustrate
that the most direct path is not always the best. In both
the plateau and the crater scenarios, the direct path to
the goal requires the rover to negotiate elevation changes
that the physical simulations will show are safe for the
rover to traverse. Unfortunately, given that the real terrain
characteristics cannot be determined with certainty by a real
rover, it would be unlikely that the rover would track those
paths successfully. Thus, the longer paths on flatter terrain
are to be preferred.

The purpose of these tests is not merely to show that the
pRRT planner is capable of avoiding what would otherwise

Fig. 6. A tree built by pRRT. Spheres mark the planned path.

Fig. 7. Contour plots of some terrains used for testing: Plateau (top), Crater
(bottom)



(a) Endpoint error (b) Endpoint standard deviation

Fig. 8. Error and standard deviation plots for extension strategies

Start node Probability heuristic Success Nodes Nodes per extension Path probability Normalized path probability

Mean non–normalized 80.6% 123.93 1.40 59.6% 96.8%
Mean normalized 81.8% 97.92 1.37 51.3% 94.8%

Sample non–normalized 72.2% 233.82 2.00 25.7% 91.2%
Sample normalized 81.0% 173.57 1.95 17.9% 82.3%

— RRT 82.2% 80.92 1 — —
TABLE I

EFFECTS OF PARTICLE NODE REPRESENTATIONS

be considered high–cost terrain. However, simulations are
likely to produce different results in these areas for different
coefficients of friction. Any area in which a small expected
range of values ofF can produce great variability in simu-
lation results will produce unlikely paths, and will thus be
avoided by pRRT.

To quantify the robustness of paths using pRRT and regu-
lar RRT, paths were planned in each scenario, then executed
open–loop under a variety of uniform friction conditions.
Conventional RRT extensions such as the connect heuristic
[11] were also implemented in both cases to improve planned
paths and decrease planning times. Trees built using conven-
tional RRT assumed a single value of friction at all times,
while pRRT considered a uniform distribution over a range
of possible values. Several variations of the pRRT algorithm
were used in order to determine the best choices for the
algorithmic and parameter options presented in the previous
section.

A. Extension Strategy

For the first set of tests, four different variations of the
pRRT algorithm were used. As discussed in section II-B, we
must choose the strategy for determining the initial state for
each extension. We tested the algorithm using the mean state
q of a node, and by sampling from the particles at each node.
We also explored the effect of normalizing the probability
of successfully tracking paths. This option was discussed in
section II-D as a method of reducing the bias toward shorter

paths. All combinations of these choices were tested.
Error measurements were taken to compare the endpoints

of the planned paths to the endpoints arrived at by open–loop
execution of the plans when the actual coefficient of friction
was less than that planned by RRT. The plots in figure 8 show
the average error (and standard deviation of error) averaged
over 500 runs in the plateau scenario (top of figure 7). Results
are similar for the crater scenario. The horizontal axis in
these plots shows the uniform coefficient of friction for the
open–loop execution as a fraction of the value used by the
RRT. The pRRT algorithm considered all values of friction to
the right of the vertical line in the plots while planning. The
error shown on the vertical axis is expressed as a fraction of
the distance between the specified start and goal states. This
metric facilitates comparisons of the performance in various
scenarios because the distance from start to goal will differ.
These plots indicate that consideration of the uncertainty
in friction by the pRRT algorithm results in paths that are
significantly more accurate for all variations of the pRRT
algorithm. Although regular RRT produces no error in a
completely deterministic world (where true friction is always
equal to the friction used for planning), pRRT produces less
error than RRT when uncertainty is introduced. This means
that paths planned by pRRT can be executed safely and
consistently as the true value ofF changes. In fact, pRRT
continues to produce more accurate paths to the left of the
vertical line, outside the range of friction values which it
considered when planning.



(a) Single linkage (b) Complete linkage

Fig. 9. Error plots for particle and clustering strategies

Error was reduced the most when sampling the starting
state for each extension from among the particles at a node.
In fact, figure 8(b) shows that the variation in endpoint error
was also significantly reduced in these cases. This approach
is more robust because the effect of uncertainty is more
faithfully considered at each extension of the tree. However,
the cost of this increased accuracy and precision can be seen
in the statistics presented in table I. This table presents some
of the differences caused by the variations which have been
discussed for pRRT. The algorithm is halted if the goal is not
reached by the time the search tree contains 250 nodes, so
the success column lists the percentage of the 500 attempted
runs in which the goal was found. Without the normalization
of the path probability heuristic, the natural bias toward short
paths prevents any branch of the search tree from growing
long enough to reach the goal. This effect is most pronounced
when the start node is sampled because this approach also
leads to more nodes per extension. Since each start node
is less precise, the particles of a single extension will be
spread over a larger area, thus leading to more clusters. Each
of these clusters will have a lower probability, so without
the effect of normalization, probabilities of long paths will
suffer. The final two columns list the probability of tracking
a complete path from the root to the goal.

The version of pRRT described by the second row in the
table performs most similarly to RRT because the effects
of uncertainty are minimized by using the mean stateq for
starting extensions and normalizing the path probability.The
third row corresponds to the variation which produced the
lowest error and standard deviation in the plots.

B. Clustering Strategy

Another important parameter for this algorithm is the
number of particles created with each extension. Since the
simulation of the rover’s actions is the most computationally
expensive step in this algorithm, the running time of pRRT

is nearly equal to the running time of RRT multiplied by
the number of particles per extension. Choices for this
parameter were explored in conjunction with the choice of
linkage strategy for clustering particles. Error plots in figure
9 summarize the results of these tests. Surprisingly, single
linkage produced worse results as the number of particles
increased. We believe that this is due to the lack of a natural
limit on the size of a cluster. To illustrate this problem,
consider a set of nearly–equally spaced points along a line.
A complete linkage strategy will subdivide the points into
clusters of nearly equal size. The divisions produced by
single linkage will appear to be arbitrary, so the probability
of particles arranged in this manner will be split arbitrarily
between clusters. Figure 9(b) is encouraging since it shows
that the best performance with complete linkage may be
reached with very few particles.

