ENHANCED VOCAL PERFORMANCE TRACKING USING MULTIPLE
INFORMATION SOURCES

Lorin Grubb and Roger Dannenberg
{lgrubb, rbd }@cs.cmu.edu
School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract

We describe an enhanced statistical method for tracking vocal performances in real time. This approach
integrates multiple measurements of the sound signal that are relevant to determining score position. The
information is combined using a statistical model that incorporates distributions estimated from actual vocal
performances. We present results from using different combinations of signal measurements to track both
recorded and live performances. Results of this testing indicate some requirements for successfully using
multiple information sources to improve automated vocal performance tracking.

1. Motivation

Many applications in computer music require the ability to listen to live or recorded musical performances by
following along in a written score. This ability is necessary for systems executing tasks such as automated
accompaniment (Dannenberg 1984; Vercoe 1984), interactive performance (Katayose ef al. 1993), musical tutoring
or coaching (Dannenberg and Joseph 1992), and automated performance analysis (Honing 1990). Typically, both
the score position and tempo of the performer must be identified with high accuracy, high precision, and high
frequency during the performance. Some tasks, such as accompaniment, also require the tracking results in real
time—sometimes demanding latencies below 100 milliseconds.

Performance tracking for instrumentalists was first considered by Dannenberg (1984) and Vercoe (1984). More
recently, systems that require the ability to accurately and efficiently track a vocalist have also been presented
(Katayose ef al. 1993) (Inoue, Hashimoto, Ohteru 1994) (Puckette 1995). Tracking a vocalist is a particularly
challenging task. Vocal performances are highly fluid, making it difficult to reliably and easily distinguish
performed notes. In addition, features extracted from the performance (such as fundamental pitch) often vary from
what is notated in the score. Frequently, singers introduce these variations for expressive and stylistic purposes.
For instance, operatic singers generally apply vibrato, where the sung pitch is intentionally made to oscillate around
the pitch notated in the score. Finally, techniques for extracting relevant features from the sound signal, including
pitch detection (Kuhn 1990) and vowel detection (Inoue, Hashimoto, Ohteru 1994), are never error-free.

Recently, a system using a robust statistical method for tracking vocalists has been demonstrated (Grubb and
Dannenberg 1997). This approach incorporates statistical descriptions of both detected fundamental pitch in vocal
performances and the expected progress of a singer through the score (i.e., the expected amount of score performed
based on recent tempo and elapsed time). The tracking system uses a probabilistic description of a performer's
score position, making explicit the system's current uncertainty about the singer's location. This tracking method
was used in a computer accompaniment system and a preliminary evaluation of its tracking ability was provided.

We present a new system that uses an extended statistical model for tracking vocalists. This method incorporates
multiple measurements of the sound signal, including fundamental pitch, spectral features related to the phonetic
content of the performance, and amplitude changes indicative of note onsets. Detecting multiple features in a
performance can enable more robust tracking. For instance, vocal scores of Western classical music often contain
several successive notes with the same pitch. In some cases, a single pitch may be repeated for several measures.
By considering phonetic content of a performance, the system can track position and tempo changes even through
measures where the notated pitch does not change. Likewise, vocal scores often contain melismas where many
successive notes are sung on the same syllable. While phonetic content does not help determine position during
melismas, detected pitch and onsets can enable the system to track the performer through these phrases. Finally, to
the extent that deviations in pitch, onset, and phoneme production are not correlated, a system that incorporates all
types of features will be more robust than a system that relies exclusively on one feature. This property also applies
to detection and measurement errors due to the respective signal processing techniques for each feature.

In this paper, we first review the basic tracking model and show how it can be extended to incorporate multiple
features reported during a single performance. The empirically derived probability distributions employed by the
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model are then described. We present results of applying several versions of the model to track recorded and live
performances by experienced singers. Finally, we discuss the implications of these results, examining both the
conditions necessary for multiple signal measurements to improve the accuracy of performance tracking and the
areas of subsequent investigation most likely to lead to even more robust tracking of vocal performances.

2. A Stochastic View of a Singer's Score Position

The model for stochastic vocal performance tracking represents the vocalist's part as a sequence of events that
have a fixed ordering, or at least a desired ordering. Each event is specified by:

1. A relative length that defines the duration of the event as indicated in the score, relative to other events.

2. An observation distribution that completely specifies the probability of every possible observation, or signal
measurement, at any time during the event.

