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Abstract This article presents the results of a study on
the effects of representing time and intention in models
of socially situated tasks on the quality of policies for
robot behavior. The ability to reason about how others’
observable actions relate to their unobservable intentions
is an important part of interpreting and responding to so-
cial behavior. It is also often necessary to observe the tim-
ing of actions in order to disambiguate others’ intentions.
Therefore, our proposed approach is to model these inter-
actions as time-indexed partially observable Markov deci-
sion processes (POMDPs). The intentions of humans are
represented as hidden state in the POMDP models, and the
time-dependence of actions by both humans and the robot
are explicitly modelled. Our hypothesis is that planning for
these interactions with a model that represents time depen-
dent action outcomes and uncertainty about others’ inten-
tions will achieve better results than simpler models that
make fixed assumptions about people’s intentionality or ab-
stract away time-dependent effects. A driving interaction
governed by social conventions and involving ambiguity
in the other driver’s intent was used as the scenario with
which to test this hypothesis. A robot car controlled by
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policies from time-dependent POMDP models or by poli-
cies from two less expressive model variants performed
this interaction in a driving simulator with human drivers.
The time-dependent POMDP policies achieved better results
than those of the models without explicit time representa-
tion or human intention as hidden state, both according to
the reward obtained and to people’s subjective impressions
of how socially appropriate and natural the robot’s behavior
was. These results demonstrate both the relative superiority
of these representation choices and the effectiveness of this
approach to planning for socially situated tasks.
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1 Motivation

Humans are social animals. It is hard to imagine thinking
that a person has achieved basic competency at a task if
they can perform its actions only when the environment is
cleared of other people. This obvious statement has deep
implications for the design of robots whose purpose is to
carry out tasks in everyday human environments. Almost
any task performed in a populated environment will involve
some amount of interaction with people acting according to
their own intentions. In order to be useful, such robots must
have a way to create policies that respect human behavioral
norms.

An autonomous robot must pursue its own goals in a
shared environment where people are acting according to
existing guidelines for behavior while pursuing goals that
may differ from or even in conflict with its own. A robot
needs its own models of social behavior to be able to respond
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intelligently in these ambiguous situations. In most coopera-
tive and many adversarial domains, the goals of other agents
are assumed to be known. In a domain where the agents are
pursuing one of a number of possible goals, the intent of an-
other agent may not immediately be clear. By observing a
human’s actions during a social task, their intention can be
inferred, which will improve a robot’s ability to coordinate
its actions and achieve its own intended goals. In order to
preserve the patterns of behavior that allow people to coor-
dinate their actions to achieve their individual goals, a robot
must act in a way that conforms to the rest of the existing
system. This leads to a criteria for successful behavior that
is broader and more holistic than the more common notion
associated only with a single agent’s goal achievement. Be-
haviors that are myopically successful at reaching a robot’s
immediate goal but violate norms for socially acceptable be-
havior may damage the stability of the entire system. Peo-
ple, losing trust that social guidelines will be followed, may
also act without consideration for others, creating conflicts
that reduce the opportunities for success for all the agents
involved. Consider, for example, the problem of a robot that
rides an elevator with people. If the robot enters the elevator
without determining whether people inside it want to exit
and waiting for them to do so, this breech of etiquette could
lead to confusion and delays.

The mental models people have of social behavior in-
clude the role of time in the way an interaction evolves.
When interactions take place in dynamic, changing envi-
ronments, people may reason about time in order to coordi-
nate their behavior with the occurrence of significant envi-
ronmental events. But people are also generally concerned
about the amount of time that an interaction takes in ways
that influence their behavior. In the elevator riding example,
whether people are willing to hold the elevator for others de-
pends on unspoken norms relating to how long it will take
a person to get on the elevator and how long that person
is likely to have to wait for the next one. Because humans
are constantly reasoning about time, it is important that a
robot that interacts with them be able to reason about it as
well. Unfortunately, in many computational models used for
action selection, the explicit representation of time is ab-
stracted away for the sake of computational efficiency. Ap-
proaches based on these models may be unable to perform
satisfactorily in many social tasks.

1.1 Planning for Social Interaction

The planning paradigm on which this work is based is
decision-theoretic planning using probabilistic graphical
models. Probabilistic graphical models are typically used for
planning in situations where there is uncertainty about the
state of the world, such as the outcomes of actions an agent
may take. This uncertainty is represented by probability dis-
tributions. Decision-theoretic planning creates a policy by

finding the actions that maximize the reward that can be
obtained according to a given model. Decision-theoretic ap-
proaches have proven themselves useful in a variety of real
world planning domains, particularly in robotics, because of
the flexibility of defining agents’ goals in terms of a utility
function and the ability to model the uncertainty of action
outcomes and observations that so often arises in physical
domains [22, 29].

The particular model used in this research, the partially
observable Markov decision process (POMDP), is capable
of representing situations in which the entire state of the
world is not directly observable and making use of this hid-
den state information while planning [16]. The probabilis-
tic relationship between the underlying state and aspects of
the state that can be observed by the agent is included in
the model. Rather than a mapping from states to actions, a
POMDP policy maps beliefs (probability distributions over
the states) to actions. This belief distribution is maintained
during execution according to the observations that the agent
receives while acting. This model is of particular interest for
social interaction domains, because even if an agent were
able to sense its physical surroundings perfectly, the mental
states of the people with which it interacts remain unobserv-
able.

This research is also concerned with the importance of
representing time’s role in social interactions. This is a
challenge because most decision theoretic models for con-
trol make simplifying assumptions to represent action out-
comes as dependent only on the current state for the sake of
computational efficiency. Semi-Markov models (which al-
low more sophisticated representations of the relationship
between time, state, and action) exist, but are much less
widely used [26]. Their application is less straightforward
than Markov models, particularly in the case of POMDPs,
where finding solutions to problems of a realistic size re-
quires the use of sophisticated heuristic algorithms that may
not readily translate to semi-Markov extensions. For this
reason, it is desirable to represent time-dependent action
outcomes in a Markov model that can be used with exist-
ing state-of-the-art POMDP solvers.

One might question whether it is necessary to use plan-
ning to arrive at a policy for action. Shouldn’t domain ex-
perts be able to hand-code policies for interaction, especially
since social behaviors tend to follow regular patterns? While
social interaction is regular in a way that makes it easy to de-
scribe people’s roles at a high level, human behavior is still
highly variable within these roles. Hand-coded policies re-
quire a great deal of tweaking to get reasonable performance
from and may be difficult to reuse. A model description ex-
pressed in terms of intuitive notions such as the effects of ac-
tions and the intentions motivating behavior is used to create
policies that respond reasonably to a wide range of behav-
ior. These model descriptions are more compact and easier
to specify than the policies they produce.
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An approach to developing policies for interaction is to
have an agent learn them directly from interacting with peo-
ple using reinforcement learning methods [35]. But learn-
ing typically requires large amounts of data. It may take
prohibitively long, or be prohibitively expensive, to collect
enough data from humans to reach an adequate level of per-
formance. Also, unless the interaction is one that already in-
volves one participant taking on a teaching role, having the
agent learn the interaction online may fundamentally change
the way that people perform their part in the interaction ver-
sus how they would if they were interacting with a human
peer. Another approach to policy learning is to learn di-
rectly from human interaction demonstrations [9]. The data
requirements may be hard to meet for this technique if the
tasks to be learned are difficult, as there could be a lack of
examples of successful interactions even in a large dataset.
By using a model for planning that is based on both ex-
pert knowledge and available data, policies for action can
be found that perform well without an online learning phase
and with relatively few interaction examples.

Our proposed model design includes information about
the relationship between people’s unobservable intentions
and their observable actions as well as a rich representation
of time-dependence. Representing hidden state and time-
dependent action outcomes are design decisions that may
dramatically increase the complexity of acquiring policies
for action when compared to less expressive representations.
In order to justify this increase in model complexity, it is
necessary to demonstrate that it does actually have a signif-
icant positive impact on the quality of the policies obtained.
In this article, the proposed representation is evaluated in
comparison to simpler alternative representations in a real-
istic example domain.

Statement of Hypothesis: Planning for social interaction
with models that represent time dependent action outcomes
and allow for planning over uncertainty in others’ inten-
tions will achieve better results compared to similar models
that make fixed assumptions about people’s intentionality
or abstract away time-dependence, demonstrated in the fol-
lowing ways:

– The policies will obtain higher global reward consider-
ing the outcomes for all interaction participants.

– The policies produced will be subjectively more accept-
able to people who interact with the robot.

2 Background

2.1 Social Behavior and Rationality

There has also been research on social interaction that at-
tempts to explain social behavior as arising from people’s

ability for rational decision-making. Drawing on ideas from
decision theory and game theory, Lewis defined social con-
ventions as a way for a population to select which strategy
they will all play in a coordination game with multiple equi-
libria [18]. Each member of a population has a reasonable
expectation about which strategy the other members will
play (the strategy that they all played to achieve the equilib-
rium last time), allowing them to coordinate future behavior.
Lewis also introduced the concept of common knowledge,
which was later formally defined by Aumann [2]. Common
knowledge is information known to all players, that all play-
ers know the other players also know [15]. Referring to com-
mon knowledge can short-circuit the potentially infinite re-
cursion of trying to reason about what you know about what
I know about what you know. . . and so on. While this re-
search is relevant in that it conceives of social behaviors as
coordinated action arising from rational decision-making, a
classical game-theoretic approach relying on finding equi-
libria is difficult to apply to realistic problem domains. The
social interactions discussed in this research would, if rep-
resented as games, be sequential stochastic games with im-
perfect information. Practical approaches to solving games
of this type are in their very early stages [12]. This type of
game theoretic modeling becomes even less applicable when
one considers the time-dependence of these domains, as is-
sues of time representation are largely unaddressed in most
work on game theory.