C. Execution Monitoring

The discussion so far has evaluated the robustness of
open–loop execution of planned paths. However, if the rover
has some method reliably estimating its location during
execution, it may be able to improve the tracking of a planned
path by adjusting the executed actions based on its actual
location and the location of the next node in its planned
path. Again, we discuss two strategies for performing this
update. The first is a well–known algorithm called pure
pursuit [12]. In this strategy, we calculate the new action
using the same simple kinematic equations that are used by
RRT to estimate the action for an extension. These equations
assume flat terrain and ignore dynamics and the effects of
terrain interaction. The second strategy, which we call the
proportional approach, attempts to use information about the
terrain that was captured in the building of the planning tree.
This strategy makes use of the fact that, due to slippage, the
steering angle used by the vehicle to advance from one node
to another is not necessarily equal to the angle between the



Fig. 10. Error of execution monitoring strategies

nodes. The ratio of these two angles is used to compute a
new steering angle.

The results of these tests are shown in figure 10. In both
cases, the new action that was computed did not completely
replace the planned action. Instead, a linear combination of
the two actions was used with a gain parameter to determine
the proportion assigned to the new action. For both strategies,
the best performance was achieved with a gain near 30%, so
this is the gain shown in the plots. Although the simpler pure
pursuit method produced lower error than the proportional
approach, we note that pRRT was able to produce better
results, even without execution monitoring, than the original
RRT with execution monitoring.

IV. CONCLUSIONS ANDFUTURE WORK

The Particle RRT algorithm is an effective method for
generating robust paths that are more precise and more
accurate in the face of uncertainty in the environment. Paths
planned using pRRT are inherently safer, since they can be
followed more closely despite variations in the uncertain
characteristics of the environment.

Now that Particle RRT has shown itself to be an effective
extension to randomized path planning, we would like to
combine it with other extensions such as cost–based tree
building heuristics. The probability of successfully following
a path and the expected cost of that path are both important
criteria in guiding the selection of nodes to extend in a tree
and in assessing potential paths from root to leaves in that
tree.

Although RRTs are often considered to be single–query
path planners, we expect to be able to reuse portions of an ex-
isting tree for replanning as additional information becomes
available to the robot. As a planned path is executed, the
uncertainty about the environment decreases, while portions
of the planning tree remain relevant. If past simulations are
cached, they can be used to build new RRTs for additional
queries or refined if the same query is issued again. We
will investigate methods for reactive, real–time replanning
[13] when exploration of the terrain causes the PDF ofF to

be reshaped, thus changing the probabilities of nodes in the
planned tree.

Immediate plans for continuing investigation of pRRT
include the move from simulation to execution on a real
rover. Implementation is planned for the iRobot ATRV–Jr
robotic platform using the CLARAty programming frame-
work [14]. This testbed will demonstrate the efficacy of
pRRT in the face of the true uncertainty of a terrain model
built using stereo vision. It will also help prepare for planned
deployment on a future NASA rover mission on Mars.

The advancements in this algorithm will improve the
efficiency of future rovers in especially rough terrain com-
pared to the Mars Exploration Rovers which are currently
in service. Some of the most interesting science targets for
those rovers are rock outcroppings located in areas of difficult
terrain such as craters and steep hillsides. Currently, the
rovers must be teleoperated in these areas, which requires a
delay of at least one day. The rovers sit idle while a team of
humans analyzes stereo vision data and constructs a precise
set of driving commands to upload to the rover. Even with
increased computational demands on the modest hardware of
a rover, the pRRT algorithm should help reduce the amount
of time that the rovers spend waiting for their next driving
commands. The algorithm will also be useful as a ground–
based tool for verifying plans which are to be uploaded to
the rovers.

REFERENCES

[1] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[2] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,”International Journal
of Robotics Research, vol. 21, no. 3, pp. 233–255, 2000.

[3] A. Hait and T. Simeon, “Motion planning on rought terrain for an ar-
ticulated vehicle in presence of uncertainties,”IEEE/RSJ International
Symposium on Intelligent Robots and Systems, pp. 1126–1133, 1996.

[4] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validat-
ing hybrid robotic control systems,”International Workshop on the
Algorithmic Foundations of Robotics, July 2004.

[5] S. M. Lavalle and R. Sharma, “On motion planning in changing,
partially–predictable environments,”International Journal of Robotics
Research, 1997.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:a review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[7] P. H. A. Sneath and R. R. Sokal,Numerical Taxonomy. London, UK:
Freeman, 1973.

[8] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis.
John Wiley & Sons, 1973.

[9] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” in IEEE/RSJ IROS 2003, October 2003.

[10] N. J. Nilsson,Principles of artificial intelligence. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1980.

[11] S. M. Lavalle and J. J. Kuffner, “RRT–Connect: An efficient approach
to single–query path planning,” inProceedings of IEEE International
Conference on Robotics and Automation, April 2000, pp. 995–1001.

[12] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-92-01, January 1992.

[13] J. Bruce and M. Veloso, “Real–time randomized path planning for
robot navigation,” inProceedings of IROS–2002, Switzerland, October
2002.

[14] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H.Das, “The
claraty architecture for robotic autonomy,” inProceedings of IEEE
Aerospace Conference, March 2001.


