
 Roger B. Dannenberg
 Carnegie-Mellon University
 Pittsburg, Pennsylvania, USA
 RBD@cs.cmu.edu

 A Perspective on
 Computer Music

 It is a pleasure to be part of this 20th anniversary
 celebration of Computer Music Journal. The Jour-
 nal has great significance to me and to many read-
 ers because it was our first introduction to the field

 of computer music. I saw a copy of Volume 1, No.
 1 at an activities fair at Rice University where I was
 an undergraduate. I wrote for a subscription and
 back issues, and received a handwritten note from
 none other than founding editor, John Snell, ex-
 plaining that my subscription would start with
 No. 1, as No. 2 was not yet in print.

 This was an exciting time. Microprocessors were
 just becoming available and digital synthesizers
 were beginning to appear, although nothing had
 reached the consumer market. Julius Smith was
 also at Rice, and we played in a band together. As a
 freshman, I met a graduate student who had in-
 vented "Karplus-Strong" plucked-string synthesis
 years before the well-known publication (Karplus
 and Strong 1983). He used a Digital Equipment
 Corp. PDP-11 minicomputer attached to a vector
 graphics display. The x and y deflection signals
 were diverted to a stereo amplifier to form a make-
 shift computer music system. The grad student had
 it playing two-part inventions in real time with
 very nice harpsichord-like timbres. This was per-
 haps the first "physical model" synthesis system.

 Computer Music Journal played a critical role in
 disseminating ideas from research, in fighting the
 isolation that comes from working in a small inter-
 disciplinary area, and in defining the emerging field
 of computer music. While many of the early prac-
 titioners received their introduction to computer
 music through courses and residencies, many of us
 "learned the ropes" from the Journal's pages. Com-
 puter Music Journal is still a major resource in the
 field, even with the advent of new journals and con-
 ference proceedings.

 Where Were We?

 In 1976, it was practical to design and build special-
 purpose hardware at the gate and register level. One
 could wire components together point-to-point
 with inexpensive hand tools. A lot of effort went
 into hardware design, as this was the way to get
 high performance. In some cases, high performance
 is simply the research goal, but it also gives re-
 searchers a working environment comparable to
 future commercial systems. Custom-built hard-
 ware is thus a way to discover and solve problems
 early on.

 Unfortunately, many hardware-based projects
 failed to deliver results, and many more never devel-
 oped adequate software environments. It is not un-
 usual in any field for projects to end before they
 reach a mature state. We have seen many systems
 come and go through the years.

 There were some success stories as well. The

 Samson Box at Center for Computer Research in
 Music and Acoustics (CCRMA), the SSSP at the
 University of Toronto, and the 4 Series at Insti-
 tute de Recherche et Coordination, Acoustique/Mu-
 sique (IRCAM) all were developed to a point where
 composers could use them on a routine basis to ob-
 tain interesting musical and research results. In par-
 ticular, the SSSP developed interactive graphical se-
 quencers and patch editors, and explored the use of
 hierarchical data structures for music represen-
 tation.

 Throughout the late 1970s and 1980s, computers
 grew more powerful at an exponential rate. Proces-
 sor speed is still doubling approximately every 18
 months. Much of the speed increases result from
 denser circuitry, and it became impractical to fab-
 ricate digital systems by hand using low-density
 integrated circuits and simple interconnection
 schemes. Only a large investment in application-
 specific integrated circuits, gate arrays, and multi-
 layer printed circuit boards is likely to have any per-
 formance payoff today.

 Computer Music Journal, 20:1, pp. 52-56 Spring 1996
 @ 1996 Massachusetts Institute of Technology.

 52 Computer Music Journal

This content downloaded from
 132.174.253.119 on Mon, 26 Jul 2021 15:00:33 UTC

All use subject to https://about.jstor.org/terms

 As a consequence, we have seen synthesis-
 hardware development taken over by commercial
 manufacturers. Yamaha, for example, realized very
 early that a heavy investment in Very Large Scale
 Integration would have a high return, and soon
 low-cost consumer products surpassed all but the
 most expensive research machines in power if not
 flexibility.

 Where Are We Now?

 Now, we seem to be at a turning point. Although
 MIDI synthesizers and audio processors are the
 dominant form of synthesis, processors are just
 crossing the point where they can provide real-time
 synthesis in software. The situation as it looks to a
 researcher is shown in Figure 1.

 In this graph comparing hardware and software
 performance, notice that hardware performance is
 constant-once a piece of hardware is designed, it
 doesn't get any faster. However, hardware is inher-
 ently faster than software (the hardware speedup
 factor is H).

 Now consider software performance. Assuming
 that software is written in a portable language (C or
 C++ seem to be the favored choices now), the per-
 formance will increase exponentially. Regardless of
 the development platform, one need only recom-
 pile the software on the latest CPU to benefit from
 advances in hardware technology.

