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ABSTRACT

Structure is one of the most essential aspects of music, and
music structure is commonly indicated through repetition.
However, the nature of repetition and structure in music is
still not well understood, especially in the context of music
generation, and much remains to be explored with Music
Information Retrieval (MIR) techniques. Analyses of two
popular music datasets (Chinese and American) illustrate
important music construction principles: (1) structure ex-
ists at multiple hierarchical levels, (2) songs use repetition
and limited vocabulary so that individual songs do not fol-
low general statistics of song collections, (3) structure in-
teracts with rhythm, melody, harmony and predictability,
and (4) over the course of a song, repetition is not random,
but follows a general trend as revealed by cross-entropy.
These and other findings offer challenges as well as op-
portunities for deep-learning music generation and suggest
new formal music criteria and evaluation methods. Mu-
sic from recent music generation systems is analyzed and
compared to human-composed music in our datasets, often
revealing striking differences from a structural perspective.

1. INTRODUCTION

Structure is fundamental to music, as seen in the focus
on form and analysis in music theory [1–3], music seg-
mentation [4–6], structure analysis [7–9] and chorus de-
tection [10] in MIR research, and recently in the attention
given to long-term dependencies in music sequence gener-
ation using deep learning techniques [11, 12]. As a basic
indicator of music structure, repetition contains important
music information. Music relies heavily on repetition to
create internal references, coherence and structure.

Unfortunately, the nature of repetition and structure in
music is still not well understood, and much remains to
be explored with music information retrieval techniques.
For example, while music theory may suggest that songs
have distinctive motives, our work quantifies and general-
izes this notion. We will use “structure” to refer broadly
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to organizing principles in music, which are generally hi-
erarchical and include sections, phrases and various kinds
of patterns. A primary generator of structure is repetition,
which includes not just music content within repeat signs
but also approximate repetitions at different time scales.

In music generation, many researchers rely on deep
learning models to capture music structure and organiz-
ing principles implicitly from data. However, repetition,
especially long-term repetition structure, does not seem
to emerge automatically in deep music generation. Deep
learning is a promising direction, but such research should
include evaluations where we can assess the successes and
failures of new approaches. Moreover, some may argue
that we do not need deep learning models to learn prevalent
repetitions in music: we can produce repetition simply by
generating phrases to the desired length and pasting them
into a template. However, we will see that phrase struc-
ture, song structure, and other elements of music are inter-
twined, making this simple approach unable to reproduce
characteristics of actual songs. Thus, we need a better un-
derstanding of repetition if we want machines to compose
or even just listen to music in a more human way.

We aim to use formal models to explore music repeti-
tion and structure. By characterizing structural information
in music, we can discover new principles of music organi-
zation and propose new challenges and evaluation strate-
gies for music information retrieval and music generation.

An essential aspect of repetition structure is hierarchy.
We use objective data analysis to support the existence and
significance of multiple levels of hierarchy in popular mu-
sic. We also present a number of results that show strong
interactions between structure and pitch, rhythm, harmony,
entropy and cross-entropy. Simply stated, structure can
help predict pitch (or rhythm, harmony, etc.) and pitch (or
rhythm, harmony, etc.) can help predict structure. These
findings, in turn, challenge and inform research on deep
learning to model hierarchical music structure.

Another important effect of repetition is that song-
specific vocabulary of rhythm and pitch patterns is lim-
ited relative to what would be expected from the entire
dataset. This vocabulary serves both to unify multiple
phrases within a song and distinguish songs from others.

The main contribution of this work is a better under-
standing of the nature of repetition in popular music. We
will see that repetition exists in many forms and at dif-
ferent levels of hierarchy. We offer ways to quantify mu-
sic repetition structure, especially as it relates to pitch and



rhythm, often by measuring entropy or cross-entropy. We
also reveal striking differences from a structural perspec-
tive through case studies on recent deep music generation
models. These and other findings offer challenges as well
as opportunities for deep-learning music generation and
suggest new formal music criteria and evaluation methods.

After describing related work in the next section, we
discuss music repetition and structure in Section 3, how
it relates to deep music generation in Section 4, and we
present conclusions in Section 5.

