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Abstract—This paper describes a new extension to the
Rapidly—exploring Random Tree (RRT) path planning algo-
rithm. The Particle RRT algorithm explicitly considers uncer-
tainty in its domain, similar to the operation of a particle filter.
Each extension to the search tree is treated as a stochastic
process and is simulated multiple times. The behavior of the
robot can be characterized based on the specified uncertainty
in the environment, and guarantees can be made as to the
performance under this uncertainty. Extensions to the search
tree, and therefore entire paths, may be chosen based on the
expected probability of successful execution. The benefit of this 7
algorithm is demonstrated in the simulation of a rover operating L T
in rough terrain with unknown coefficients of friction. e
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|. INTRODUCTION g o
The Rapidly—exploring Random Tree (RRT) algorithm [1]
is a popular technique for path planning with kinodynamic
constraints. In simple terms, RRT builds a search tree of
reachable states by attempting to apply random actions at
known-reachable states. Unless the action causes the robot
to make contact with an obstacle or violate some dynamiesclusions are possible. In addition, characteristicshef t
constraint, the action is considered successful, and thétre terrain such as the coefficient of friction can be estimated
ing state is added to the tree of reachable states. A sinmulatnly roughly, but these characteristics can have subatanti
is generally treated as a black box that determines thetresithpact on the rover’s behavior, particularly when travegsi
of an action given the robot's initial state. This allows theough terrain. Path planning can benefit from explicitly
algorithm to be applied to domains where complex systemonsidering the uncertainty in the terrain to generate gath
dynamics make analytic control difficult or impossible. RRTwith high likelihood of success.

has been successfully applied to wheeled and legged vehi- , , ) )
cles, as well as underwater robots and aircraft. Related work in [2] has considered a changing envi-

However, this binary decision as to the success of dgnment in the form of moving obstacles by predicting
action can limit the application of this algorithm in two the motion of these obstacles. If the obstacles move in

important ways. First, it does not allow for ranking or sogri an unexpected manner, the path is simply replanned. One

multiple actions which may succeed from a given initia@PProach for planning in uncertain terrain [3] ensures that
state. Actions often have associated costs (such as thgyendf€ Planned actions produce the same result for the entire
or time required for execution), and planning may producéang_e of expected yalues of the unknown conditions. A_nother
several paths from start to goal with varying cumulativéPPlication [4] builds a forest of search trees, using a
costs. High—cost extensions might therefore be avoided lifferent value for each tree.
hopes of finding a better path, but these extensions shotld noTpis paper presents an extension to the RRT algorithm
be ignored completely, because a better path may not exifigt directly addresses the issue of plans under uncertaint
Most RRT implementations at least consider path length igith a novel approach. The Particle RRT (pRRT) algorithm
terms of Euclidean distance travelled, but other notions @fcilitates the creation of an RRT in an uncertain environme
path cost should be incorporated as well. by propagating that uncertainty to the planned path. Each
The second important use for a fuzzy notion of actioRytension to the search tree is attempted several times unde
success is when knowledge of the obstacles or dynamigferent likely conditions. Nodes in the search tree are
properties of the environment cannot be precisely knowRyeated by clustering the results from these simulatiohs. T
The application presented in this paper is a rover navigatinikelihood of successfully executing each action is quéedi
through unknown terrain. Stereo vision is used to build a5 that the probability of following entire paths may be
model of the terrain in the immediate area, but the accuragatermined. An example search tree is shown in figure 1.
of this model decreases with distance from the rover, angdlyperimental results from simulations are presented, show
mel chi or @nu. edu, r ei ds@s. cmu. edu. The Robotics In- NG that th_is approach results in paths that are more robust
stitute, Carnegie Mellon University, Pittsburgh, PA 1523890. to uncertainty.