In some human social interactions, certain players may
choose a strategy that appears to be dominated in terms of
the immediate payoff to the agent. This altruistic behav-
ior in game theory is often explained by using mechanisms
such as reputation to enforce cooperation [21]. There are
real-life situations, however, that are clearly not governed
by these mechanisms and in which seemingly altruistic be-
havior still occurs (any number of anonymous interactions
that follow rules of etiquette, for example). In evolutionary
game theory, altruistic behavior can be explained as ratio-
nal if it increases the possibility of passing on some of the
agents’ genes through relatives who benefit even if it does
not benefit that particular agent [19]. But human altruism
is often based on social factors other than blood relation.
Some researchers in the social sciences see this as a failure
of game theory to accurately describe and predict human be-
havior. An article by Coleman in Behavioral and Brain Sci-
ences proposing a “psychological game theory” and its re-
buttals provide a perspective on the differing views of psy-
chologists, biologists, philosophers, and game theorists on
the ability of game theory to explain human social behav-
ior [11]. It is important for the purposes of this research to
note that there are cases in which the strategies of interacting
agents seem to be in what we would intuitively think of as
an equilibrium, but which would be difficult or impossible to
show to be a game theoretic equilibrium using the types of
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world models currently used in game theory. In such cases,
existing game-theoretic models are of limited utility if the
goal is to accurately model people’s behavior. This research
sidesteps the issue of finding equilibria in social interaction
domains or modeling how such equilibria arise. Instead, the
focus is on modeling the social behaviors observed in a way
that allows the agent to find a socially appropriate rational
response. How the people arrive at the intentions that they
may have for an interaction (which may include preferring
altruistic goals), is outside the scope of this work.

2.2 Social Behavior and Intention

Research in cognitive psychology has addressed the rela-
tionship between human behavior and people’s goals and in-
tentions. Recognizing goal-directed intentional behavior in
others seems to be a fundamental human social ability, and
one that develops very early in life. In a study conducted on
18-month old children, the subjects watched an adult try and
always fail to perform a variety of simple puzzle manipula-
tion tasks [20]. The children were later able to produce the
intended behavior themselves without ever witnessing a suc-
cessful task completion. When the same failure behaviors
were demonstrated by a simple non-humanoid manipulator,
the children did not go on to exhibit the intended behavior
themselves, suggesting that they did not think of the manip-
ulator’s actions as failed attempts at a goal. Intentions have
been conceptualized as part of a hierarchical action produc-
tion framework linking high-level desires to concrete plans
for action [5]. Baldwin and Baird provide an overview on
research in cognitive science that explores how and under
what conditions people interpret the actions of others as in-
tentional, using the studies discussed to support a hypoth-
esis that people use generative models of intention-guided
action to interpret human behavior and detect people’s inten-
tions [3]. Some researchers have gone so far as to state that it
is people’s ability to hold shared intentions (rather than just
recognizing the intentions of others) that separates adult hu-
mans from children and primates and enables the richness of
social behavior that human society enjoys [37]. These stud-
ies show that humans use the concept of intention to reason
about and interpret the actions of others. Furthermore, they
suggest that intentions are conceptualized as something dis-
tinct from (and most likely hierarchically above) immediate
goals, as intentions can be recognized even when the goal
most closely associated with an intention’s desired outcome
has not been achieved.

Intentional action has also become a subject of research
in neuroscience, with researchers attempting to understand
where and how we process information about other people
and how it relates to how we process information about our-
selves. Research indicates that not only do people recognize
goal-oriented action in others, but that they reason about the

goals of others in a way that is similar to the way that we rea-
son about our own goals. Frith and Frith present experimen-
tal results that indicate that the same structures in the brain
used to monitor our own behavior and represent our own
goals are also used to form a model of others’ mental states
during social interaction [14]. In a fMRI study where sub-
jects watched an animated human figure perform grasping
actions, the reaction to goal-directed and non-goal-directed
actions could be distinguished in parts of the brain known to
be related to processing the actions of others [23]. Another
fMRI study observed differences in brain activation when
watching chasing behaviors between instances where the
pursuer merely followed the target versus when it seemed
to predict the target’s path during pursuit [27]. These studies
suggest that the human brain has mental apparatus specially
devoted to recognizing intentional, goal-directed behavior.
People seem to organize their understanding of the actions
of others based on their intentions.

There is further experimental evidence that there is some-
thing special about how people process social interaction be-
yond how they process other intentional human behavior.
A FMRI study where people observed others engaged in in-
dependent or social tasks suggests that there are areas of the
brain concerned primarily with reasoning about intentions of
people in social interactions (as opposed to more generally
about intentions of isolated actors) [39].

2.3 Social Behavior and Time

People are sensitive to the passage of time in social inter-
action. Studies indicate that even infants show lower lev-
els of attentiveness to video feeds of their mothers if their
mother’s responses are delayed by a second [34]. In fact, the
idea of social interaction as something that unfolds through
reciprocal actions over time is so deeply ingrained that the
duration and structure of an interaction with another per-
son can influence whether or not we conceive of it as a so-
cial interaction. In one series of experiments, human sub-
jects played coordination games where each made their de-
cisions either simultaneously or pseudo-sequentially (mean-
ing that they made decisions one after another but couldn’t
observe earlier decision makers’ choices) [1]. When play-
ing pseudo-sequentially, people were more likely to coop-
erate than when playing the simultaneous version of the
game. The authors explained this difference in behavior as
the effect of people conceptualizing the game as a social
interaction when the decisions were made over time and
as a game when all decisions were made simultaneously.
Knowledge of timing is an important part of the knowledge
about an interaction task both for predicting others’ future
actions and for taking appropriate actions oneself. Analy-
sis of turn-taking behaviors in conversation have shown that
the length of pauses and overlaps in these interactions is
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task-dependent, with different patterns for problem-solving
tasks than for social chatting [4]. This suggests that in con-
versational tasks, the amount of time that passes before a
response can provide information about the cognitive load
placed on the individual, which may provide evidence to an
agent about whether its statement or question to the human
was expected.

A survey of studies on shared mental representations of
social tasks reveals that the task models capture the way that
interactions are situated in their environment, allowing peo-
ple to predict other’s actions based on the occurrence of ex-
ternal events rather than just on their previous actions [28].
It is commonly understood that people use domain knowl-
edge about the timing of events in a dynamic environment
to anticipate their occurrence. If people also use these events
to predict the future actions of others, it is clear that repre-
sentations that allow for reasoning about time are important
for capturing the intricacies of social interaction.

2.4 Planning Socially Situated Behavior in Robotics

There has been recent work in robotics on planning with rep-
resentations that either represent a person’s intention as an
unobservable part of the state or represent the role of time
in human action, much of it focussed specifically on naviga-
tion. Cirillo and colleagues design a planning algorithm that
treats the human’s agenda as partially observable informa-
tion and represents human action as having duration (but not
as being time-dependent) [10]. Behavior that is acceptable to
people is enforced through interaction constraints that spec-
ify whether or not the human’s goal is to be achieved. Tipaldi
and Arras create a time-dependent probabilistic model of
where people are likely to be in an environment throughout
the day and use it to plan to maximize the chance of en-
countering a person [36]. This model, while it captures the
time-dependent nature of human behavior in the aggregate,
doesn’t represent the intentional behavior of individual hu-
mans. Foka and Trahanias’s POMDP-based navigation algo-
rithm makes use of beliefs about people’s future paths [13].
In these POMDP models, the representation of human inten-
tion is restricted to which of the possible goal locations in
the environment a person might be navigating towards. The
work in this article differs from that previously mentioned
both in using a framework that captures a more general no-
tion of human intention and time-dependent action and in
seeking to experimentally evaluate the impact of modeling
interaction in this manner.

3 Problem Domain

Driving in traffic is a domain in which self-interested agents
are following a set of guidelines for interaction. The inten-
tions of the other drivers are not directly observable. Ex-
ogenous events in the environment, such as the changing of

Fig. 1 Example execution of the Pittsburgh left

traffic lights, provide external temporal cues that people use
to coordinate the interaction. In some cases, driving inter-
actions are governed by social rules in addition to traffic
laws. One example is the “Pittsburgh left.” The Pittsburgh
left is a technically illegal, yet locally common driving ma-
neuver that seems to have developed in response to Pitts-
burgh’s many narrow, two-lane intersections that have traf-
fic lights without turn signals [40]. A car making a left turn
takes the turn immediately after the light becomes green (as
if there were a left turn signal) if the oncoming car opposite
it chooses to yield. This action allows the cars behind the
turning car to pass through the intersection, rather than hav-
ing to wait for the next light as they would if the turning car
waited until all oncoming cars had passed. See Fig. 1 for an
example of how a Pittsburgh left may be carried out.

Whether a Pittsburgh left will be taken is negotiated be-
tween the two cars using a variety of nonverbal cues. Either
car may creep towards the intersection while the light is red
in order to either suggest an interest in taking a Pittsburgh
left or to indicate to the turning car that they will not al-
low one to be taken. The car going straight may flash their
headlights to communicate their willingness to yield. These
cues are not always present, however, so drivers must of-
ten determine whether a car is yielding by reasoning about
the timing of their motion in relation to the changing of the
traffic lights. Hesitation after the lights change may indicate
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the intention to yield, or may just be a delayed reaction. The
ambiguity or potential absence of cues suggesting the other
driver’s intention and the time pressure from the cycle of the
traffic lights make the task of coordinating behavior during
this interaction difficult.