2. RELATED WORK

Repetition is a key element of music structure. Repetition
is one of the three commonly used principles for segment-
ing music, along with novelty at segment boundaries and
homogeneity within segments [7]. People have developed
a variety of segmentation and section detection methods
based on repetition with acoustic features [4, 10]. Repe-
tition becomes especially useful in segmenting symbolic
music or lead sheet representations where timbre and tex-
ture may be lacking [13].

Repetition also plays an important role in music expec-
tation and prediction [14, 15]. Studies of repetition and
structure are common in Music Psychology [16]. For ex-
ample, listening experiments with reordered Classical and
Popular music have shown that listeners are rather insensi-
tive to restructuring, but these results are subtle and some-
what ambiguous [17]. Music form and structure, including
repetition, is also a major focus of Music Theory [1,18,19].

There are many deep learning models for music gener-
ation [11, 20–23], however, capturing repetition and long-
term dependencies in music still remains a challenge. One
mainstream approach is to model distribution of music
via an intermediate representation (embedding), such as
Variational Auto-Encoders (VAE) [20,24], Generative Ad-
versarial Networks (GANs) [25] and Contrastive Learn-
ing [24, 26]. Due to their fixed-length representation and
short-length output, it is difficult to exhibit long-term struc-
ture. Another popular trend is to use sequential models
such as LSTMs and Transformers [11, 22, 27] to generate
longer music sequences, but they still struggle to generate
repetition and coherent structure on long-term time scales.
Some recent work introduces explicit structure planning
for music generation, which shows that using structure in-
formation leads to better musicality [12, 28, 29].

Current evaluation methods for music generation rarely
consider repetition and structure. Deep music generation
systems [11,30] use objective metrics such as negative log-
likelihood, cross-entropy and prediction accuracy to com-
pare generated music with ground-truth human-composed
music. But these metrics do not precisely correspond to
human perception and are not reliable for musicality. An-
other trend is using domain-knowledge [31] and musical
features [32–35] such as pitch class, pitch intervals, and
rhythm density to evaluate music statistically. However,
most of them ignore even short patterns, and none evaluate
music structure. In contrast, we offer quantitative and ob-
jective methods to evaluate music repetition and structure.

Figure 1: Structure hierarchy in pop music.

Figure 2: Repeated motives in a phrase in Yankee Doodle.

3. REPETITION AND STRUCTURE IN MUSIC

We are interested in three main problems concerning rep-
etition and structure in music: (a) How are repetition and
structure organized hierarchically? (b) How do different
levels of structure interplay with other music elements? (c)
How does repetition play out over time?

Unlike traditional music theory with case-by-case hu-
man analysis, we explore these problems in a data-driven
approach. For training and testing, we use a Chinese pop
song dataset POP909 [36], which has 909 pop song per-
formances in MIDI, and an American pop song dataset
PDSA [37], in MusicXML, which has 348 American pop
songs originating from 1580 to 1924. We use only songs
in 4/4 time to simplify analysis.

3.1 Repetition and Structure Hierarchy

Music structure is hierarchical. It contains multiple lev-
els of repetitions, ranging from low-level pitch and rhythm
motives (patterns) to higher-level phrases (analogous to
sentences) and sections (analogous to paragraphs). We de-
scribe these in more detail and use statistical and machine
learning findings in the data to explore their significance.

3.1.1 Phrases and Sections

Researchers [13] found two levels of structure in POP909:
sections and phrases. Phrases were identified by searching
(automatically) for approximate repetitions of sequences
of 4 or more measures. Non-unique phrases (those that
match other phrases) often occur in sequences such as
“AABBB” in Figure 1 called sections, which are by def-
inition separated by non-repeated or non-melodic phrases.
For example, Figure 1 has an intro, two sections connected
by a bridge transition, and an outro, which is a typical pop
song structure. Here “A” can be a verse, and “B” can be a
chorus phrase. These phrase and section levels of structure
were found to be predictive of aspects of pitch, rhythm and
harmony, which shows that these two levels have signifi-
cance for composition, probably for perceptual reasons.

3.1.2 Repetition Below the Phrase Level

There is at least another level of repetition below phrases
(Figure 1). For example, in the first 8-measure phrase
of the chorus in Yankee Doodle (Figure 2), the first and
second half repeat elements of rhythm and interval. The
colored boxes show repeated rhythm patterns, and the red
lines point out repeated pitch contours. We want to assess
whether this kind of repetition is common.