 The question for the designer, then, is, How long
 before software catches up to my hardware? Using
 the graph,

 H = 2T/1.s

 which can be rearranged to derive the following:

 T = 1.5 . log2H.

 Let us assume H = 16, that is, a hardware approach
 would run 16 times faster than software. In this
 case, T = 6 years; that is, in 6 years software will
 begin to outperform hardware you build today.

 The second question is, How long will the sys-
 tem take to develop? Three to six years is not un-

 Figure 1. Hardware and
 software performance as a
 function of time (years), as
 anticipated by someone
 starting a project at time
 0. Software performance

 accelerates through port-
 ing to faster computers,
 while hardware perfor-
 mance is fixed at the time
 of design and con-
 struction.

 software

 H hardware

 1

 0 T
 Time

 usual for a small research team. Projects always
 take longer than expected. Obviously, the develop-
 ment time should not be greater than T.

 Finally, one must ask, What kind of speed advan-
 tage will make a qualitative difference in research?
 A good rule of thumb is it takes an order of magni-
 tude change to create a qualitative change as op-
 posed to a quantitative change. With a development
 time of 3 years, H must be 40 or more (!) to realize
 a 10-fold advantage of the hardware over the soft-
 ware solution.

 This logic leads to the conclusion that the days
 of special-purpose hardware are over. Even digital
 signal processor-based systems will soon be re-
 garded as ineffective for research. Of course, there
 is still room for low-cost, high-volume consumer
 products, but even here, software signal processing
 is becoming increasingly common. For example,
 software synthesis is being used to cut hardware
 costs on sound cards for PC-class machines.

 Where Are We Going?

 It seems clear that software-based computer music
 systems are the way of the future. I expect this will
 lead to several interesting changes in perspective.
 First, new synthesis methods that involve adaptive

 Dannenberg 53

This content downloaded from
 132.174.253.119 on Mon, 26 Jul 2021 15:00:33 UTC

All use subject to https://about.jstor.org/terms

 filtering, learning, and logical computation will re-
 ceive more attention. Historically, synthesis algo-
 rithms have been based on hardware capabilities,
 leading to fixed sequences of numerical operations.
 Given that synthesis will now be software based, it
 makes sense to consider new schemes that take ad-

 vantage of the full capability of a general-purpose
 processor. The most important capability is to per-
 form logical tests and change computation accord-
 ingly. Thus, synthesis can move away from mathe-
 matical conceptions to more computational ones.
 An example is the computation of bow-string or
 reed-mouthpiece collisions in physical models. An-
 other is the assembly and control of computational
 elements as in resNET (Hamman 1994), where pro-
 cedural control is tightly integrated with sample
 generation.

 Traditionally, control and synthesis are treated
 separately in computer music systems. This is a rea-
 sonable model with roots in the concept of the per-
 former and instrument, in the score and orchestra
 dichotomy of the Music-N language family, and
 now in MIDI. This model leads to "a separation be-
 tween models of sound material and models of mu-

 sical design" (Di Scipio 1994). However, I think
 that software synthesis will begin to break down
 some of the distinctions, enabling a reintegration
 of control and synthesis. Composers will happily
 break free of the limitations of fixed algorithms in
 VLSI accessed through the MIDI bottleneck. Com-
 posers will be freer to exercise artistic creativity at
 the timbral level.

 As machines continue to grow in power, it is
 hard to imagine what research and compositional is-
 sues we will face more than a few years from now.
 Let us take as a baseline that current high-end per-
 sonal computers deliver roughly 100 million in-
 structions per sec (MIPS). We can expect about 1
 billion MIPS in 20 years, and much more from
 high-end workstations. Disk capacity is increasing
 at about 40 percent per year (recently 60 percent),
 so in 20 years, we should expect personal comput-
 ers to ship with at least 1 terabyte of on-line stor-
 age, enough for 5,000 or so compressed CDs. Also,
 RAM will be measured in gigabytes rather than
 megabytes (we used the term kilobytes 20 years
 ago).

 Control

 With future computation rates, all synthesis algo-
 rithms currently in use will run in real time. There
 will certainly be new software that will demand
 even higher computation rates, but the point is
 that there will be an enormous potential to realize
 sounds. Are we ready for that potential? In my opin-
 ion, we have a long way to go. We spend inordinate
 amounts of effort optimizing code and microcode,
 inventing new synthesis techniques, and working
 at higher levels of control as in algorithmic compo-
 sition. However, there is relatively little effort in-
 vested in dynamic timbre control.

 There seems to be a missing link in computer
 music research that spans the time scale from
 about 10 msec to 250 msec. This is the realm of ar-

 ticulation, vibrato, slurs, and performance effects.
 These are tied to longer time-span concepts of
 phrasing, bowing, and breathing, and to lower time-
 span concerns of signal control, synthesis, and hap-
 tic feedback.