Note that the model does not require a one-to-one correspondence between a note and an event. Events can map to
portions of a note or regions spanning note boundaries. The relative length of an event may be specified in musical
beats for a fixed tempo. It may also be specified in a unit of time, requiring conversion of beats to "idealized time"
using a fixed, idealized tempo. The length is assumed to be a positive real value, not necessarily an integer.

The observation distribution for each event specifies the probability of observing each possible value of a
detected feature when the vocalist is performing that event. This distribution generally is conditioned on
information provided in the score. For example, assume that pitch detection is applied to a performance. In this
case, the observation distribution of a note scored for the pitch A-440 might specify the likelihood of the pitch
detector reporting each possible pitch. In addition to the possibility of observing an A, there would be some
probability of observing a G, or a B, or a B-flat, etc. As another example, observation distributions can also
describe the likelihood of detectable spectral features that are correlated with sung vowels.

The vocalist's part in the score is viewed as a sequence of events, each event spanning a region of the number
line. The score position of a singer is represented as a real number between zero and the sum of the lengths of all
events in the score. Score position is thus specified in either idealized beats or idealized time, and can indicate the
performer's location with precision finer than an event. At any point while tracking an actual performance, the
position of the vocalist is represented by a continuous probability density function over score position, the score
position density. The area under this function between two positions indicates the probability that the performer is
within that region of the score. This concept is depicted in Figure 1. The area over the entire length of the score is
always 1, indicating it is 100% likely that the performer is in the score. As the performance progresses and
subsequent observations (signal measurements) are reported, the score position density is updated to yield a
probability distribution describing the performer's new location.

To describe the performance tracking system, we will first summarize the basic mathematical model for updating
the position density assuming one type of observation only. Next, we will extend the basic model to incorporate
observations encompassing several simultaneous but distinct measurements of the sound signal. Finally, we will
describe how the probability functions in the model were estimated from actual vocal performances.

3. The Basic Model for Estimating Score Position

The general approach to tracking the performer is conceptually simple. During a performance, observations are
periodically made through sensors (signal processing techniques). For each observation, we use the current score
position density and the observation distributions to estimate a new score position density. This updated density
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Figure 1: Example of a density function characterizing the score position of a performer. The area of the
shaded region gives the probability that the performer is singing the second note.
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characterizes the current location of the performer in the score. In practice, however, calculating a new score
position density requires a number of simplifications, assumptions, and approximations.

The method of updating the score position density incorporates three values that are relevant to determining the
new position of the performer, or the performer's destination position. First, since a performer’s rendering of a
musical score is highly sequential, it is important to consider the performer's location at the time of the previous
observation, the performer's source position. Second, the observation most recently extracted from the performance
will obviously provide information about the performer's current location. Finally, performers often attempt to
maintain a consistent tempo, subject to relatively minor and gradual variations. An estimate of the performer's
tempo in the recent past, along with the elapsed time since the position density was last updated, gives a useful
prediction of how much score was recently performed. This prediction will be referred to as the estimated distance.

Given these three variables—previous position, most recent observation, and estimated distance—the current
location of the performer can be specified stochastically by the following conditional probability density:
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Unfortunately, directly defining this multidimensional function for every score would be challenging. Also, the
previous score position of the performer is never known with certainty, so the value of at least one conditioning
variable, j, should also be described statistically. To provide a model that is feasible to define and implement, we
make several simplifying assumptions. The assumptions permit an approximation to the conditional density. First,
an estimate of current location based on prior location and estimated distance is calculated through convolution:
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Next, this estimate is updated to account for the most recent observation using a calculation similar to Bayes' Rule:
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The result is a score position density conditioned on both the estimated distance and the most recent observation.
Note that if d and v represent fixed values, the result is a one-dimensional function over score position. In addition,
actual computation of the score position density for real applications can be restricted to a small window of score at
any instant (i.e., over a restricted range of values for {). The window can move through the score over time,
following the performer. Details of all assumptions necessary to apply the simplified model, as well as efficient
methods for numericaily computing the model, are provided by Grubb and Dannenberg (1997).