Fig. 1. A pRRT tree with several particles at each node



Il. ALGORITHM DESCRIPTION p<>

The pRRT algorithm extends the basic RRT algorithm to
operate efficiently in an environment with characterizable
uncertainty. The discussion in this paper considers a rover
driving over terrain whose friction is not known. However,
other types of uncertainty can be incorporated into this
algorithm, such as imprecise action execution or obstacles
whose size or location are uncertain.

A. Basic RRT Algorithm

The Rapidly-exploring Random Tree (RRT) algorithm is a
randomized algorithm useful for exploring large statessepa Fig. 3. An RRT extension
that cannot be searched exhaustively. The algorithm dliste
in figure 2 and depicted in figure 3, iteratively chooses a
random pointp in the state space and attempts to extend tH@bOt be known. Only the forward kinematics are required to
current search tree toward that point. The RANDGWIATE ~ determinez;,.,, given g and uye,,. If NEW_STATE finds a
function may choose from a uniform distribution over thehew state and action without violating dynamic constraamts
state space, but it typically includes some bias toward tf@”ldlng with an obstacle, the new state and action are @édde
goal. The extension is performed by considering the randoffi the tree. Thus, NEVWBTATE typically makes a binary
point p, and its nearest neighbgt within the tree7. The decision as to the success of an extension, even when there
algorithm owes its rapid exploration to the bias implicit iniS uncertainty in the environment, and thus in the outcome
this procedure_ A nodq is extended 0n|y when it is the of a simulation. It is this d|Spar|ty that we seek to I’emedy.
nearest neighbor of the random pojnt This means thap This process of selecting a node to extend and executing a
must lie within the Voronoi region of, and nodes on the Simulation repeats until a state within some tolerance ef th
frontier of the search tree generally have the largest \irong0al, zg.q:, i added to the tree. Since RRT is a randomized
regions. algorithm, there is no guarantee that the goal will be found,

The NEW.STATE function determines an actiar,.,, that €ven when a feasible path exists. In addition, due to the
observes any dynamic constraints on the robot, and whichature of exploration and extension used to generate the
when applied to the robot at stateresults in some new state search tree, the final path may be jagged and meandering.
Tnew. Itis important to note that,,.,, is in the direction ofp  Modest efforts to smooth the generated path are usually
from ¢, butz,,.., andp are not expected to coincide. Indeedapplied in order to generate more natural motion. Both
it would be quite a coincidence if they did, since the RR1these problems, though, are often addressed by using random
algorithm does not require that the inverse kinematics ef tHestarts.

B. Particle Extensions

BUILD _RRT(z;,.::) To the RRT framework, we introduce a particle—based ex-
- e tension technique, similar to the prediction step of a parti

;: vTvﬁ;rg(g;;TLit) ¢ T) do filter. In short, the pRRT algorithm operates by simulating
3: (P q} ?ZSELECT EXTENSION(T): gach extension _mult|ple times under various I|I_<ely condi-
4: E)&TEND(T .4) h ' tions. The resultn_wg states are grguped into IS|m|Iar claste
5: ReturnT o and each cluster is treated as a single node in the tree. Thus,
’ nodes in the tree are comprised of distributions of states
(approximated using particles), rather than individuatest.
The likelihood of reaching a particular node as the result of
SELECT.EXTENSION(7) an extension can be calculated based on the likelihood of
1: p — RANDOM_STATE(); the conditions which generated the particles underlyisg it
2: ¢ — NEARESTNEIGHBOR(, 7); distribution. While generating the search tree, we can use th
3: Return{p, ¢} calculated likelihood of nodes to bias the search, and when
the goal is reached, we can evaluate the likelihood of the
entire generated path based on the nodes in the path.
EXTEND(T, p, q) During the EXTEND step, an action,,.,, is chosen as
1 if (NEW_STATE(Q, ¢, Tnew, Unew)) then usual to apply to the known—reachable stati the applica-
2. T.addvertex@,e.y); tion domain described in this paper, the coefficient of iivict
3 T.addedgef, Tnew, Unew); for the terrain is not known with certainty, so we simulate