This domain has characteristics in common with the pre-
viously mentioned robot elevator riding task. However, dur-
ing face-to-face interactions (such as entering or exiting el-
evators), people use gaze as a powerful social cue to indi-
cate their intentions. Mobile robots are disadvantaged in that
they are currently unable to reliably detect a person’s gaze
direction in natural environments. While people often also
use gaze as a cue when driving, they are able to perform the
Pittsburgh left interaction without access to the other driver’s
gaze using only the motions of the cars. This was confirmed
by having human pairs perform the interaction in the same
simulated driving environment used for the human-robot in-
teraction experiment to be described in Sect. 5.1 [8].

4 Models

In order to evaluate the impact of representing time-depend-
ence in action outcomes and reasoning over beliefs about hu-
man intention, different types of models with different repre-
sentational capabilities were produced. The model variants
created for comparison were time-dependent POMDP mod-
els based on a time-indexed state space, MDP models with a
time-indexed state space, and POMDP models without time
in their state space. In the Pittsburgh left domain models, the
human’s intention is the sole unobservable part of the state
space. The rest of the physical characteristics of the underly-
ing state are relayed to the agent directly through the obser-
vations or can be inferred from the action effects. Because
of this characteristic, it is simple to produce a closely related
MDP model by eliminating the human’s intention from the
state space. Similarly, the time-index is a single state vari-
able which can be removed from the POMDP models in or-
der to eliminate the representation of the time-dependent ac-
tion effects. By removing these representational properties,
we are able to study their effects on the quality of the poli-
cies these models produce.

All of the model variants evaluated were produced from
the same model description, expressed using a simple do-
main independent language designed for this purpose. The
model description uses domain knowledge encoded as prob-
abilistic action rules to produce a complete model of the
interaction. The algorithm by which the model description
is transformed into a time-dependent POMDP model is de-
scribed in a prior publication by Broz and colleagues [8].
The production of the non-time-dependent POMDP and the
MDP models uses the same algorithm, but with certain
state variables omitted from the state space of the result-
ing models. Two time-dependent POMDP models, one for

each robot intention, and an equivalent pair of non-time-
dependent POMDP models were created. Four MDP mod-
els were created that assume a fixed intention for the human
driver, one for each combination of human and robot driver
intentions.

The models produced contain all of the actions that the
person interacting with the robot might choose, as well as
all possible changes in the environment that may occur. The
model description also provides a probability distribution
over these action outcomes for all of the robot’s possible
actions. The relationship between the visible actions of the
human and their unobservable intentions are encoded in the
model as hidden state. In this modelling approach, an inten-
tion is assumed to be fixed for the duration of an episode of
interaction, reflecting an agent’s preferences about how they
would like the interaction to play out even if they do not
achieve their preferred goal during execution. The model’s
reward structure assigns values to states based on their de-
sirability as goals, given the robot’s intentions, and also pe-
nalizes states that correspond to a violation of social guide-
lines. The accuracy of the models were improved for the
most frequently visited parts of their state space by updat-
ing the probability distributions using data collected from
humans performing the task.

The models for the Pittsburgh left driving task model the
interaction with the robot performing the role of the driver
turning left and a human performing the role of the driver
going straight. The continuous values that make up the state
of the interaction were coarsely discretized to produce a fi-
nite state space of tractable size. The robot’s action space is
made up of 4 discrete actions. The observation space for the
POMDP models consist of 724 possible observations and is
made up of a subset of the state variables. In this virtual en-
vironment, the robot was given direct access to the state of
the game engine rather than modeling sensor error. Because
the observations arise directly from the state values, they are
aliased rather than noisy. The models used in this experiment
were created from a model description file containing 86 ac-
tion rules. The model description file format, the variables
that define the models, and a sample action rule are given
in Appendix. Full details of the model description language
and the model description file used for the Pittsburgh left in-
teraction can be found in the technical report of Broz’s PhD
thesis [6].

The robot’s own intentions are expressed as a preference
ordering over possible goals. In order for these goals to re-
flect the social nature of the task, they involve outcomes and
events for both the human and the robot. The robot prefers
states in which both it and the human achieve desired out-
comes. When their goals are in conflict, the robot may pri-
oritize its own goals over those of the humans (depending
on the domain), but it should still prefer better outcomes for
the human over poor outcomes. The rewards assigned for
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Table 1 Reward states and
values in the Pittsburgh left task
model description for each robot
intention

Intention Event

Turning Car First Straight Car First T. Only S. Only Run red Collide

Pittsburgh Left 15T + 20S = 35 15T + 10S = 25 15T 10S −5T −100T

Regular Left 15T + 10S = 25 25T + 10S = 35 15T 10S −5T −100T

goals in the Pittsburgh left interaction are chosen so that the
combinations of outcomes for the human and the robot have
a value ordering that matches the desirability of these out-
comes given the robot’s intention. When the robot exits the
intersection, it receives a one-time reward. When the human
exits the intersection, the robot receives another one-time re-
ward with a value determined by the robot’s intention. If the
robot’s intention is to take a regular left turn rather than a
Pittsburgh left, the robot receives a greater reward if the hu-
man exits the intersection first rather than second, and vice
versa if the robot intends to take a Pittsburgh left. When only
one of the cars is able to cross the intersection before the
light turns red, the robot receives a reward for that car’s suc-
cess only. If a collision occurs, the robot receives a one-time
reward with a large negative value. If the robot is positioned
in the intersection while the traffic light is red, it receives a
reward with a small negative value. Reward in these mod-
els is discounted by a factor of 0.99. This discount factor
was chosen to give preference to earlier goal achievement
while still maintaining the ordering of the goals’ values re-
gardless of when they were achieved. The rewards given for
events involving the turning car (T) driven by the robot and
the straight (S) car driven by the human are shown in Ta-
ble 1.

4.1 POMDP Models

4.1.1 Time-Dependent POMDP Models

A detailed description of how the time-dependent POMDP
models are produced from the action rules in the model
description file and human task performance data is given
in a prior publication [8]. The model description file pro-
duces two POMDP models, one for each possible robot in-
tention. The reward structures of the models differ based on
the intention. These POMDP models have a time-index in
their state space. The time-indexed POMDP models, with
72,024 states each, were too large and complex to solve
within a reasonable amount of time. Time-state aggregation,
a reward-based state-aggregation method that operates on
the time dimension of the state space, was developed to pro-
duce smaller, practically solvable time-dependent POMDP
models. A property of this algorithm is that the threshold
parameter which controls the amount of aggregation can be
adjusted, trading off the number of resulting states with the
similarity to the original time-indexed model. Details of the

time-state aggregation algorithm and simulation results for
policies it produced for an earlier version of the Pittsburgh
left POMDP models are described in other previous work by
Broz and colleagues [7].

For the time-dependent POMDP models, a time-state ag-
gregation threshold of 4.0 was used, reducing the state sizes
by a little less than half (see Table 2). While it is most likely
possible that a larger threshold could have produced smaller
models with similar performance, this amount of aggrega-
tion was deemed sufficient to produce a solution within an
achievable time frame while being conservative with respect
to the amount of aggregation. This decision was made in or-
der to give the aggregated time-dependent models the fairest
comparison possible to the time-indexed models used for the
MDP model variant.

4.1.2 Non-Time-Dependent POMDP Models

The POMDP models produced without a time index as part
of their state space are referred to as non-time-dependent
POMDP models because they cannot accurately represent
time-dependence in action outcomes. All MDP and POMDP
models have some sort of time-based structure by virtue of
the fact that they are sequential models. They are capable of
representing the order in which states are encountered, but
represent the effects of time on these state transitions with
limited accuracy. The amount of time spent in a state can be
represented only using a self-transition. The resulting time
in state will have a geometric distribution, which may be a
poor match for the actual distribution of the time spent in
the state. If the state transition probabilities change over the
time spent in the state, these changes cannot be represented
by the model. The state transition probabilities are restricted
to being an average over the different time-dependent prob-
abilities for that state.

The non-time-dependent models are produced from the
same model description file as the time-indexed models us-
ing the same procedure, with one major exception. The time
index variable is not a part of the resulting state space. The
action rules are still applied in a time-dependent manner dur-
ing model construction (if a rule has time-dependent pre-
conditions it will still be applied only at the appropriate
timesteps), but the new states resulting from the rule’s appli-
cation will not have a state variable indicating the timestep at
which they were created. The resulting models represent the
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Table 2 Model and policy
information for experiment
POMDP models

Model Policy

Variant Intention States Alpha Vectors Convergence Time (s) Reward

time POMDP Pgh Left 37982 879 154592 19.6 [19.1,20.1]
time POMDP Reg Left 37430 2152 219484 19.0 [18.3,19.5]
no time POMDP Pgh Left 4398 281 1485 8.5 [7.9,9.0]
no time POMDP Reg Left 4398 635 3924 15.0 [14.1,16.0]

time-dependent aspects of the domain description as accu-
rately as they can without an explicit representation of time
in the state space.

The resulting models have fewer states and more dense
state transition matrices than their equivalent time-dependent
models. To see this, consider a time-indexed model. There
can be no more states with a particular time-index than there
are total states in the non-time-dependent model. These
states will only transition to states with the successive time
index. In contrast, a state in the non-time-dependent model
has transitions to all successor states, even if some of those
states may only truly be successors at particular times.
Therefore, while containing many more states, the time-
indexed models have a more sparse state transition structure.