4. Incorporating Multiple Observations

The model for estimating score position includes a density function, f,,, , specifying the likelihood of observing
any possible sensor output for every score position. In the basic model we assumed that the observation is a single
value reported by a single sensor or signal processing algorithm. This model for estimating score position can be
easily extended to incorporate observations from multiple sensors, providing that two conditions are satisfied. First,
the model assumes that the observation, v, is independent of the performer's source position, j, and the estimated
distance, d. This assumption implies that a function specifying the likelihood of any value for v does not change if
the value of either j or d changes. All observations must satisfy this condition. Second, it must be possible either to
specify a joint probability density for multiple, simultaneous observations or to approximate this joint density by
assuming independence. Thus, for two different sensor observations, VI and V2, we must either directly estimate
the likelihood of all pairs of values for V1 and V2 (the function f,, ) or use the following approximation:

fv1,V2Il =fuil1 ‘fvzlv1,1“fv1 lr-fvais

The joint density can then replace the observation density for a single observation, f,,, , in Equation 2.
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Calculating the position density using multiple sensors is very similar to calculating the density using a single
sensor. The previous score position density and the distance density, f,,, . are convolved as per Equation 1. Next,
the result of convolution and the joint observation density are multiplied and normalized, giving the final position
density. Note that technically the model does not require all sensors to report observations simultaneously.
However, the time between interleaved reports cannot be too small. Otherwise, unacceptable errors result from
numerical integration. The minimum time depends on both the functions in the integral and the sample rate. Also,
the accuracy of position estimation may vary with the frequency of observations. Position estimation also depends
upon how accurately the observation density functions model the actual distributions during real performances. In
the following sections, we discuss data collection and analysis to implement the vocal performance tracking system.

5. Data Collection and Modeling

Three density functions are assumed to be pre-defined prior to each calculation of a new score position density
function: f;,,,.,., the stochastic estimate of the performer's source position; f,,  ,, the probability that the performer
has actually performed an amount of score I-J given D, a prediction of the amount of score performed; and f,,, the
probability of making observation V when the performer is at position /. While the first function is a prior
calculation of the score position density, the second and third functions must be specified before using the model.

We analyzed actual vocal performances to estimate these densities. We recorded performances by live vocalists
singing with live accompanists, and isolated the vocal part by using a highly directional microphone placed in close
proximity to the singer. These recordings were analyzed for pitch content, spectral envelope, and amplitude
changes as well as tempo. The vocalists had at least one full year of university training. They performed Western
classical music that either was familiar to them or was part of their current program of study. The performers were
given one opportunity to rehearse prior to recording. A subset of 20 performances was used to determine empirical
density functions. These recordings contained 2 performances by each of 10 singers encompassing all primary
voice types. Each singer performed two different works. The pieces represented a variety of styles and genres.
While all 20 recordings were used to estimate the distance density, only 18 were used to estimate densities for
observed pitch, spectral envelope, and amplitude changes. Two of the recordings contained a low-level background
hum. The 18 recordings included 2 performances by each of 9 singers.

Although the observation density, f,,,, can specify a different likelihood at every point in the score, it is impossible
to collect sufficient data to model such a function. Consequently, generalizations will be made. For instance, the
distribution for actual reported pitch will be based upon only the pitch written in the score. Score positions with the
same scored pitch will have the same observation distribution. Subsequent definition of observation densities will
specify one or more conditioning variables that replace the variable i. Score positions associated with the same
values of the new conditioning variables will share identical observation distributions.

6. Fundamental Pitch

We have used a pitch detection method described in (Kuhn, 1990). We constructed our detector to use a sample
rate of 16 KHz and to report pitch at a rate of 10 Hz during a sustained tone. A simple amplitude threshold is used
to roughly separate pitched signal from unpitched signal and silence. Pitched portions of a vocal performance
generally exhibit greater amplitude than portions where the singer is resting or producing unvoiced consonants.
Eighteen of the recorded performances were played from a DAT tape and processed by the pitch detector. The
output was parsed by hand in order to align the reported pitches with the notes in the scores. Next, the distance (in
semitones) between the detected pitch and the scored pitch was calculated for each detector output.

A histogram of these differences was then generated. For every scored pitch, an observation distribution of
actual pitch conditioned on scored pitch can be generated by mapping the scored pitch to the zero difference bin and
all other notes to the bin corresponding to their distance from the scored note. Thus for a scored pitch of middle-C,
middle-C maps to 0, D above middle-C maps to +2, and B below middle-C maps to -1. This distribution is used to
describe observed fundamental pitch. It is conditioned only on the pitch written in the score.