 Chris Chafe's (1989) work on string synthesis is
 a perfect illustration of the type of research that I
 would like to see more of. In this work, a string
 quartet score was processed to develop a set of con-
 trol events such as bow-string contact, bow rever-
 sal, finger placement, and vibrato. These events
 were then used to drive the "synthesis" of smooth
 control functions for bow position, pressure, and
 velocity. These complex, continuous functions
 were then used to control a simple string model,
 resulting in a rich performance.

 In a similar spirit, Brad Garton has developed "ex-
 pert systems" that control string synthesis models
 to produce idiomatic "string folk band" and solo
 rock guitar music (Garton 1992). As in Chris
 Chafe's work, much of the richness of the result is
 due to "control rate" information rather than

 "audio rate" synthesis algorithms or "note rate"
 compositional structure. These works construct sty-
 listically appropriate strumming and fretting-con-
 trols that enhance and complement the synthesis
 technique.

 A natural area for further work is in drumming.
 In popular, jazz, and ethnic music, drumming ap-
 pears to operate within highly constrained worlds

 54 Computer Music Journal

This content downloaded from
 132.174.253.119 on Mon, 26 Jul 2021 15:00:33 UTC

All use subject to https://about.jstor.org/terms

 consisting of idiomatic rhythms and phrases. This
 is not to say that drumming is easy or that it is
 easy to automate, but this seems like a natural area
 for research. A good start was made by Bilmes
 (1993), who demonstrated that deviations from the
 beat (as opposed to say, changes in tempo or dy-
 namic) account for "swing," and that these devia-
 tions are not random. We need the experience of
 building a dozen or so "artificial drummer" sys-
 tems in different styles to really get at the issues.
 This area seems ripe for machine learning tech-
 niques.

 Others have studied rubato (e.g., Repp 1990) or
 micro-timing and how it relates to musical struc-
 ture, and this work is part of the big picture of gen-
 erating appropriate control. Piano has been a favor-
 ite vehicle for these studies since attack time and

 velocity capture nearly all of the expressive con-
 tent. The next step is to study instruments with
 continuous control: brass, woodwinds, and strings.
 Some interesting ideas have been put forth by Man-
 fred Clynes (1987) on the relationships among
 shapes, emotion, and composers, and new formal-
 isms and approaches undoubtedly wait to be dis-
 covered.

 It seems that there should be more emphasis
 than ever on languages for expressing control-level
 information. My own work on the Nyquist lan-
 guage (Dannenberg 1993) has finally evolved to a re-
 leasable form. Nyquist is mentioned here because
 all synthesis and signal processing operators can be
 applied to construct or manipulate control func-
 tions. Also, functions can be hierarchically com-
 posed and inherited to separate various concerns
 such as phrase structure, metrical structure, and
 note structure. Nyquist is intended to support the
 kind of continuous control research that I am advo-

 cating. Kyma (Scaletti and Hebel 1991) and GTF
 (Desain and Honing 1992) are important related
 systems.

 Conclusion

 Computer music has made great strides in the last
 20 years. Over the long run, the exponential growth
 of hardware tends to dominate all other terms in

 the equation, so the most notable change is the in-
 credible growth in processing power and storage ca-
 pacity. Along the way, a brief window of opportu-
 nity for VLSI-assisted computer music opened,
 leading to a flood of MIDI-related activity in the
 computer music community. This activity is near
 its peak, and the next "wave" will be a return to
 software synthesis on ever-more-powerful personal
 computers. Real-time synthesis will be increas-
 ingly common.

 A neglected area of research is the musical con-
 trol of sound synthesis. There is a gap between the
 level of samples, which is addressed by sound syn-
 thesis, and the level of "beats," which is addressed
 by composition. The realm of control in the 10
 msec to 250 msec range is underexplored, and
 many exciting discoveries will be made there.

 References

 Bilmes, J. 1993. "Timing Is of the Essence: Perceptual
 and Computational Techniques for Representing,
 Learning, and Reproducing Expressive Timing in Per-
 cussive Rhythm." Masters Thesis. Cambridge, Massa-
 chusetts: MIT Media Laboratory.

 Chafe, C. 1989. "Simulating Performance on a Bowed In-
 strument." In M. Mathews and J. Pierce, eds. Current
 Directions in Computer Music Research. Cambridge,
 Massachusetts: MIT Press, pp. 185-198.

 Clynes, M. 1987. "What Can a Musician Learn about Mu-
 sic Performance from Newly Discovered Microstruc-
 ture Principles (PM and PAS)?" In A. Gabrielsson, ed.
 Action and Perception in Rhythm and Music. Publica-
 tion no. 55: Stockholm, Sweden: The Royal Swedish
 Academy of Music.