the execution of the chosen action using several likelyeslu
In general, the uncertain parameter, or parameters, may be
Fig. 2. The RRT algorithm represented as a single varialife and we assume that a




probability density function (PDF) is available from which The choice of strategy for choosing a starting state, either
to sampleF. In fact, F may have a different distribution in by calculating the mean state or by discrete sampling, is
different parts of the state space. For simplicity of natati explored in section Ill. Once this choice is made, the action
we assume here thétis represented by a single PDF. Theused to extend towargd can be calculated as usual. In the
technique of repeated simulation can always be applie@SinEXTEND step of the algorithm, we apply this action to
it requires no additional knowledge about the kinematics dhe starting state or states using forward simulation iplelti
the robot beyond the ability to simulate an action, and thismes in order to produce new patrticles. For each simulation
capability is already required by the basic RRT algorithmwe apply a value oF sampled from its PDF. The states that
Within the framework introduced by [5], this uncertainty isresult from successful simulations are clustered as dwstri

in the realm of environment sensing. Uncertainty in initiabelow before they are added to the tree.

configuration sensing can also be trivially incorporatedhsy

same method. To incorporate uncertainties in the remainirg Clustering

Ca.tegories of Conﬁguration and enVironment pred|Ct@b|I|t The under|ying purpose Of C|ustering is to group parti_
would require altering the forward simulator such that eacles that are substantially similar. Although particleshivi
step is stochastic rather than deterministic. clusters will differ somewhat, we wish to detect qualitativ
Two elements are required for an extension step: thgifurcations in the tree caused by the changing values of
starting state for the simulation (the nodein figure 3), F. Otherwise, the mean valug used to extend the node,
and the destination (the poiptin figure 3) or, equivalently, becomes a poor approximation of the distribution of pascl
the nominal actionu used to extend; toward p. When within that node. The example trajectories in figure 4 illus-
extending from a particle node — a node that includegate significant bifurcations in the path of the rover. listh
multiple particles — we have two primary options for theexample, the rover is moving along a ridge line toward the
starting state. We might simply use the weighted mean @foal represented by a cylinder. If the coefficient of frintis
the state variables of each particle to represent the nodgfficiently large, the rover can ascend the slope and reach
and execute all extensions from this state. This mean statBe goal. For progressively smaller coefficients of frintio
g, is an estimate of the mean of the true PDF at particlghe rover slips down the hill as it moves. Depending on how
node,q. That is, it is an estimate of the mean if this particlenuch it slips, it may impact, or pass to the left or right of the
node included an infinite number of particles. This is theock ahead of it. These semantically different cases should
best estimate of the true state of the robot at this node gk represented as different nodes in the planning tree.
the tree under the Uncertainty considered by the algorithm. Clustering is accomplished using a hierarchical clustgrin
The weight of each particle used for computingis the tree [6] with a weighted Euclidean distance metric. Since we
probability that the condition used to compute that ex@msi gre interested in the positior,(y) and yaw ¢) of the robot,

is the true condition. Let us denote the partiCleS Containaﬂe have chosen to use the fo"owing distance metric:
in the nodeq as qi1,q2, - ,q,. Each particleg; has an

associated value of the paramekgrwhich we denotef, . d= \/a % (627 + 6y2) + B * 66°
F* will represent the true value df. Using this notation,
we can calculate the weighted mean state of a particle nodéere o and 5 are scaling factors used to normalize the

by: units of measurement when determining the difference be-
tween particles. The hierarchical clustering tree albarit
Fy = Z P(F,, =F7) uses this metric to iteratively agglomerate the particies a
4i€q clusters separated by the shortest distance. The distance
_ 1 between patrticles is straightforward to calculate, but the
= — P(F, = F*)q 1 . : :
a F Z( (Fa, )a:) @) distance between clusters may be calculated by a variety