7. Spectral Envelope

To obtain an approximation of the spectral envelope, we compute a short time log power spectrum using around
8 ms of signal that has been sampled at 16KHz, pre-emphasized to remove the natural spectral tilt in singing, and
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multiplied by a Hamming window. Four such spectra from consecutive regions of signal are averaged and the
resulting spectrum is normalized. We then extract the peak values occurring in fifteen partitions of the frequency
axis. Each partition spans roughly one-third of an octave, and the partitions in total cover frequencies from 200 to
5000 Hz. Note that this representation essentially skims the tops of the harmonics present in the log spectrum, and
attempts to capture properties of the vocal tract transfer function significant for perception of phonemes. As with
pitch detection, we apply a threshold attempting to distinguish pitched signal (particularly vowels) from unpitched
signal and silence. This thresholding synchronizes extraction of spectral features with pitch detection. The spectral
information is obtained at a rate of 10 Hz during a sustained tone, using the most recent 32 ms of signal.

Eighteen of the recorded performances were processed by the spectral envelope extractor. We used the output to
generate a vector quantization codebook with 128 entries. A simple Euclidean distance metric was used Next,
digitized recordings of the performances were parsed by hand to identify phonetic boundaries. The time-stamped
spectral representations were time-aligned with the phonetic parse. Phonetic transcriptions of all pieces were based
on the IPA (International Phonetic Alphabet) commonly taught to students of singing. The recorded pieces
included examples in English, Italian, and German. Distributions over the vector codebook were calculated for
each phoneme occurring in the transcriptions. Note that while vowels are of primary interest, the thresholding used
by the detector does not completely discard all consonants. Thus models for consonants as well as vowels were
developed, but they are based only on observations actually reported by the detector. These distributions were used
as the observation densities for observed spectral envelope (vector codebook entry) conditioned on scored phoneme.

For initial testing of the tracking method, we have assumed that pitch and spectral envelope are independent. We
approximate the joint density by multiplying the individual densities. In reality, this approximation is certainly not
accurate. The observed spectrum is influenced by the fundamental and associated partials. However, if the model
data contains examples of each phoneme over most possible pitches, this assumption may not hinder tracking.
Explicit modeling or better approximations of the joint density might ultimately yield better tracking.

8. Amplitude Changes Indicative of Note Onsets

Sung vowels often exhibit a significant change in amplitude when preceded by consonants, a rest, or a breath. An
amplitude threshold is used in both fundamental pitch and spectral envelope detection. Our simple onset detector
reports an onset when 30 ms of signal with amplitude below this threshold precedes a detected pitch. 30 ms is more
than twice the pitch period of the lowest note sung by a bass, but typically less than the shortest consonants
appearing between vowels. Also, detected onsets must be spaced by at least 150 ms, otherwise the detector does not
report the second onset. This constraint helps to prevent duplicate reports during note transitions. 150 ms is almost
always shorter than the duration of sung notes not in a melisma. The detector reports presence or absence of an
onset for every observation of fundamental pitch and spectral envelope. Providing that the amplitude threshold is
reasonable, this simple approach can reliably detect a useful number of note onsets.

The estimated distribution for detected onsets contains two important factors (conditioning variables). First,
detection of an onset almost always occurs during or just after note transitions. Onsets are rarely reported during a
sustained tone. The chance of detecting the onset of a note depends upon whether the vowel immediately follows a
rest or breath, consonants, or another vowel. In addition, onsets are sometimes detected immediately before a rest.
Second, when a group of consonants precedes a vowel, the number of voiced consonants in that group affects the
likelihood of detecting an onset. The presence of fewer voiced consonants increases the likelihood that an onset
will be observed. The distribution for detected onsets specifies the likelihood of detecting onsets according to these
conditions: whether a transition between notes contains a rest or breath, consonants, or neither; and when
consonants are present, both the number of consonants and the number of voiced consonants present.