4.1.3 POMDP Policies

Though solving for even approximately optimal POMDP
policies is computationally expensive, there are a number
of POMDP solution algorithms that can achieve good per-
formance on reasonably large models [24, 25, 30]. Heuris-
tic search value iteration (HSVI) is an approximate POMDP
solution algorithm that provides provable bounds on the re-
ward obtained by the polices it produces with respect to the
optimal policy [32]. The algorithm stores a compact repre-
sentation of the upper and lower bounds of the value func-
tion over the belief state.

All of the POMDP models were solved using the HSVI
algorithm with a convergence threshold of 5.0. The size of
the models, the size of their resulting policies, and their con-
vergence times are shown in Table 2. The original time-
indexed POMDPs were not compared because they did not
reach convergence within a week, demonstrating the benefit
of the time-state aggregation algorithm for producing mod-
els of tractable size. While the time-dependent POMDPs
took considerably longer to converge to a solution than the
non-time-dependent models, the rewards obtained (and, as
will be shown later, the manner in which the policies per-
form the task) demonstrate that non-time-dependent models,
which are smaller and will typically be faster to find solu-
tions for, will often produce policies with unacceptable per-
formance in domains with time-dependent aspects. Reward
results for simulation of 1000 trials of the POMDP poli-
cies acting on observations and state transitions produced

by the time-indexed POMDP are also shown for each pol-
icy, with 95 % bootstrap confidence intervals. The non-time-
dependent policies perform noticeably worse, indicating that
an explicit representation of time is necessary to capture as-
pects of the problem that enable successful performance of
the task.

It is worth noting that while the number of alpha vectors
making up a policy is much larger for the time-dependent
POMDPS, the number of states that the controller will have
a non-zero belief of occupying at a given timestep during
execution may not actually be significantly more than for
the non-time-dependent model. The time-indexed POMDP
would have a belief over the same number as or potentially
fewer states (if some states can’t occur at a timestep) than
the non-time-dependent model. The complexity of the belief
state of the time-dependent model will depend both on the
structure of the original time-indexed model and the amount
of time-state aggregation applied to it. For these particular
models, the time-dependent policies typically had non-zero
beliefs of three to four times as many states as the non-time-
dependent policies during execution, though they transiently
had up to over twenty times more. Both policies could be ex-
ecuted in real time at the action execution rate for the prob-
lem domain.

4.2 MDP Models

There are a number of different ways to make the state
fully observable to produce MDPs that corresponds to the
POMDP models. The method used was chosen to allow for
the most fair and reasonable comparison. One option would
be to simply eliminate the human’s intention both from the
state space and from the rules that produce the state struc-
ture. This would create an MDP that combined the actions
of the human participants’ different intentions into one ag-
gregate model. More than not being able to reason about
people’s intentions, this model would not represent people’s
behavior as intentional at all. The model would suggest that
because it is common to see humans flash their headlights
(when they intend to yield) and accelerate quickly into the
intersection (when they don’t intend to yield), it would also
be likely to see a person to flash their headlights and then
immediately accelerate into the intersection. A model of this
form is a poor representation of people’s behavior.
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An alternative MDP representation is to still represent
people’s behavior in terms of their intentions, but to create
a separate MDP model that describes people’s behavior for
each possible intention. A policy produced by solving one
of these models effectively assumes that the person it is in-
teracting with holds this intention and acts accordingly. It is
not an uncommon occurrence in human-human social inter-
action for someone to incorrectly infer the intention of the
person they are interacting with, and people are accustomed
to recognizing and compensating for these situations. By us-
ing a policy for interaction based on an assumption about
the human’s intention (that may or may not be correct), the
onus of figuring out the other’s intention and responding ap-
propriately is shifted entirely onto the human participant.

The MDP models are created by first creating the states
and state transition structure for the time-indexed POMDP.
The resulting state space is then partitioned according to the
values of the variable for the human’s intention. The state
transition structures for the separate state spaces are taken
directly from the state transition structure of the POMDP
model. Because the states of the MDP models are fully ob-
servable, the observation matrices are discarded.

4.2.1 MDP Policies

The MDP were solved using focused real-time dynamic pro-
gramming (FRTDP), a heuristic search-based approxima-
tion algorithm that is similar to HSVI in that it maintains
upper and lower bounds on the value function. FRTDP dif-
fers in that it uses a different search strategy, choosing states
based on cached priority information in order to avoid revis-
iting states that do not improve. FRTDP is typically faster
to converge than HSVI, at the expense of having far greater
memory requirements. A description of FRTDP applied to
MDP models is given in [33].

The time indexed MDP models were solved using the
FRTDP algorithm with a convergence threshold of 0.1.
A different algorithm from the one used to solve for the
POMDP policies (which cannot practically be used for the
POMDP models) and tighter convergence threshold were
used to realistically reflect the advantages of using a simpler,
less computationally expensive representation. The number
of states in each model, their policy convergence times, and
their solution bounds are given in Table 3.

5 Experiment

5.1 Pittsburgh Left Driving Task

People performed the Pittsburgh left task in a driving sim-
ulator with a robot car as their partner, interacting with
controllers created from each of the three model variants.
The simulated driving environment developed was based on
TORCS, an open-source driving game [38]. A custom game
level was designed to simulate driving in a suburban envi-
ronment, including a 4-way intersection with functioning
traffic lights. The game engine was extended to allow for
control of the environment, automation of the experiment,
and data collection. Participants controlled their cars in the
driving simulator using an off-the-shelf steering wheel and
pedal game controller. In addition to steering and braking,
buttons on the controller’s steering wheel allowed subjects
to flash the car’s headlights. A screenshot of the driving
simulator and a human operating the simulator controls are
shown in Fig. 2. The driving simulator served as a common
environment in which humans and a robot car could per-
form an identical task. Humans had previously performed
the Pittsburgh left interaction with other humans in an ear-
lier experiment, allowing human task performance data to
be collected and providing a baseline to which the robot’s
performance can be compared [8].

Each person engaging in the experiment interacted with
each model variant’s controllers multiple times, always per-
forming the role of the car driving straight through the in-
tersection with the robot car always performing the role of
the left turner. They experienced all possible combinations
of human and robot intentions, including the cases in which

Fig. 2 The driving setup and POV in the simulator

Table 3 Model and policy
information for experiment
MDP models

Model Policy

Robot Intention Human Intention States Convergence Time (s) Reward Bound

Pgh Left Yield 36152 862 21.5–21.6

Pgh Left No Yield 35876 684 19.5–19.6

Reg Left Yield 36152 1128 19.4–19.5

Reg Left No Yield 35876 670 21.9–22.0
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the human’s and robot’s intentions were in conflict (when
the robot intended to take a Pittsburgh left and the human
did not intend to yield and when the robot intended to take a
regular left and the human also intended to yield).

An episode of interaction in the simulator lasted for one
cycle of the traffic light. Throughout each episode, a mes-
sage displayed on the lower right corner of the simulator’s
screen informed a participant whether their intention for that
episode should be to yield or not to yield to the other car.
Each episode of interaction lasted thirty seconds and began
with each subject’s car several carlengths from the intersec-
tion, with the traffic light on red. During each episode, the
traffic light remained red for the first fifteen seconds (enough
time for both cars to approach and wait at the intersection),
then changed to green for eleven seconds, then to yellow for
the final four seconds of the trial.

5.2 Experiment Design

The experiment had a 3 × 2 × 2 factorial incomplete
repeated-measures design, with the model variant, the hu-
man’s intention, and the robot’s intention as the independent
variables. The dependent variable was the reward achieved
by the robot during an interaction (as specified by the reward
structure for the models). Additionally, a paper survey was
given to the participants after driving with the controller for
each model variant in order to measure their impressions of
the interaction.

5.3 Experiment Procedure

Prior to beginning, participants were briefed on use of the
steering wheel controller and the experiment’s overall struc-
ture. They were told that they would be driving with three
different drivers during the experiment, that the behavior of
these drivers may differ from one another, and that they were
to give their impressions of their interaction with each driver
by filling out a short survey after completing each set of tri-
als. They were told that they would always drive straight
through the intersection, and the other driver would always
be turning left. They were also informed that they would
be assigned an intention to either yield or not yield to the
turning driver and instructed to act as if they had indepen-
dently arrived at that intention. They were informed that it
was possible that their assigned intention might conflict with
the other driver’s, and that if that seemed to be the case they
should behave as they would in a real driving situation. They
were also instructed to respect the traffic light and to try to
avoid collisions with the other car.

After being briefed, drivers engaged in a short training
session of four trials to familiarize themselves with the con-
trols. During the training, the other car stayed stationary
at its start position. The experiment began once the driver

asked the experiment administrator any questions they had
and confirmed that they were ready.

The experiment was divided into three sets of eight
episodes each. During each set, the driver interacted with
a robot car controlled by policies from one of the three
model variants tested: the time-dependent POMDP models,
the time-indexed MDP models, and the non-time dependent
POMDP models. The order in which the human driver en-
countered each policy group was randomly selected at the
start of the experiment.

The robot controller’s and the human driver’s intentions
were assigned to them at the beginning of each episode.
Each possible combination of intentions was experienced
twice, in a random order determined at the beginning of the
set of episodes. For the POMDP controllers, the policy cor-
responding to the robot’s intention for that trial was used for
execution. Because the MDP models were separate for each
combination of robot and human intention, the human inten-
tion reported to the policy executor was selected in a random
order such that the intention was reported correctly once and
incorrectly once for each combination of intentions. After a
set of episodes was completed, the subject had two minutes
to fill out the survey before beginning the next set.