S
qi€q . A . .
of strategies. The results section below will examine the

Since several extensions will be attempted, we also hawkfference in performance between two strategies known as
the option of sampling the starting state for an extensiosingle and complete linkage [7]. Single linkage computes th
from the PDF at the nodg. If we were to approximate distance between two clusters as the minimum of all pairwise
the true, continuous PDF by fitting a function such as distances between particles in the clusters, while complet
Gaussian to the particles at we could sample the starting linkage uses the maximum.
state from this distribution. However, we expect to have few The dendrogram in figure 5 illustrates the operation of
particles at each node. In fact, some nodes may only havdte algorithm on the particles from figure 4. Particles are
single particle, so the statistical basis for fitting a contius numbered along the horizontal axis, and distances are rep-
function is somewhat precarious. Instead, we may choose ftiesented on the vertical. The iterative algorithm builds th
sample proportionally from the discrete set of particldsisT dendrogram from the bottom up. The closest particles in this
has the added benefit of ensuring that the state from whidase are 8 and 9, so these are combined first, as represented
we extend is truly feasible, since it has been calculated &y the horizontal line segment near the lower left corner of
the result of a simulation rather than interpolation betweethe diagram. The next closest particles are joined together
true particles. until all particles have been combined into a single cluster
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(a) Simulation (b) Plot

Fig. 4. Trajectories with qualitatively different endptsn

of points.

D. Node and Path Probability

The particles at each node provide an estimate of the
ﬁ distribution of values of that allow the robot to reach that
state. By combining this with a prior distribution ovey the
probability of reaching any particular node, or indeed the
probability of following an entire path, may be calculated.
In this way, the growth of the tree structure can be biased

toward generating paths that are more likely to be followed
by the robot.

FT] 1 To bias the search, we adapt Urmson’s hRRT technique for
heuristically biasing RRT growth [9]. The heuristic modifie
the SELECTEXTENSION function of the RRT algorithm.

Fig. 5. Dendrogram produced by the hierarchical clustetieg algorithm  Rgther than simply accepting a random pojntin the state

space and its nearest neighbgr, in the tree, the hRRT

. i . . . _technigque chooses to extend proportional to the quality of
In this case, the final agglomeration combines particle hW'tthe nodeg. In our case, the quality of is defined as:
a cluster containing all other particles. ' ' '

Although agglomeration continues until all particles are Qquality = dprob — M 2)
linked, we must determine how much aggregation is actually LO—m
appropriate for each set of particles. We locate the link iwhere ¢,,., is the probability of reaching from the root
the tree which combines the most dissimilar subtrees hyf the tree, andn is the minimum probability of all leaf
searching for the largest difference in distances betweemdes of the search tree. A random valués drawn from a
successive agglomerations. This link and all followingéin - uniform distribution between 0 and 1.d§.q::¢, > r, the pair
are disregarded, while any links made previously are used td pointsp andq are accepted and an extension is attempted.
determine the particle clustering. This cutoff is représdn Otherwise, a new pair of points are chosen. Alternately, we
by the dashed horizontal line in figure 5. In this case, thenight keepp and try the next nearest neighbor in the tree [9].
particles have been split into five clusters. The random value is used to promote the use of extensions

In tests, we found that this approach performs bettdrom high quality nodes without excluding the possibility o
than the Gaussian clustering of the k—-means algorithm [8xtending lower quality nodes should the algorithm become
The hierarchical clustering tree allows us to calculategiew stuck in a situation where reaching the goal at all is unyikel
parameters since we do not need to directly estimate theThe effectiveness of the quality heuristic might be im-
means and covariance matrices of each cluster. This psoved if we could calculate not only the probability of
especially important since we are clustering only a handfukaching a node from the root of the tree, but also an estimate




of the probability of reaching the goal from this node. This
would produce a heuristic in the style of*A10] that would
estimate the probability of successfully travelling frotars
to goal through any particular node. However, any estimate o
the probability—to—go must be optimistic, meaning it canno
underestimate the possibility of completing the path from
any state. Without exploring all options from this states th
only admissible heuristic is 1.0, which does not provide
any additional information. Future work may investigate
whether non—-admissible heuristics improve the runtime of
the algorithm without significantly affecting path quality