The onset detector was applied to eighteen of the recorded performances. Note that during collection of all three
types of observations, the amplitude threshold was held consistent per recording. Detected onsets were associated
with notes in the score based on the phonetic parses previously mentioned. Probabilities were estimated for each of
the conditions just described by calculating the percent of instances when an onset was detected. Note that for each
condition, Pr(No Onset) = 1 - Pr(Onset). For an initial performance tracking system, we have assumed that the
detected pitch, spectral envelope, and detected onsets are independent. We approximate the joint density by
multiplying the individual densities for all three types of observations.
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9. Model Application and Results

To assess the tracking model, we have used it to track both recorded and live performances. The tracking model
was used as part of an automated accompaniment system. To produce a point estimate of the performer's position,
the system determines the 100 ms region of score that most likely encompasses the performer's current location.
This region is the 100 ms portion of the score position density function containing the most probability. The center
of this region is used as a best estimate of the vocalist's current position.

To quantitatively evaluate the tracking system, we examine the difference between the time when the system
estimates a particular position and the time that the vocalist was actually at that position. During a performance, all
of the system's position estimates are recorded with a time stamp indicating the point in the audio signal last
processed. The recorded performance is also digitized and parsed by hand to locate the onset time of each note in
the score. The start of the vowel in each syllable is taken to indicate the onset. For a melisma, changes in pitch are
used instead. The recorded position estimates are time aligned with the transcript. We calculate differences
between the time at which the system first estimated a position within each score note and the time at which the
performer was actually at that position. Graphs and statistics of this data are examined to assess the tracking
system's accuracy, subject to the errors introduced by human generated transcripts and time alignment.

Table 1 presents summary statistics for eight recorded vocal performances. These performances were not used
when estimating the density functions. Four sets of observation types were applied—fundamental pitch,
fundamental pitch and spectral envelope, fundamental pitch and onsets, and all three types of observations. The
values reported for each performance are averages over three trials. Statistics were calculated using all estimated
positions and after removing the 5% outliers by absolute value. Note that the system combining all observation
types produced smaller standard deviations for 6 of 8 performances when all data is considered and for all 8
performances with outliers discarded. The average results across the eight performances also improved. Observing
spectral envelope and pitch did not produce as noticeable an improvement. Standard deviations are smaller for only
3 performances when all data is considered and for 5 performances when outliers are removed. The average with
outliers removed also improved. Observing note onsets as well as pitch yielded smaller standard deviations for 5
performances when all data is considered and 7 performances with outliers discarded.

Table 2 presents summary statistics for six live performances. Two instances of the tracking method were
evaluated—one using pitch and one using all observation types. Only performance six showed a drastic increase in
the standard deviations. Two of three significant errors for this trial are due to spurious detection of onsets.
Adjusting the amplitude threshold and repeating the performance would have improved the results. Note that this
performance significantly influences the average standard deviations. Otherwise, statistics for the live performances
are comparable to those for the recorded performances.

Table 1: Results of tracking recorded performances using different types of observations. Sample standard
deviations for differences between the earliest time of an estimated position within each note and the time the
performer was actually at that position. 5% outliers were removed based on absolute value.

Pitch Pitch & Spec. Env. Pitch & Onsets All Observations
Performance | AllData  No Outliers | AllData  NoOutliers | AllData No Outliers | AllData  No Outliers
1 208 ms 155 ms 203 ms 121 ms 288 ms 194 ms 175 ms 96 ms
2 94 ms 52 ms 99 ms 59 ms 87 ms 36 ms 60 ms 34 ms
3 132 ms 97 ms 176 ms 108 ms 131 ms 68 ms 154 ms 76 ms
4 278 ms 209 ms 323 ms 195 ms 299 ms 194 ms 355 ms 170 ms
5 292 ms 159 ms 186 ms 89 ms 243 ms 128 ms 200 ms 72 ms
6 111 ms 75 ms 117 ms 67 ms 113 ms 63 ms 90 ms 56 ms
7 138 ms 85 ms 114 ms 65 ms 131 ms 66 ms 94 ms 60 ms
8 151 ms 108 ms 179 ms 117 ms 138 ms 71 ms 147 ms 78 ms

Average 175 ms 117 ms 175 ms 103 ms 179 ms 103 ms 159 ms 80 ms
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Table 2: Results of tracking live performances using different types of observations. Sample standard deviations
for differences between the earliest time of an estimated position within each note and the time the performer was
actually at that position. 5% Outliers were removed based on absolute value.