Experiment subjects were recruited through advertise-
ments placed on the campuses of local universities. Partic-
ipants were pre-screened in order to ensure that they drove
in Pittsburgh on a regular basis and were familiar with the
Pittsburgh left. Each participant was paid five dollars upon
completion of the experiment. Thirty-five participants per-
formed the experiment over the course of two weeks. Of
these participants, five were eliminated from consideration,
four for software problems that occurred during the course
of the experiment that may have invalidated their results and
one for failure to follow directions. Data from the remaining
thirty subjects were used for analysis.

5.4 Controller Implementation

During execution, the robot car received action commands
from a policy execution program. Within the simulator, vari-
ables of interest were discretized using the boundaries spec-
ified during model design. These discrete values were used
to construct the observations and states passed to the policy
execution software. At the start of each episode, the soft-
ware was passed a message announcing its beginning, along
with the policy that should be used for execution. A new
message was passed every half second, consisting of an ob-
servation (or the state including the assumed intention for
the human in the MDP case) and the true state of the sim-
ulator for logging purposes. The policy execution software
passed the action chosen by the policy back to the driving
simulator. In the driving simulator, a simple PID controller
was used to translate the model actions into low level con-
trols to the steering, throttle, and brake.



Int J Soc Robot (2013) 5:193–214 203

Table 4 Test results for the
ANOVA Source Sum of Squares df F p value

Model 33837.42 11 18.2124 <0.0001∗

Error 119548.07 708

C. Total 153375.48 719

Group 2341.040 2 6.9322 0.0010∗

Robot Intention 3608.049 1 21.3680 <0.0001∗

Human Intention 76.048 1 0.4504 0.5024

Group × Robot Intention 4819.241 2 14.2705 <0.0001∗

Group × Human Intention 3216.261 2 9.5238 <0.0001∗

Human Intention × Robot Intention 12826.437 1 75.9621 <0.0001∗

Group × Human Intention × Robot Intention 6940.339 2 20.5514 <0.0001∗

The MDP policies were represented as state-action
lookup tables. The POMDP policies, were represented as al-
pha vectors, which meant that belief tracking had to be per-
formed during execution in order to select an action. Policy
execution was performed using the ZMDP software [31]. An
intermittent problem occurred when executing the POMDP
policies that caused the policy executor to not return an ac-
tion selection for several seconds at a time, losing synchro-
nization with the driving simulator. The source of this error
could not be determined, but it occurred rarely and only
within the last few timesteps of the trial. It was observed
to occur with both POMDP model variants, so it was de-
termined not to be caused by any model characteristic that
was restricted to either variant. The decision was made to
cut off the control after the 55th timestep (out of 60), or
the last 2.5 seconds of interaction. After this point, the low
level controller drove according to the last high-level action
it had received from the policy executor. While it was not
necessary to do this for the MDP policy, the same cutoff
was applied so that the policies would be compared fairly.

6 Analysis

Statistical analysis was performed on the reward results and
the responses to the paper survey. The comparisons made
were planned contrasts of non-orthogonal data because the
time-dependent POMDP results were compared to both the
MDP results and the non-time-dependent POMDP results.
The sequential Dunn-Sidak adjustment for k comparisons
was used to adjust the p value required to reject the null
hypothesis for the statistical tests making pairwise compar-
isons between the time-dependent POMDPs and the other
models [17]. The smallest of the p values must be smaller
than the smallest adjusted p value threshold, or no other re-
sults with larger p values can be accepted as significant. This
criteria holds for all tests up to k. The adjusted p values for
α = 0.05 and k = 2 are p1 = 0.025 and p2 = 0.05.

The polices for the time-dependent POMDP model per-
formed better overall than the policies for both the time-
indexed MDP and non-time-dependent POMDP models.
The rewards obtained were the most consistently high across
the combination of human and robot intentions. The sur-
vey results confirm that the behavior of the time-dependent
POMDP policies was preferred by the human interaction
partners.

6.1 Reward Results

An analysis of variance (ANOVA) was conducted to com-
pare the mean reward obtained by the groups of policies
for each model variant for all combinations of intentions for
both human and robot. Because the hypothesis of this ex-
periment concerns the performance of the time-dependent
POMDP model versus the other models, the post-hoc tests
used are planned contrast t-tests of the time-dependent
POMDP with each of the other model variants. In cases
where the elements of the interaction cannot be expressed
in terms of these planned contrasts, Tukey’s HSD (Honestly
Significant Differences), a post-hoc test that partitions the
means into groups based on a more conservative test of sta-
tistical significance, is used instead.

The F -test results for all main effects and interactions
of the ANOVA are given in Table 4. It should not be very
surprising that virtually all of the effects were significant,
given that different combinations of intentions result in very
different interactions between humans performing the inter-
action. These results also support the hypothesis that dif-
ferences in representation lead to different behavior by the
policies. The ANOVA results for the reward will be exam-
ined and discussed in this section to identify the sources of
variation among the groups of policies of the different model
variants. The reasons for these differences in reward will be
more closely investigated by examining the outcomes and
events observed during the experiment in Sect. 6.2.
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Table 5 Mean rewards for Groups of policies by model variant with
planned contrast posthoc t -tests

Group Mean t Ratio p value

time POMDP 15.873

full time MDP 11.937 t = 3.319 p = 0.001∗

no time POMDP 12.171 t = 3.121 p = 0.002∗

Table 6 Mean rewards for the intention of the robot and human with
significance results

Robot Intention

Pgh left Reg left t Ratio p value

11.088 15.565 4.623 <0.0001∗

Human Intention

No yield Yield t Ratio p value

13.002 13.650 0.671 0.5024

6.1.1 Main Effects

The primary purpose of measuring the reward obtained by
the policies in this experiment was to test the hypothesis that
modeling human intention as hidden state and representing
time-dependent action outcomes would result in better per-
forming policies than those of models that lacked these rep-
resentations. This hypothesis was supported by the results
for the “Group” main effect, as shown in Table 5. On aver-
age, the polices for the time-dependent POMDP model out-
performed the policies for both the time-indexed MDP and
non-time-dependent POMDP models. The posthoc t-tests
confirm that these differences were statistically significant.
This is the key result for the reward-based portion of the
experiment analysis. Further discussion of the results will
examine the similarities and differences among the policies
for the model variants and the conditions under which they
succeeded or failed to achieve good performance.

The mean rewards for the other two main effects, “Robot
Intention” and “Human Intention”, shown in Table 6, give
insight into the aspects of the task domain that proved most
difficult for all model variants. The mean reward for trials
during which the robot intended to take the Pittsburgh left
was lower than for trials in which the robot intended to take
a regular left turn. Attempting the Pittsburgh left often re-
sults in more complicated interactions (with more risk of
collision), so this result is not surprising. The human’s in-
tention, however, did not have a significant effect on the
mean reward when considered in isolation. An examination
of higher level interaction effects will yield more insight into
the role humans’ intentions played in the rewards obtained.

Fig. 3 Interaction of model variant policy groups with robot intention
for mean reward

Table 7 Tukey’s HSD posthoc test results for the Group × Robot In-
tention interaction

Group Robot Intention Mean

POMDP Pgh left 17.257 A

MDP Reg left 16.436 A

NT POMDP Reg left 15.770 A

POMDP Reg left 14.490 A

NT POMDP Pgh left 8.571 B

MDP Pgh left 7.437 B

6.1.2 Two-Way Interactions

The interaction between the robot’s intention and the model
variant that produced its control polices is shown in Fig. 3.
This interaction shows one of the major differences in per-
formance between the model variants. The groups of means
judged to be significantly different from one another given
a Tukey’s HSD posthoc test are presented in Table 7 (each
letter in the table represents a group of values that the test
determined to be significantly different from the values out-
side of that group). Both the MDP and the non-time de-
pendent POMDP model produced policies that performed
significantly worse than the time-dependent POMDP model
when the robot had the intention to take the Pittsburgh left.
These results suggest that only the time-dependent POMDP
model was capable of representing the interaction in a way
that produced high quality policies for both possible robot
intentions.

The interaction between the human’s intention and the
model variant is shown in Fig. 4. This interaction reveals that
there were differences between the POMDP and the MDP
models in how successfully they responded to the humans’
intentions. Though the time-dependent POMDP performed
relatively well whether the human intended to yield to them
or not, its performance was significantly better when the hu-
man did not intend to yield. The MDP model performed sig-
nificantly worse in the case where the human intended to
yield than the case where they did not, the reverse of the
relationship between intentions seen for the time-dependent
POMDP case. The non-time-dependent POMDP performed
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Fig. 4 Interaction of model variant policy groups with human inten-
tion for mean reward

Fig. 5 Interaction of human intention with robot intention for mean
reward

Table 8 Tukey’s HSD posthoc test results for the Group × Human
Intention interaction

Group Human Intention Mean

POMDP No yield 17.690 A

MDP Yield 15.139 A B

POMDP Yield 14.058 A B

NT POMDP No Yield 12.581 B C

NT POMDP Yield 11.760 B C

MDP No yield 8.735 B C

similarly regardless of the human’s intention. The groups of
means judged to be significantly different from one another
given a Tukey’s HSD posthoc test are presented in Table 8.