In practice, we found that the probability of reaching nodes
of the tree drops quickly with path length. This causes the
algorithm to favor making extensions from nodes near the
root, even when reasonably likely nodes exist closer to the
goal. In order to encourage more extensions from nodes
far from the root, the path probability,,., is normalized
using the path length. We substitutgq,., in the quality
calculation, where: is the depth of node in the tree. This
improves the runtime since node quality does not drop SO g 6. A tree built by pRRT. Spheres mark the planned path.
quickly as the distance from the root increases. However,
the effect of averaging the path probability over the length
of the path may allow the effect of a single unlikely node
to go unnoticed in a long path of otherwise likely nodes
Test results in the next section illustrate the effects @ th
tradeoff.

IIl. TESTING AND RESULTS

The pRRT algorithm has been implemented and tested
simulation using several rover navigation scenarios.ifigst
began with fairly simple domains like the slope in figure
6. Situations like these allow us to verify that the decision
made by the pRRT algorithm reflect a concern for consistel
execution regardless of friction. The robust path represkn
in this image by the string of spheres advances along fl
ground, makes a wide turn, then climbs the slope head—c
Since the rover is capable of climbing over rocks, a shorte
path is possible by crossing the slope at an angle. Howew
taking advantage of these capabilities would result in a le:
robust path.

Additional tests were conducted in more complicates
environments, such as the terrains shown as contour plc
in figure 7. The rover's starting position is marked with &
star, and the goal is marked with a circle. These terrair
were chosen as representative of situations that real gove
are expected to encounter, but they are also meant to dtestr
that the most direct path is not always the best. In bot
the plateau and the crater scenarios, the direct path
the goal requires the rover to negotiate elevation chang
that the physical simulations will show are safe for the
rover to traverse. Unfortunately, given that the real iarra
characteristics cannot be determined with certainty byah re
rover, it would be unlikely that the rover would track those
paths successfully. Thus, the longer paths on flatter terra.
arﬁ_gz zirzge;:r;efihese tests is not merely to show that trathtZ)m )Contourplots of some terrains used for testing: Bla{éop), Crater
pPRRT planner is capable of avoiding what would otherwise
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Fig. 8. Error and standard deviation plots for extensioatsgies

[ Start node| Probability heuristic[] Success] Nodes [ Nodes per extensiorl Path probability | Normalized path probability]

Mean non-normalized 80.6% | 123.93 1.40 59.6% 96.8%

Mean normalized 81.8% 97.92 1.37 51.3% 94.8%

Sample non—normalized 72.2% | 233.82 2.00 25.7% 91.2%

Sample normalized 81.0% | 173.57 1.95 17.9% 82.3%

— RRT 82.2% | 80.92 1 — —
TABLE 1

EFFECTS OF PARTICLE NODE REPRESENTATIONS

be considered high—cost terrain. However, simulations apaths. All combinations of these choices were tested.
likely to produce different results in these areas for diffe Error measurements were taken to compare the endpoints
coefficients of friction. Any area in which a small expectedf the planned paths to the endpoints arrived at by open—loop
range of values of can produce great variability in simu- execution of the plans when the actual coefficient of friztio
lation results will produce unlikely paths, and will thus bewas less than that planned by RRT. The plots in figure 8 show
avoided by pRRT. the average error (and standard deviation of error) avdrage
To quantify the robustness of paths using pRRT and regaver 500 runs in the plateau scenario (top of figure 7). Result
lar RRT, paths were planned in each scenario, then executa@ similar for the crater scenario. The horizontal axis in
open—loop under a variety of uniform friction conditions.these plots shows the uniform coefficient of friction for the
Conventional RRT extensions such as the connect heuristipen—loop execution as a fraction of the value used by the
[11] were also implemented in both cases to improve plannéRRT. The pRRT algorithm considered all values of friction to
paths and decrease planning times. Trees built using cenvehe right of the vertical line in the plots while planning.&h
tional RRT assumed a single value of friction at all timeserror shown on the vertical axis is expressed as a fraction of
while pRRT considered a uniform distribution over a rangehe distance between the specified start and goal states. Thi
of possible values. Several variations of the pRRT algorith metric facilitates comparisons of the performance in uasio
were used in order to determine the best choices for thsgenarios because the distance from start to goal willrdiffe
algorithmic and parameter options presented in the previoThese plots indicate that consideration of the uncertainty