Figure 3: Average number of different patterns (solid) and unique patterns (dashed) within a phrase vs. phrase length. (a)(b)
are patterns of half-note melody note onset, (c)(d) are half-note pitch patterns. Blue lines are real phrases in the dataset.
Orange lines are sampled phrases constructed by choosing each pattern at random from the entire dataset distribution.

Figure 4: Average cross-entropy of diatonic pitch predic-
tions over time within a phrase in POP909, using variable-
order Markov models.

We extract the phrase-level structure in PDSA using the
algorithm in [13], and use human-labeled structure in [13]
for POP909. We study rhythm patterns by segmenting
melody sequences into half-note onset patterns. PDSA has
54 different half-note patterns, while POP909 has all 128
possible patterns (onsets are quantized to 16th notes, and
we assume an initial onset).

We claim that phrases have a limited vocabulary of on-
set patterns and therefore much repetition. This will of
course be true necessarily if the entire dataset has a very
limited vocabulary, so as a baseline for comparison, we
construct random phrases by sampling half-note onset pat-
terns from the entire dataset distribution. For POP909
songs, Figure 3(a) shows the average number of different
onset patterns in phrases of different lengths (solid lines)
and also the average number of patterns that occur only
once in the phrase (dashed lines). This allows us to eval-
uate whether patterns within phrases (blue) have similar
distributions to those of the entire dataset (orange). A sim-
ilar graph for PDSA songs is shown in Figure 3(b). The
analysis of pitch patterns is similar. Figure 3(c)(d) presents
counts of melodic pitch patterns analogous to the onset pat-
tern counts. Again, we see that real song phrases have a
limited vocabulary compared to phrases assembled from
random half-note units representing the entire dataset, and
fewer real phrases go unrepeated.

If repetition of small patterns is frequent, variable-order
Markov models [38, 39] can make good song-specific on-
line predictions by updating the model at each element
of the observed sequence. Conceptually, a variable-order
Markov model estimates separate Markov chains of order 0
to N based on observed state (e.g., pitch) transitions. When
data is too sparse to use a higher order, the model falls back
(iteratively) to the next lower order. Repetitions of differ-

ent lengths are readily learned, thus prediction accuracy
indicates repetition significance. Figure 4 shows the av-
erage cross-entropy for pitch prediction over the length of
all phrases, with phrase length normalized to 1. The clear
downward trend shows the extent to which internal repeti-
tion enables better prediction.

In summary, we find abundant evidence for repetition
within phrases:
• Compared to sampling onset patterns at random from the

POP909 distribution, real phrases have fewer distinct on-
set patterns, and more onset patterns are repeated in the
phrase (Fig 3(a)). Same trend occurs in PDSA (Fig 3(b)),
whose phrases contain even fewer distinct onset patterns.

• Rhythm patterns show a clear repetition structure within
phrases. Considering each measure as a rhythm pattern,
in PDSA, 7% of phrases have the same rhythm pattern
in every measure, 28% have a repetition structure in one
of the forms: “abab,” “aabbaabb,” “aba,” or “abababa.”

• The vocabulary of pitch patterns within a song or phrase
is also very limited compared to the whole dataset, im-
plying pitch sequence repetitions within the phrase level.

• The cross-entropy of predicting pitches decreases over
time in a phrase, suggesting within-phrase repetition.

3.1.3 Song-Specific Vocabulary and Common Patterns

Motives and patterns below the phrase level create a
song-specific vocabulary and have a long-term dependency
throughout the whole piece. For example, in Beethoven’s
Symphony No.5, the first movement begins with a distinc-
tive four-note “short-short-short-long” (the famous “Fate
Motive”). It repeats everywhere throughout the piece, and
Beethoven arranged it logically to unify the entire work.

We chose variable-order Markov models to further ex-
plore patterns because (a) it is easy to tune the weights
between models trained on different data, (b) models can
learn different lengths of pattern repetition. The following
results show 1) song-specific vocabulary is critical in pre-
diction, 2) there is long-term dependency between phrases.