The interaction between the human’s intention and the
robot’s intention is shown in Fig. 5. Tukey’s HSD found all
of the means to be statistically significantly different from
one another. This interaction shows that conflicting inten-
tions resulted in lower rewards. It is not surprising that it
was more difficult for the robot to achieve its most desired
outcome in those cases. The performance of each group of
policies for each of these combinations will be explored in
the next section.

6.1.3 Three-Way Interaction

The rewards for each combination of intentions grouped by
model variant, are shown in Fig. 6. At this level of anal-
ysis, the source of the differences in performance between

Fig. 6 Rewards with standard error for robot and human intentions,
grouped by model variant

the groups of policies begins to become clear. For certain
combinations of intentions, the performance of the model
variants were very similar, while for others they were radi-
cally different.

The mean reward for each group, with t-tests for signifi-
cance of the differences, are reported for each combination
of intentions in Table 9. These differences, when they oc-
cur, are due to what representation is necessary in order to
perform that particular interaction successfully. For the case
where the human intended to go first through the intersec-
tion and robot intended to take a regular left (Regular Left,
No Yield), all of the policies performed similarly well. This
is most likely because this is a relatively uncomplicated in-
teraction where all that is typically required in order to co-
ordinate behavior with the human is to wait until they have
cleared the intersection.

In the case where both the human and the robot intended
to yield to one another (Regular Left, Yield), all of the model
variants also performed similarly. They also all performed
worse than in the previous case. This suggests that none of
the model variants were as successful as they could have
been at negotiating this interaction, which indicates that this
failure may have been caused by an aspect of the model or
effect of policy execution that was common to all represen-
tations. This possibility will be explored in more detail in
Sect. 6.2.

For the case in which the robot intended to take a Pitts-
burgh left and the human intended to yield (Pittsburgh
Left, Yield), the policy for the time-dependent POMDP out-
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Table 9 Reward and posthoc t -test results for each combination of
robot and human intentions

Group Mean t Ratio p value

Regular left, No Yield

POMDP 19.344

MDP 21.708 −0.997 0.319

NT POMDP 17.331 0.848 0.397

Regular left, Yield

POMDP 9.637

MDP 11.164 −0.644 0.520

NT POMDP 14.208 −1.927 0.0544

Pittsburgh left, Yield

POMDP 18.478

MDP 19.113 −0.268 0.789

NT POMDP 9.311 3.864 0.0001∗

Pittsburgh left, No Yield

POMDP 16.035

MDP −4.239 8.545 <0.0001∗

NT POMDP 7.832 3.458 <0.0001∗

performed the policy for the non-time-dependent POMDP
by a significant amount. The performance of the MDP poli-
cies were similar to that of the time-dependent POMDP.
This result indicates that time representation was critical to
the success of this particular interaction. The MDP policies
seemed to perform well in this case whether or not their as-
sumption about the intention of the human participant was
correct.

The case where the robot intended to take the Pittsburgh
left and the human did not intend to yield (Pittsburgh left,
No Yield) is the most interesting one in terms of the differ-
ences between the groups. The time-dependent POMDP per-
formed considerably better than either of the other models.
This result suggests that both time representation and rea-
soning about people’s intentions played a role in the policy’s
success. While both of the other model variants performed
worse, the performance of the MDP models’ policies were
far worse than any models for any other combination of in-
teractions. Though this difference in representation did not
have an impact in the other cases, in this case it seems to
have produced a catastrophic failure in interaction. This will
be considered further in the next section.

6.1.4 MDP Model Results

Rather than planning for both of the human’s possible in-
tentions in one policy as in the POMDP models, the MDP
policies were created from separate models for each pos-
sible human intention. Which policy to use with respect
to the human’s intention was randomly selected at the be-
ginning of the trial, causing the robot to effectively “as-
sume” that the human’s behavior would correspond to the

Table 10 Reward for the MDP model policies, divided into trials in
which the model’s intention did and did not match the human’s inten-
tion, with t -tests of the mean differences

Match Mismatch t Ratio p value

Pgh left, No Yield

−26.992 15.670 −11.89 <0.0001∗

Pgh left, Yield

18.707 19.404 −0.192 0.848

Reg left, No Yield

22.486 21.226 0.342 0.733

Reg left, Yield

11.205 11.133 0.020 0.984

selected intention and act accordingly. In order to under-
stand the MDP model variant’s failure in the (Pittsburgh left,
No Yield) case, the trials in which the robot’s assumption
matched the human’s intention and the trials in which they
were a mismatch must be considered separately. The reward
for the other cases were also compared in order to deter-
mine whether the correctness of the robot’s assumption had
an impact on performance. These comparisons are presented
in Table 10.

The only statistically significant difference between the
reward obtained for trials in which the policy’s model held
the correct assumption about the human’s intention and the
trials in which there was a mismatch between the assumed
intention and the true intention occurred in the (Pittsburgh
left, No Yield) case. Surprisingly, the policies with the cor-
rect assumption performed worse. This difference in per-
formance is caused by an unexpected consequence of using
human task performance data in the model. For interactions
where one person intended to take the Pittsburgh left and the
other person did not intend to yield, there were numerous ex-
amples in the data set used to adjust the model parameters
where both of the cars drove into the intersection and nar-
rowly missed colliding with each other because one of the
cars stopped in time. The robot’s controller issues new ac-
tion commands only twice a second, and the overall ability
of the robot to steer and modulate its speed are at a coarse
resolution compared to the human’s continuous control. The
addition of human data to the model gave the robot an overly
optimistic prediction of its ability to take last-minute ma-
neuvers to avoid collision. For the model where the robot
intended to take the Pittsburgh left and the human driver in-
tended to yield, the vast majority of the examples of this
combination of intentions in the human task performance
data set had the driver going straight wait before the inter-
section while the turning car made the left. When this model
(of the incorrect intention) was used to interact with a hu-
man driver that did not intend to yield, the human’s actions
of moving into the intersection took the controller into a part
of the state space where little human data was observed, so
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Table 11 Summary of trial outcomes, grouped by the combination of human and robot intentions

Model Outcome Event

T First S First T Only S Only Neither Lights (S) Collisions

Pittsburgh left, Yield (non-conflicting intentions)

human 92 % 4 % 2 % 1 % 1 % 39 % 1 %

time POMDP 88 % 5 % 0 % 5 % 2 % 35 % 3 %

full time MDP 85 % 10 % 2 % 3 % 0 % 35 % 2 %

no time POMDP 80 % 0 % 0 % 20 % 0 % 2 % 0 %

Regular left, No Yield (non-conflicting intentions)

human 2 % 97 % 0 % 1 % 0 % 6 % 1 %

time POMDP 2 % 88 % 3 % 6 % 0 % 2 % 2 %

full time MDP 0 % 97 % 2 % 2 % 0 % 0 % 0 %

no time POMDP 10 % 77 % 0 % 12 % 2 % 2 % 0 %

Pittsburgh left, No Yield (conflicting intentions)

human 59 % 40 % 0 % 1 % 0 % 11 % 10 %

time POMDP 13 % 78 % 0 % 8 % 0 % 0 % 0 %

full time MDP 25 % 72 % 2 % 2 % 0 % 5 % 32 %

no time POMDP 88 % 0 % 0 % 12 % 0 % 0 % 2 %

Regular left, Yield (conflicting intentions)

human 51 % 29 % 11 % 2 % 7 % 74 % 0 %

time POMDP 16 % 27 % 12 % 16 % 28 % 51 % 0 %

full time MDP 0 % 45 % 5 % 28 % 22 % 43 % 0 %

no time POMDP 48 % 35 % 6 % 6 % 3 % 50 % 0 %

it had little impact on the model parameters for those states.
This meant that the robot’s actions were determined by the
predicted chance of collision according to the prior model,
which was pessimistic about the chance of collision relative
to the human data. This resulted in more cautious behav-
ior (the robot stopped when the human entered the intersec-
tion) that successfully avoided collisions. Model inaccuracy
is always going to be a potential issue when doing model-
based planning in any realistic domain. The policies for the
POMDP model, because they planned over a belief space
in which either intention for the human driver was possi-
ble, were more robust to these model inaccuracies that arose
from representing a fixed assumption about the human’s in-
tention in the model.

6.1.5 Summary of Reward Results

Overall, the policies for the time-dependent POMDP model
variants outperformed the other model representations. The
non-time-dependent POMDP policies performed signifi-
cantly worse in both of the cases involving the Pittsburgh
left intention, suggesting that it was not possible to produce
quality policies for this intention without representing time-
dependent action outcomes. The MDP policies performed
significantly worse than the time-dependent POMDP poli-
cies only in the case where the robot intended to take the

Pittsburgh left and the human did not intend to yield. The
POMDP policies’ ability to reason over beliefs about inten-
tions made them more robust to minor model inaccuracies.

The time-dependent POMDP policies achieved results as
good or better than the other model variants for all combina-
tions of interactions. Additionally, it should not be assumed
that policies that achieve similar rewards are subjectively
similar to the humans interacting with them. There were ob-
servable differences in the driving styles of the model vari-
ants. These differences will be discussed in the next section,
and their consequences will be seen in the discussion of the
survey results.