section. in friction by the pRRT algorithm results in paths that are
, significantly more accurate for all variations of the pRRT
A. Extension Strategy algorithm. Although regular RRT produces no error in a

For the first set of tests, four different variations of thecompletely deterministic world (where true friction is alys
pRRT algorithm were used. As discussed in section II-B, wequal to the friction used for planning), pRRT produces less
must choose the strategy for determining the initial state f error than RRT when uncertainty is introduced. This means
each extension. We tested the algorithm using the mean st#tat paths planned by pRRT can be executed safely and
g of a node, and by sampling from the particles at each nodeonsistently as the true value &f changes. In fact, pRRT
We also explored the effect of normalizing the probabilitycontinues to produce more accurate paths to the left of the
of successfully tracking paths. This option was discussed wvertical line, outside the range of friction values which it
section II-D as a method of reducing the bias toward shorteonsidered when planning.
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Fig. 9. Error plots for particle and clustering strategies

Error was reduced the most when sampling the starting nearly equal to the running time of RRT multiplied by
state for each extension from among the particles at a nodbe number of particles per extension. Choices for this
In fact, figure 8(b) shows that the variation in endpoint erroparameter were explored in conjunction with the choice of
was also significantly reduced in these cases. This approdatkage strategy for clustering particles. Error plots gufie
is more robust because the effect of uncertainty is moi@ summarize the results of these tests. Surprisingly, singl
faithfully considered at each extension of the tree. Howevelinkage produced worse results as the number of particles
the cost of this increased accuracy and precision can be seacreased. We believe that this is due to the lack of a natural
in the statistics presented in table I. This table presestses limit on the size of a cluster. To illustrate this problem,
of the differences caused by the variations which have beeonsider a set of nearly—equally spaced points along a line.
discussed for pRRT. The algorithm is halted if the goal is noA complete linkage strategy will subdivide the points into
reached by the time the search tree contains 250 nodes,cdasters of nearly equal size. The divisions produced by
the success column lists the percentage of the 500 attemptdgle linkage will appear to be arbitrary, so the probapili
runs in which the goal was found. Without the normalizatiorof particles arranged in this manner will be split arbitsari
of the path probability heuristic, the natural bias towanrdrs  between clusters. Figure 9(b) is encouraging since it shows
paths prevents any branch of the search tree from growinigat the best performance with complete linkage may be
long enough to reach the goal. This effect is most pronouncedached with very few particles.
when the start node is sampled because this approach also
leads to more nodes per extension. Since each start nade Execution Monitoring
Is less precise, the particles of a ;mgle extension will be The discussion so far has evaluated the robustness of
spread over a larger area, thus leading to more cluster. Eac . :

. . . open—loop execution of planned paths. However, if the rover
of these clusters will have a lower probability, so W|thouth
the effect of normalization, probabilities of long pathdlwi
suffer. The final two columns list the probability of tracin
a complete path from the root to the goal.