To see the effects of song-specific vocabulary and con-
text, we compare the results of variable-order Markov
models predicting pitch trained on many other songs
(background model), versus training on the same song af-
ter removing a short segment to be predicted (foreground
model). Predictions are a linear combination of the back-



(a) Including duplicated phrases in
foreground training

(b) Hold out repeated phrases in
foreground training

Figure 5: Average entropy, cross-entropy and accuracy of
predicting the first eight diatonic pitches in each phrase,
tuning between foreground and background in POP909.

ground and foreground models. Figure 5(a) shows that
the pure foreground model always obtains the best results.
One possible reason is that phrase-level repetition in the
foreground allows memorization. Thus, we removed all
the duplicated or similar phrases in the foreground train-
ing and tested only on the first eight notes in each phrase
(without updating the model) to eliminate both the effects
of phrase-level repetitions and within-phrase motive rep-
etitions. With almost no information from the repeated
phrase, we might expect little information within a song
to help predict pitches. However, Figure 5(b) indicates
that we obtain the best prediction accuracy when incorpo-
rating 70% foreground and 30% background information.
Since duplicate phrases have been removed and the first
eight notes involve little within-phrase repetition, the re-
sults show that there must be a song-specific vocabulary or
context that repeats across different phrases throughout the
song, but not across the database (otherwise background
would work better).

3.2 Structural Influence

Can repetition structure be considered orthogonal to
melody, harmony and rhythm generation? If so, we
can simply generate music note-by-note, ignoring struc-
ture, and then impose structure by repeating generated se-
quences. However, if there is significant interaction be-
tween structure and other facets of music, then structure
is an integral part of music analysis, music modeling, and
music generation. Our findings show the latter is the case.

Previous work has found systematic interactions be-
tween repetition structure and three facets of music:
melody, rhythm and harmony, with interactions at both the
phrase level and the section level [13]. For example, chords
at the ends of phrases differ from chords in the middle of
phrases. Furthermore, final chords in sections differ signif-
icantly from final chords in phrases that are not at the ends
of sections. This does not mean that “good music” must
reflect a structural hierarchy, but at least this finding offers
insight into how music generation might be improved, and
it raises questions for further study.

In this work, we have also explored confidence and sur-
prise in music construction to better understand the role
of different levels of structure in music. In Figure 6, we
trained on the entire dataset (background model) of melody
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Figure 6: Average cross-entropy on diatonic pitches at dif-
ferent structure level positions in POP909 dataset predicted
by background and foreground variable Markov models.

pitch sequences, holding out test songs; and also trained
on single songs (foreground model), holding out all phrase
repetitions to eliminate prediction by memorizing phrases,
and holding out eight notes at a time for testing. Only or-
der 0 (histogram) and the best-performing order maxima
(2 and 8, respectively) are shown. As seen in the previ-
ous section, the foreground model predictions are better by
1 bit on average, indicating more repetition within songs
(foreground) than across songs (background).

Even though the Markov models have no positional en-
coding or conditions, we can still see a dramatic difference
in predictability at different structure positions (Figure 6).
For example, using the background model, cross-entropy
at the start of sections is over 3.5 (bits), while other phrase
starts are about 3.2, and for most notes (phrase middle),
cross-entropy is only 2.6. Using the foreground model, we
see a different pattern, but predictability still varies sub-
stantially according to position in the structure.

3.3 Repetition and Structure Over Time

Music is not repeated randomly. After seeing different lev-
els of hierarchy in Section 3.1, we ask: Is there a schema
for repetition? How does repetition play out over time?

Huron suggests that if music is to manipulate prediction
through repetition, it makes sense to repeat some of the
music early on [14]. This affords immediate pleasure from
successful prediction rather than delaying until all novel
material is exhausted. POP909 supports this hypothesis:
More than 50% of the phrases repeat immediately, and al-
most all phrases repeat within a quarter of the song.

In Section 3.1, we have seen that most rhythmic and
melodic patterns in a phrase are repetitions. At the song
level as well, using the phrase repetition labels in POP909,
we found that for 79% of songs, 15% to 35% of their du-
ration consists of new material and the rest is repetition.