 Dannenberg, R. 1993. "The Implementation of Nyquist,
 a Sound Synthesis Language." Proceedings of the 1993
 International Computer Music Conference. San Fran-
 cisco, California: International Computer Music Asso-
 ciation, pp. 168-171.

 Desain, P., and H. Honing. 1992. "Time Functions Func-
 tion Best as Functions of Multiple Times." Computer
 Music Journal 16(2):17-34.

 Di Scipio, A. 1994. "Formal Processes of Timbre Compo-
 sition Challenging the Dualistic Paradigm of Com-
 puter Music: A Study in Composition Theory (II)." In
 Proceedings of the 1994 International Computer Mu-

 Dannenberg 55

This content downloaded from
 132.174.253.119 on Mon, 26 Jul 2021 15:00:33 UTC

All use subject to https://about.jstor.org/terms

 sic Conference. San Francisco, California: International
 Computer Music Association, pp. 202-208.

 Garton, B. 1992. "Virtual Performance Modeling." In Pro-
 ceedings of the 1992 International Computer Music
 Conference. San Francisco, California: International
 Computer Music Association, pp. 219-222.

 Hamman, M. 1994. "Dynamically Configurable Feed-
 back/Delay Networks: A Virtual Instrument Composi-
 tion Model." In Proceedings of the 1994 International
 Computer Music Conference. San Francisco, Califor-
 nia: International Computer Music Association, pp.
 394-397.

 Karplus, K., and A. Strong. 1983. "Digital Synthesis of
 Plucked String and Drum Timbres." Computer Music
 Journal 7(2):43-55.

 Repp, B. 1990. "Patterns of Expressive Timing in Perfor-
 mances of a Beethoven Minuet by Nineteen Famous Pi-
 anists." Journal of the Acoustical Society of America
 88:622-641.

 Scaletti, C. and K. Hebel. 1991. '"An Object-based Repre-
 sentation for Digital Audio Signals." In G. DePoli, A.
 Picialli, and C. Roads, eds. Representations of Musical
 Signals. Cambridge, Massachusetts: MIT Press, pp.
 371-389.

 56 Computer Music Journal

This content downloaded from
 132.174.253.119 on Mon, 26 Jul 2021 15:00:33 UTC

All use subject to https://about.jstor.org/terms

	Contents
	52
	53
	54
	55
	56

	Issue Table of Contents
	Computer Music Journal, Vol. 20, No. 1 (Spring, 1996), pp. 1-136
	Front Matter [pp. 2-3]
	About This Issue [p. 1]
	Editor's Notes: The Mission of "Computer Music Journal" [p. 4]
	Letters
	User Interfaces for Computer Music: Editor's Note in "Computer Music Journal" Volume 19, Number 4 [pp. 5-6]
	On Identity and Fragmentation of the Ea/CM Community [pp. 6-8]
	Fractal Interpolation [pp. 8-10]
	Musical Combinatorics [p. 10]
	"Bach by Design" (Review in CMJ 19(3)) [pp. 10-12]

	Salvatore Martirano: 1927-1995 [p. 13]
	John Whitney Passes [p. 13]
	Announcements [pp. 13-16]
	News [pp. 17-18]
	An Interview with Paul Lansky [pp. 19-24]
	The History of Computer Music
	Dreams of Computer Music: Then and Now [pp. 25-41]

	The State of the Art in Computer Music
	That was Then: This Is Now [pp. 42-45]
	Freedom and Precision of Control [pp. 46-48]
	Computer Music, Coming and Going [pp. 49-51]
	A Perspective on Computer Music [pp. 52-56]
	Recent Developments in Computer Sound Analysis and Synthesis [pp. 57-61]

	Composition and Performance in the 1990s
	Real-Time Performance Interaction with a Computer-Controlled Acoustic Piano [pp. 62-75]

	Performance Rules
	The KTH Rule System for Singing Synthesis [pp. 76-91]

	Synthesis and Transformation
	Spectral Mutation in Soundhack [pp. 92-101]

	Reviews
	Events
	Review: JIM'95: Journées d'Informatique Musicale [pp. 102-103]
	Review: ACM SIGGRAPH 95 [pp. 103-106]
	Review: untitled [pp. 106-108]

	Publications
	Review: untitled [pp. 108-110]
	Review: untitled [pp. 110-111]

	Recordings
	Review: untitled [p. 111]
	Review: untitled [pp. 111-113]
	Review: untitled [pp. 113-115]
	Review: untitled [pp. 115-117]
	Review: untitled [pp. 117-118]

	Products
	Review: Bliss Paint for the Apple Macintosh [pp. 118-119]

	Products of Interest: New Product Announcements [pp. 120-130]
	CD Program Notes [pp. 131-135]
	Back Matter [pp. 136-136]