6.2 Outcome and Event Results

In order to obtain a clearer picture of the differences in per-
formance between the polices for the model variants, the fre-
quency of possible trial outcomes and significant events are
shown in Table 11. The outcome frequencies for data collec-
tion during which humans performed the same interaction in
the driving simulator with other humans (involving sixteen
pairs of people) are also given for comparison. In order to
better understand the ways the policies of the model variants
differed from one another, as well as from human behavior,
the results for each combination of driver intentions will be
considered separately.
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6.2.1 Pittsburgh Left, Yield

For the trials in which the robot intended to take the Pitts-
burgh left and the human driver intended to yield, the com-
bination of driver intentions is non-conflicting. In this case,
all the models achieved outcome results relatively simi-
lar to those of human drivers. For the non-time-dependent
POMDP case, notice that the human driver used their lights
far less frequently than with any other model variant (or with
humans). This is because the robot typically ran the red light,
making signalling the driver to take the Pittsburgh left un-
necessary. The non-time-dependent POMDP model was un-
able to accurately represent the true risk of collision between
the robot and the human driver because of the lack of time
representation in its state space (people are likely to start
moving immediately once the light changes if they don’t
intend to yield and wait otherwise). In order to avoid this
exaggerated risk of collision, it frequently chose to run the
red light. While people occasionally jump the red by a very
small amount of time (typically only after the perpendicu-
lar traffic light has also turned red), the non-time-dependent
model is unable to represent this distinction. As a result, it
frequently ran the red light long before it changed, result-
ing in very unnatural-appearing behavior. Also note the rel-
atively high incidence of outcomes where only the driver
going straight crossed the intersection.

While both the full time MDP and the time-dependent
POMDP performed this interaction successfully, the way
in which they achieved their outcomes differed in their re-
sponsiveness to the human participant. The MDP driver was
more aggressive, usually immediately taking the left when
the light turned. The POMDP driver was more cautious, and
would often pause when the light changed. If the human
flashed their lights, the POMDP controller would begin the
turn, having had its belief converge to the case that the per-
son intended to yield after that observation. If the person did
not flash their lights, the POMDP would wait slightly longer
to converge on the belief that they intended to yield. While
both of these behaviors are within the range of what is nor-
mally exhibited and socially correct for the Pittsburgh left,
the POMDP controller responds to behavior by the human
driver in the way that is commonly understood for this inter-
action.

6.2.2 Regular Left, No Yield

For the trials in which the robot intended to turn left after the
human driver and the human driver did not intend to yield,
all the models performed relatively similarly to the human
drivers. All of the models were able to coordinate their be-
havior relatively successfully because the human’s and the
robot’s intentions were not in conflict. Additionally, because
the event of the human driver crossing through the intersec-
tion first could be observed and then responded to (rather

than needing to predict likely future actions by the human),
the less expressive representation of the non-time-dependent
POMDP also performed this interaction in an appropriate
manner in the majority of cases.

6.2.3 Pittsburgh Left, No Yield

For trials in which the robot intended to take the Pittsburgh
left and the human driver did not intend to yield, the in-
tentions of the human driver and the robot were in conflict.
The time-dependent MDP and POMDP policies yielded to
the human driver far more frequently than a human turner
yielded to an oncoming car. But high number of collisions
for the MDP policies suggest that this is more appropriate
behavior given the controllers’ capabilities. Once again, the
non-time-dependent POMDP policy succeeded in going first
in the majority of cases by running the red light.

6.2.4 Regular Left, Yield

The intentions of the human driver and the robot were also
in conflict for the trials in which the robot intended to turn
left after the human driver and the human driver intended to
yield. All of the policy groups had a large number of inter-
actions where both of the cars failed to make it through the
intersection before the red light. While humans were bet-
ter at performing this interaction, it is worth noting that this
case was the one that was most difficult for them as well.
As in the other case where the robot and the human’s goals
were in conflict, both the time-dependent POMDP and MDP
models’ policies took the Pittsburgh left less frequently than
human drivers. In fact, the MDP policies seemed to be quite
inflexible, taking the left before the other car only in a very
small number of cases. This seems to support the idea that
the prior model may have overestimated the probability that
the straight driver would eventually go first, allowing the
turning car to achieve its most preferred outcome. The time-
dependent POMDP policy chose to make the turn before the
straight car more frequently than the MDP policy. This is
another example of how the POMDP policies were more re-
sponsive to the behavior of the human driver. The non-time-
dependent POMDP was most willing to take the left before
the other car, most likely because of its inability to accu-
rately estimate how much time remained to act. Because the
model overestimated the possibility that the episode could
end soon from many states, it to chose to achieve a less de-
sirable outcome that it had direct control over rather than
wait for the other car to cross the intersection first.

6.2.5 Summary of Outcome Results

The distributions of outcomes reached during interaction by
each of the model variants show that the differences between
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their rewards were caused by noticeable differences in the
way they engaged in the interaction. All of the policy groups
were conservative drivers overall when compared to human
drivers performing the same task, with a few notable excep-
tions. In the non-time dependent POMDP case, the desire
to avoid collisions, combined with a model that lacked the
time representation to accurately represent the interaction,
caused the policy to choose to take penalized actions to run
the red light in cases when the robot’s intention was to make
a Pittsburgh left. The behavior of the MDP policies was less
responsive to the other driver than the other model variants.
The time-dependent POMDP model produced behavior that
was the most socially correct (not running the red light or
hitting other drivers) and the most responsive to the behav-
ior of the human driver.

6.3 Survey Results

The paper survey administered consisted of four statements
about the experiment participant’s driving behavior and that
of their driving partner. The responses to the survey were
a level of agreement with the statements presented, ex-
pressed on a 5-point Likert scale ranging from “strongly
disagree” to “strongly agree”. The responses were treated
as ordinal data and the median was chosen as the statistic
for measurement. Ninety-five percent bootstrap confidence
intervals were also reported. Planned comparisons were
made between the time-dependent POMDP trials and the
time-indexed MDP trials and between the time-dependent
POMDP trials and the non-time-dependent POMDP trials,
as for the reward results. Because of the potential variabil-
ity in people’s subjective responses, a matched pairs test
was used to evaluate the relative preferences for one model
over another for the group of experimental subjects. The
Wilcoxon signed rank test , a non-parametric test analogous
to the paired t-test, was used to determine statistical signifi-
cance in the cases where the median responses differed.

6.3.1 Human Driver Control

The first survey statement given was, “I felt that I was able
to control the car in the simulation to do what I wanted it
to do.” This question was given as a control to ensure that
difficulties with low level control of the car were unlikely
to have a significant impact on people’s performance of the
task. The medians for each model variant are presented in
Table 12. There was no statistically significant difference
found between the medians. Any effect that was not due to
chance may be explained by the human driver often having
easier trials in terms not having to take any driving maneu-
vers to coordinate behavior because the other car had run
the red light in the interactions with the non-time-dependent
POMDP controller.

Table 12 Median values for the response to survey statement 1 with
95 % bootstrap confidence intervals and results of matched pairs
Wilcoxon signed rank test

Model Response Test Result

time POMDP 4 [4,5]
full time MDP 4 [4,5]
no time POMDP 5 [4,5] T = −12.5, p = 0.2734

Table 13 Median values for the response to survey statement 2 with
95 % bootstrap confidence intervals and results of matched pairs
Wilcoxon signed rank test

Model Response Test Result

time POMDP 4 [3,4]
full time MDP 2 [2,4] T = 50.5, p = 0.041∗

no time POMDP 2 [1,2] T = 130.5, p < 0.001∗

6.3.2 Perceived Naturalness of Controller

The second survey statement was, “The actions of the other
car seemed natural to me.” For this statement, there were
significant differences found between the responses for the
time-dependent POMDPs and both of the other two model
variants, as summarized in Table 13. The time-indexed MDP
and the non-time dependent POMDP both received a me-
dian response of 2 (“somewhat disagree”) while the median
response for the time-dependent POMDP was 4 (“somewhat
agree”). For the time-indexed MDP responses, there was a
bimodal split in the data. While some people agreed the
behavior was natural, a greater proportion disagreed. This
result may be due to some people finding the “aggressive”
driving style of MDP policies realistic. The poor responses
for the non-time-indexed POMDP were probably due to the
fact that a person running a red light when making a left turn
is an extremely rare occurrence.

6.3.3 Similarity of Interaction to “Real World”

The third survey statement was, “The interactions we en-
gaged in were similar to the way I interact with other drivers
taking the Pittsburgh left in real life.” As shown in Table 14,
the median response for all of the controllers was 4 (“some-
what agree”). Because the medians did not differ, no statisti-
cal tests were performed. However, the confidence intervals
for the medians suggest that there were potentially meaning-
ful differences between the distributions of responses. The
non-time-dependent POMDP controllers had a distribution
with more weight on the left (“disagree”) side of the scale
than the other controllers. It seems that there was less con-
sensus among people as to how closely those interactions
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Table 14 Median values for the response to survey statement 3 with
95 % bootstrap confidence intervals and results of matched pairs
Wilcoxon signed rank test

Model Response

time POMDP 4 [4,4]
full time MDP 4 [3.5,4]
no time POMDP 4 [2,4]

mimicked real world interactions. This might be due to dif-
ferences in subjects’ opinions on how negatively they per-
ceived the red light running behavior and how strongly it in-
fluenced their opinion versus other cases where the behavior
of those controllers were more similar to the other models.
Despite having the same median, people’s opinion of these
controllers was less consistently positive than their opinion
of the other model variants, which most people thought re-
sulted in realistic interactions. This might seem surprising,
considering that the MDP sometimes caused a collision. But
as noted before, this did not happen to every driver, and
when it did it was typically one interaction out of eight. Peo-
ple might have viewed the collision as an anomaly or as an
event for which they shared responsibility. These results in-
dicate that people found the MDP controllers’ relatively ag-
gressive driving style to be similar to driving behavior that
they’d experienced in the real world, which is not surprising,
given that drivers vary a great deal in their level of aggres-
siveness.