Returning to our consideration of structure over time:
How does surprise vary with structure? We might expect
less surprise at the ends of sections to give a sense of com-
pletion or resolution. Figure 7 Left shows a histogram per-
centage of phrase-level repetition over the course of a song.
We see a relatively low repetition rate in the first 1/10 of the
song. The repetition rate sharply increases as we progress
to the first 1/5 of the song because, after introducing the
initial materials, most songs repeat them. There is a notice-



Figure 7: Left (green): Percentage of POP909 songs that
have phrase repetitions at different song locations. Right
(blue): Average prediction cross-entropy using variable-
order Markov models on diatonic pitches in POP909 songs
over time, and note the y-axis is inverted.

able drop around the quarter-way point where many songs
introduce new material. In the second half, almost every-
thing is a repetition or variation of what came in the first
half. Finally, the graph shows novel material is often intro-
duced near the end. In Figure 7 Right, we use the variable-
order Markov model to calculate the average cross-entropy
over time on melody pitches. To show the correspondence,
we flip the vertical cross-entropy axis. Note the similarity
between the trends in repetition and cross-entropy.

From these results, it is clear that repetition is not ran-
dom but follows a plan in which novelty is revealed, pre-
sumably to enhance the enjoyment or effect of the music.
This is perhaps surprising because other research shows
that music can be substantially rearranged without destroy-
ing positive impressions [40]. Whether this organization
matters to listeners or simply reflects composers’ inten-
tions requires further research.

4. IMPLICATIONS FOR DEEP MUSIC
GENERATION

One application of our studies is to gain insight into deep
learning models for music generation. We can apply the
analyses from Section 3 to melodies generated from deep
learning models. Through these case studies, we can char-
acterize repetition and structure from deep music genera-
tion and compare to human-composed songs. To be clear,
we are not claiming that any particular structure is neces-
sary or even good. Our goal is to illuminate possibilities
and better understand both real and generated music. We
then discuss our results and point out new directions and
ideas for future work in deep music generation.

4.1 Lack of Repetition and Structure

We studied repetition and structure in deep learning gen-
erated melodies to answer three questions: 1) do melodies
have multiple levels of repetition and structure? 2) do they
have song-specific vocabulary and common patterns? 3)
how does cross-entropy vary over time? We used two deep
music generation models: One is a VAE model using repre-
sentation learning [24], chosen because it uses contrastive
learning to generate longer sequences (8 bars) than other
VAE models. The other model is Music Transformer [11].

4.1.1 Do deep melodies have multiple levels of structure?

We want to know if deep-learning-generated music has
multiple levels of structure and whether any structure is

Figure 8: Entropy of pitch scale degree distribution at dif-
ferent phrase positions, comparing generated 4-bar and 8-
bar phrases from VAE with real phrases in POP909.

reflected in pitch and rhythm. Unfortunately, most deep
learning models can generate only a limited length: VAEs
and GANs usually have a fixed length from 2 to 8 bars,
about the length of just one phrase. Sequential models like
Transformer and LSTM can generate longer sequences,
but we cannot find any salient repetition comparable to
repeated phrases by listening or by automated analysis.
These differences from popular songs are striking.

Thus, the only thing we can do is to test on short gener-
ated sequences, consider them as a phrase, and see if they
have phrase structure. We tested the 4 bar and 8 bar gener-
ated phrases from a VAE model [24] and used 1000 exam-
ples of each duration. Figure 8 shows that there is no sig-
nificant differences between the entropy of pitch scale de-
gree distributions at the start of phrases, middle of phrases
and end of phrases, but we see significant differences in
the real POP909 phrases. Also, the probabilities of differ-
ent pitches at different phrase-level positions only change
slightly in the analyzed outputs. For example, the probabil-
ity of seeing the tonic at phrase end is 35% in real POP909
phrases, while at the other positions it is around 20%. The
probability of seeing the tonic in VAE output is in the range
of 20% to 21% for all positions.

4.1.2 Do deep melodies have song-specific vocabulary
and common patterns?

Following the logic in Figure 3, we count the rhythm
(melody note onset) patterns for whole songs from Mu-
sic Transformer and from POP909 itself. We trained the
Music Transformer on 80% of songs in POP909, using
10% for validation and 10% for testing. We initialized
the generation with the first 2 to 6 bars of the test songs,
but did not count the initialization bars as part of the gen-
erated melody. To calculate the song length, we use the
total length of melodic phrases, omitting measures that are
empty or have long rests.