The version of pRRT described by the second row in th
table performs most similarly to RRT because the effec
of uncertainty are minimized by using the mean stafer
starting extensions and normalizing the path probabilibe
third row corresponds to the variation which produced th
lowest error and standard deviation in the plots.

as some method reliably estimating its location during
execution, it may be able to improve the tracking of a planned
path by adjusting the executed actions based on its actual
location and the location of the next node in its planned
ath. Again, we discuss two strategies for performing this
pdate. The first is a well-known algorithm called pure
pursuit [12]. In this strategy, we calculate the new action
using the same simple kinematic equations that are used by
RRT to estimate the action for an extension. These equations
assume flat terrain and ignore dynamics and the effects of
terrain interaction. The second strategy, which we call the
proportional approach, attempts to use information abiwait t
Another important parameter for this algorithm is theerrain that was captured in the building of the planning.tre
number of particles created with each extension. Since this strategy makes use of the fact that, due to slippage, the
simulation of the rover’s actions is the most computatitynal steering angle used by the vehicle to advance from one node
expensive step in this algorithm, the running time of pRRTo another is not necessarily equal to the angle between the

B. Clustering Strategy



Endpoint errar with RRT and pRRAT, execution monitoring

be reshaped, thus changing the probabilities of nodes in the
planned tree.

Immediate plans for continuing investigation of pRRT
include the move from simulation to execution on a real
rover. Implementation is planned for the iRobot ATRV-Jr
robotic platform using the CLARAty programming frame-
work [14]. This testbed will demonstrate the efficacy of
pRRT in the face of the true uncertainty of a terrain model
built using stereo vision. It will also help prepare for phel
deployment on a future NASA rover mission on Mars.

The advancements in this algorithm will improve the
efficiency of future rovers in especially rough terrain com-
pared to the Mars Exploration Rovers which are currently
in service. Some of the most interesting science targets for
those rovers are rock outcroppings located in areas ofdliffic
terrain such as craters and steep hillsides. Currently, the
rovers must be teleoperated in these areas, which requires a
nodes. The ratio of these two angles is used to computedalay of at least one day. The rovers sit idle while a team of
new steering angle. humans analyzes stereo vision data and constructs a precise

The results of these tests are shown in figure 10. In boset of driving commands to upload to the rover. Even with
cases, the new action that was computed did not completdfjcreased computational demands on the modest hardware of
replace the planned action. Instead, a linear combination 8 rover, the pRRT algorithm should help reduce the amount
the two actions was used with a gain parameter to determigé time that the rovers spend waiting for their next driving
the proportion assigned to the new action. For both strasegi commands. The algorithm will also be useful as a ground—

0.7r
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Fig. 10. Error of execution monitoring strategies

the best performance was achieved with a gain near 30%, gased tool for verifying plans which are to be uploaded to
this is the gain shown in the plots. Although the simpler purée rovers.

pursuit method produced lower error than the proportional
approach, we note that pRRT was able to produce better

results, even without execution monitoring, than the oagi 1]
RRT with execution monitoring.
(2]
IV. CONCLUSIONS ANDFUTURE WORK
(3]

The Particle RRT algorithm is an effective method for
generating robust paths that are more precise and more
accurate in the face of uncertainty in the environment. $athl4]
planned using pRRT are inherently safer, since they can be
followed more closely despite variations in the uncertain[s]
characteristics of the environment.

Now that Particle RRT has shown itself to be an effectiveg
extension to randomized path planning, we would like to
combine it with other extensions such as cost-based treé!
building heuristics. The probability of successfully fadling 8]
a path and the expected cost of that path are both important
criteria in guiding the selection of nodes to extend in a tred®
and in assessing potential paths from root to leaves in that
tree.

Although RRTs are often considered to be single—querlf}l]
path planners, we expect to be able to reuse portions of an ex-
isting tree for replanning as additional information beesm [12]
available to the robot. As a planned path is executed, the
uncertainty about the environment decreases, while ptio[13]
of the planning tree remain relevant. If past simulatiores ar
cached, they can be used to build new RRTs for additiong|,
queries or refined if the same query is issued again. We
will investigate methods for reactive, real-time replagni
[13] when exploration of the terrain causes the PDH-db
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