Pitch All Observations
Performance All Data No Outliers All Data No Outliers
1 102 ms 60 ms 97 ms 51 ms
2 181 ms 111 ms 154 ms 94 ms
3 90 ms 71 ms 79 ms 50 ms
4 104 ms 62 ms 80 ms 48 ms
5 112 ms 77 ms 116 ms 69 ms
6 179 ms 116 ms 318 ms 133 ms
Average 128 ms 83 ms 141 ms 74 ms

Generally, the statistics calculated over all time differences are influenced by a few outliers of large magnitude.
The outliers indicate situations where the tracking system cannot disambiguate position based on the observations,
or where the performer has made a large, sudden, and unexpected tempo change. Our models for spectral envelope
often help position estimation, but are not complete enough to avoid causing an occasional confusion. Likewise, the
amplitude thresholding sometimes leads to onset recognition where no onset is expected.

As an alternative assessment, the results of paired comparisons tests are presented in Table 3. These tests paired
the trials using only pitch with trials using all observation types. For each pair, the time differences reported for the
same note were subtracted. T-tests were run on these "differences of differences" to assess whether observed
improvements or degradations were more than just random. Table 3 shows the number of trials that improved or
degraded for various P-values when using all observation types. Note that for the recorded performances, many
trials improved while none degraded. Only one live performance trial degraded significantly—performance six.

Mecca reports that, when playing a simple scale against a metronomic pulse at constant tempo, accompanists
produce timing errors with standard deviations in the range of 5 to 48 ms (Mecca 1993). Melodic timing errors due
to motor noise commonly are reported in the range of 10 to 100 ms (Desain and Honing 1992). While it is difficult
to draw firm conclusions, it is probably safe to say that performance of our tracking system is not as good as a
human listener. However, in many cases it is sufficient for useful accompaniment or analysis systems. For
instance, our accompaniment system is not designed to jump immediately to the estimated position, but most often
just increases or decreases the tempo beyond the singer's current tempo. If the outliers are not too large and occur
independent of one another, only a few will significantly affect accompaniment. Also, in some trials, many of the
outliers occurred in unaccompanied sections of a piece—either recitativos or cadenzas. Note that recorded
performances 1 and 4 contained such sections. During testing there were no examples where the system became
permanently lost or caused the live performer to stop. Finally, even in situations where problems do arise, tracking

Table 3: Results of paired comparison t-tests for recorded and live performances. Values indicate the number of
trials that improved or degraded when using all observations versus using only fundamental pitch. Tests
considered the difference between time differences (estimate time minus actual time) paired by note.

P-Value per | Recorded Performances Live Performances
Performance | (24 trials, 8 recordings) (6 trials, 6 performances)

Improved Degraded Improved Degraded

<0.01 9 0 1 1
<0.05 14 0 1 1
<0.10 16 0 2 1
<0.15 17 0 3 1
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can be improved if performers provide score modifications indicating previously unmarked tempo, pitch, and
phonetic changes.

A tracking system using fundamental pitch, estimated tempo, and elapsed time is reasonable at following
performances of Western classical music by trained singers. Statistical models for pitch are good at discriminating
score position, easy to define, and feasible to estimate accurately. Extending the tracking system to observe spectral
envelope and note onsets (amplitude changes) often improves tracking. However, it is difficult to define and
estimate comprehensive statistics for spectral envelope. The approach used by Inoue and colleagues (1994), where
vocalists must sing each vowel before the system accompanies them, may be helpful. However, the dependence of
the spectral envelope on the pitch may limit use of this technique. Also, the simple threshold used to detect onsets
could be replaced by a more sophisticated onset detector, but probably would introduce a more complex statistical
estimation problem. Better statistical models that address these problems could enhance vocal performance
tracking. Also, precise models of tempo changes at cadences, cadenzas, and fermatas could improve tracking.

10. Summary

We have presented an extended statistical method of tracking a vocal performer. It incorporates multiple sources
of information relevant to score following, including observed fundamental pitch, spectral envelope, amplitude
changes associated with note onsets, estimated tempo, elapsed time, and the notated score. Implementation of the
model is based upon empirical density functions estimated from actual performances. Testing of the system has
demonstrated robust and useful tracking, although probably not at the level of a human listener. The statistical
model for tracking permits incorporation of multiple observations obtained from distinct measurements of the sound
signal. This approach supports incremental development and testing, allowing for possible extensions and
subsequent comparative examinations of tracking systems that incorporate different types of observations.
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