In Figure 9, we see that transformer-generated results
have a much higher rhythm vocabulary compared to real
songs. Many people have observed that deep-learning-
generated music has many outlier notes and patterns that
appear once and sound like mistakes. Here we see that
transformer-generated melodies have a higher number of
unique rhythm patterns compared to real songs, which
might explain the sense of too many outliers.

We also analyzed half-note pitch patterns in 4-bar and
8-bar phrases from the PDSA, from random pitch patterns
drawn from the entire PDSA distribution, and for the VAE



Figure 9: Analysis of note onset pattern vocabulary
from randomly sampled POP909 patterns (yellow), Mu-
sic Transformer songs (red), and POP909 songs (blue) as
a function of song length. Solid lines are the total number
of different patterns, and dashed lines are the number of
unique (not repeated) patterns.

Figure 10: Comparison of half-note pitch pattern counts in
PDSA phrases, randomly sampled PDSA pattern phrases,
and phrases from VAE. The y-axis counts the number of
different patterns (blue) or number of unique (not repeated)
patterns (orange) found in 4 or 8 bars. The VAE generated
patterns are significantly more than the patterns in the real
PDSA dataset, with p-value less than 10−5.

model [24] (see Figure 10). Vocabulary is more limited in
PDSA phrases compared to the random patterns and VAE
patterns. The VAE pattern counts are closer to those of
synthetic phrases and thus may lack some of the coherence,
redundancy, and predictability of PDSA.

4.1.3 Entropy over time

We also compared trends in cross-entropy of the pitch se-
quence over the course of songs from POP909 (Figure 7
blue) and Music Transformer (Figure 11). Although both
exhibit an overall cross-entropy decrease over the course
of the phrase, there are important differences. POP909
cross-entropy increases at around 20% of the song length,
probably due to the introduction of novel and contrasting
patterns, and also around the end. POP909’s average cross-
entropy is greater than one bit per note except for a small
region around 90% of song length, while Music Trans-
former is below one on average for the last 30% of the
song, suggesting overly predictable sequences.

4.2 Discussion and New Directions

Rather than learning and reproducing general statistics of
datasets, we need to learn how songs strategically diverge
from background or stylistic norms to create interest, sur-
prise, and individuality. It is particularly interesting that
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Figure 11: Average prediction cross-entropy using
Markov models on diatonic pitches over time in 910 gener-
ated music pieces from music transformer, y-axis inverted.

phrases can be better predicted by relatively short phrases
within the same song than by large amounts of training
data from other songs. It seems plausible that songs of the
same artist or same sub-genre may be more predictive than
songs in general. Our findings also reinforce previous find-
ings that using structure in MusicFrameworks [12] results
in better human evaluations.

Examples in Section 4.1 suggest that we can compare
generated music to real music using measures of structure,
repetition and entropy. Matching these measures is not
guaranteed to make music “better,” but we should not sim-
ply ignore clear objective differences. We would at least
expect differences to be small when the task is to imitate a
style or genre. We can also speculate that these measures
are relevant to listener preferences even if they do not tell
a complete story.

Although we have focused on popular music, repetition
and hierarchical structure seem to be ubiquitous in music.
Pop music, with its nearly exact repetitions, seems easier
to study than Classical music where we might expect more
variation, development and modulation, which make repe-
tition less obvious. We are encouraged by our results using
variable-order Markov models on pitch sequences. These
studies reveal much more information than we expected
and do not rely on finding wholly duplicated measures,
which we used to extract phrases and sections. Perhaps
this approach will be of use in Classical and other music.

5. CONCLUSION

It should be no surprise that structure, repetition, pitch,
rhythm, harmony and entropy are all strongly connected
and interdependent. We have offered new ways to ex-
plore these connections objectively, using a data-driven ap-
proach without relying on subjective human analyses.

Among our findings are that within-song and within-
phrase vocabulary and repetition are not a reflection of
more general background statistics from a collection of
songs. Instead, songs and phrases gain “individuality”
through more repetition and smaller vocabulary. This has
important implications for machine learning and music
generation systems.

There are clear differences between measurements of
real songs and those of many music generation systems,
suggesting that there are important gaps to fill through new
research. We hope that this work will inspire further re-
search in the roles played by repetition and structure in
music as well as methods to learn repetition and structure.
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