6.3.4 Socially Appropriate Interaction

The final question of the survey, and the one most significant
to assessing the relative performance of the controllers for
social interaction, was, “I felt that the other driver followed
proper driving etiquette for taking and yielding to the Pitts-
burgh left.” The median response for the time-dependent
POMDP controllers was 4 (“somewhat agree”). Both other
model variants were assessed less favorably, with the non-
time-dependent POMDP receiving a median response of 2
(“somewhat disagree”) and the time-indexed MDP a median
response of 2.5 (just between “somewhat disagree” and “no
opinion”). Table 15 shows that these differences were found
to be statistically significant.

The distribution for the non-time-dependent POMDP is
strongly skewed to the left (“disagree”). This strong negative
response is most likely due to the fact that this controller ran
the red light during multiple trials of its interaction with ev-
ery experiment subject. No matter how it may have behaved
in other cases, people’s impressions were undoubtedly ef-
fected by its violation of this traffic law.

The reactions to the behavior of the time-indexed MDP
controller were more mixed. The responses had a bimodal
distribution, with the majority of the weight split between

Table 15 Median values for the response to survey statement 4 with
95 % bootstrap confidence intervals and results of matched pairs
Wilcoxon signed rank test

Model Response Test Result

time POMDP 4 [3,4]
full time MDP 2.5 [2,4] T = 60.0, p = 0.019∗

no time POMDP 2 [1.5,3] T = 102.0, p = 0.001∗

“somewhat disagree” and “somewhat agree”. One might
wonder if these modes correspond to the drivers that were
and were not hit by a car controlled by the MDP. But a
closer examination of the data reveals a more complex pic-
ture. A collision occurred for 17 out of the 30 drivers during
a trial with the MDP controller. But 6 of these 17 gave the
controller a neutral to positive response of 3 or 4. Of the 13
drivers that did not experience a collision, 4 gave the con-
troller a negative score of 1 or 2. While the collisions prob-
ably made a strong impact on people’s opinion of whether
the MDP controllers’ behavior was socially appropriate, it
was not the only factor. The MDP controller generally ap-
peared less responsive to the actions of the other driver than
the POMDP controllers. When taking the Pittsburgh left, it
would start moving immediately in most cases, as opposed
to the POMDP controllers, which would often hesitate un-
til the human driver flashed their lights or did not move for
several timesteps.

7 Conclusion

The benefit of explicitly representing time and planning
over beliefs about intention in social interaction tasks was
demonstrated through interaction with people in a realistic
problem domain. Analysis of the rewards achieved by the
model variants supports the experimental hypothesis that the
time-dependent POMDP model performs better than either
the time-indexed MDP or the non-time-dependent POMDP
model. Model inaccuracies caused the MDP policy to have
collisions with human drivers noticeably more frequently
than the other model variants, and its behavior was also less
responsive to the actions of the human participants overall.
The non-time-dependent POMDP was unable to accurately
represent the interactions in which the robot intended to take
the Pittsburgh left, and its policies chose to run the red light
rather than risk collisions with the human driver. The time-
dependent POMDP policies exhibited the most consistently
successful behavior across all combinations of interactions
and were responsive to the actions of human drivers, most
likely contributing to their preference for that model vari-
ant. According to the survey responses, the controllers from
time-dependent POMDP model variant were judged as pro-
ducing more natural actions than either the time-indexed
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MDP or the non-time-dependent POMDP model variants.
More importantly, they were also found to be better at fol-
lowing the proper social protocol for the Pittsburgh left. In
light of these results, the time-dependent POMDP clearly
outperformed the other model variants in terms of people’s
subjective impressions of their behavior. This work high-
lights the importance of making the correct representational
choices in designing effective interaction policies for au-
tonomous robots performing social tasks.

Appendix: Model Description

The overall structure of the domain description file is given
in Table 16. The state space is time-indexed, so the number
of timesteps in an episode must be specified. The time index
is represented by a special state variable named “Time” that
always has the value of the current timestep. This variable
may be referred to in the preconditions of action or reward
rules but may not have its value changed by an action rule.
The rest of the state space is defined by a list of state variable
names with the corresponding range of integer values that
each variable make take.

The action space is defined in the same manner. Addi-
tionally, three special action variables are defined, “Human,”
“Env,” and “Side Effects”. These are used to specify the ac-
tion rules that describe the actions of the human agent and
the environment. Because these actions are automatically
taken in response to the actions of the robot at each timestep
rather than being chosen by the robot, their range of action
values are undefined.

A.1 States and Observations

The state space for the POMDP models is defined as fol-
lows:

– human intention (2)—go first, yield
– robot position (5)—the region occupied by the robot
– human position (5)—the region occupied by the human
– robot angle (2)—whether car body is turned more than 45

degrees
– robot speed (3)—stopped, rolling/creeping, fast
– human speed (3)—stopped, rolling/creeping, fast
– human headlights (2)—whether the human has flashed

their headlights
– collision (3)—no collision, collision at this timestep, col-

lision has occurred
– traffic light (3)—the color of the traffic light
– time (60)—the current timestep

The intersection and the surrounding roads are parti-
tioned into rectangular regions relative to each agent’s start-
ing position that are significant to the interaction. These re-
gions are: more than a car length from the start of the in-
tersection, a car length from the start of the intersection, the

Table 16 Structure of the model description file

TIMESTEPS

<VAL>

number of timesteps

corresponds to special state variable named “Time”

STATES

<STATEVAR DEF LIST>

list of state variable names and their ranges of values

OBSERVATIONS

<STATEVAR LIST>

subset of state variables which are directly observable

ACTIONS

<ACTVAR DEF LIST>

list of action variable names and ranges of values

inc. special vars “Human”, “Side Effect”, and “Env”

<ACTION RULE LIST>

rules that describe the effects of actions on the state

<REWARD RULE LIST>

rules that describe the reward value of certain states

START

<STARTVAL LIST>

state variable values for the set of possible start states

half of the intersection closest to its start, the half of the in-
tersection closest to its end, and the road on the other side
of the intersection. There is an additional position value that
corresponds to the event of an agent entering the region of
the road beyond the intersection for the first timestep. This
value is used to assign the one-time reward for an agent
crossing the intersection.

Observations are created by defining a subset of the state
variables that are directly observable. The observable state
variables for this domain are as follows:

– robot position
– human position
– human headlights
– human speed
– collision
– traffic light

Because the robot’s current speed and angle should al-
ways be known based on the effects of the set speed and turn
actions, these variables are not included in the observation
space.

A.2 Actions and Action Rules

Four actions are available to the robot to control its motion.
These are high level actions that must be converted into con-
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trol commands for the car in the driving simulator by a low
level controller.

– set speed (3)—stop, go slow, go fast
– turn (1)—turn car body to the left

It is assumed that these actions can produce their imme-
diate effect as a change in state within the timestep they are
applied. For example, if the car is going fast and the robot
chooses the stop action, the car will be stopped by the next
timestep. Other action effects, such as whether moving at
a certain speed will cause the robot to move into the next
region, are probabilistic.

Further probabilistic action outcomes are created by se-
quentially applying the action rules for the special action
variables to the states resulting from the robot’s action rules.
The action rules for the “Human” action describe the possi-
ble behavior of the human. The action rules for the “Env”
action have preconditions based on the time variable and
control the changing of the traffic light. The action rules for
the “Side Effects” action detect combinations of state vari-
ables indicating that the robot and human have driven into
the same region in a way that may result in a collision.

Action rules are defined by the preconditions that deter-
mine whether or not the rule is applicable in a state, the pos-
sible effects of that action on the state variable values, and
a weighting factor that specifies the relative likelihood of
those outcomes. This action description language provides a
simple and flexible way to express the state transition struc-
ture in terms of small subsets of relevant variables and their
values. For each action rule, the action variable and vari-
able value that the rule describes is specified. In order to
uniquely identify each action rule an additional rule name is
also given. This is necessary because the same combination
of action variable and value may have different effects and
different weights depending on the preconditions. Multiple
action rules may be used to specify the full range of possi-
ble outcomes and their relative weights for a single action.
The possible changes to state variables caused by an action
rule are specified as a list of action effects. Each action ef-
fect may effect multiple state variables simultaneously. All
of the effects for an action rule are given equal weight by
default. The weight, if specified, is an integer that defines
a ratio of how much less likely the action effects listed are
than the default. For example, a weight of 2 would mean that
a rule’s action effects are half as likely.

An example action rule describing the behavior of the hu-
man agent is shown in Table 17. The special “Human” action
variable specifies that this action rule describes the behavior
of the uncontrollable human agent. Because the robot cannot
choose the actions taken by this other agent, the action value
is 0, with “flash_no_yield” providing a unique identifier for
this action rule. This action rule has a single possible effect,
to turn on the headlights of the human’s car. The condition

Table 17 An example action rule describing a light flashing behavior
by the human

RULE
Human 0 flash_no_yield
EFFECTS
Light_S ABS 1
CONDITIONS
Light_S 0
Pos_S 0 1
Goal_S 1
Vel_S 0
WEIGHTS
100

list describes the state variable values that determine when
this action rule may take effect. It only makes sense to apply
this action in states where the headlights are off. The human
may turn on the lights at any time before they move into the
intersection. The goal condition restricts this rule to cases
where the human has the intention not to yield to the turning
driver. The velocity 0 condition reflects the fact that people
were only observed to turn on their headlights when their
car was not moving. This action effect is 1

100 as likely to oc-
cur as a default outcome because a car that doesn’t intend to
yield flashing its headlights is a rare event.
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