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Abstract considered the easiest way for ordinary non-

Melodic similarity is an important concept for music musicians to express a music query. _Unfortunately,
one feature of sung queries is a high error rate

databases, musicological studies, and interactive

music systems. Dynamic programming is commonl xacerbated l_)y a diffic_ult transcription p_roblem, SO
used to compare melodies, often with a distanc obust matching techniques are essential. We are

function based on pitch differences measured idnterehs_,ted mh qompanzg and evaluating me_Iodlc
semitones. This approach computes an “editm‘sltc :jng tec nlqhuesf that compalre sung queries to
distance” as a measure of melodic dissimilarity. TheNIIDI .ata. (".] the future, we plan to investigate

problem can also be viewed in probabilistic terms:SearChIng audio data as well.)

What is the probability that a melody is a “mutation” I

of another melody, given a table of mutationl.-3 Probabilistic Model

probabilities? We explain this approach and To the best of our knowledge, previous

demonstrate how it can be used to search a databassgpplications of dynamic programming to music have
of melodies. Our experiments show that therelied upon an ad-hoc distance function. For example,
probabilistic model performs better than a typical a melodic comparison function might count the

“edit distance” comparison. number of matches between the two melodies, or it
might find minimum number of semitones of

1 Introduction trans_position required to make the melodies
consistent.

. The same basic algorithm can be viewed in
11 Sequence Matchlng probabilistic terms, as presented by Durbét, al.
Sequence matching techniques are used in varioyg998). In this approach, we estimate the probability
research areas, including speech recognitionthat one melody is derived from the other. Viewing
biological sequence analysis, and text informationthe melodies as sequences of symbols, we assume
retrieval. Many algorithms and methods exist forthat each symbol of the derived melody is
such purposes, i.e. dynamic programming algorithmsndependently generated according to some joint
for approximate string matching, and algorithmsprobability p., the probability that symbob was
associated with Markov Models (e.g. the Viterbiderived from symbok. Under this assumption, the

algorithm) and Hidden Markov Models (HMM). probability of the entire sequence alignment is:
As the dynamic programming technique is p.

popular for approximate matching and alignment, it is P(x,y) = HL”'

only natural that it be broadly used in the area of i Xaqyi

music processing since melodic contours can be Where p is the joint probability, andy is the
represented as sequences. Dynamic programming hggopapility that a symbol occurs independently. This
been used for computer accompanimentaiis is known as thedds ratio Because dynamic
(Dannenberg, 1984), comparison of melodic Comourprogramming computes sums of distances, we take

in improvisations (Stammen & Pennycook, 1993), theyhq logarithm of the odds ratio to get thog-odds
alignment of performances to scores for expressivegiio:

timing analysis (Hoshishiba, Horiguchi, & Fujinaga, ~ o _ > s(X, i)
1996; Large, 1993), and music search (McNtal, T4 XY
i

1996).
where
1.2 MIR and Query by Humming s(a,b) =log(-Pab)
The goal of Music Information Retrieval (MIR) is Ga%b

to process musical information and search music In our work, we assume that any symbol is
databases by content. One interesting branch of MiRqually likely, so theq's become constants that we
is sometimes called “Query by Humming”. ignore. In the dynamic programming algorithm, the
Compared to other data entry methods, humming isedit distance” for substituting pitcl for pitch b

Published as: Ning Hu, Roger B. Dannenberg, and Ann L. Lewis (2002). “A Probabilistic Model of
Melodic Similarity.” In Proceedings of the International Computer Music Conferedap.Francisco:
International Computer Music Association.



becomes -logy,,), where the minus sign is used

) : : o , 4500
simply so we can view this as a “distance” to be

minimized. (Equivalently, we could maximize 4000
log(Pab))- 3500 +

In the next section, we describe how to estimate| _ 3900

this function. %2500 Ii
e 22000 +
2 Probabilistic Distribution 2
We gathered 40 audio files labelederiesfrom 8 - 1000

singers: 4 female and 4 male. We showed the singer
a list of songs from our database, asked them to selec 500 1
songs that they knew how to sing, and to sing them 0

on any starting pitch they wanted. e oI T S I I I I
We then created manual transcriptions for each T I B BRI S
Pitch Difference

query consisting of the notes each person was
supposed to be singingiven the key they were in. It Figure 1. Probabilistic distribution histogram collapsed
was usually easy to infer the key they were in becausejni, one octave. Bins have a width of 0.5 semitones.
only once did a singer accidentally change key in the
middle of a query. For this case we chose the key thi . .
singer started in to be the key to transcribe in. We!§ Dynamlc Programmlng
used the audio annotation feature of Audacity Although melodic search is inspired by string
(Dominic Mazzoni, 2001) to enter the transcriptions. matching techniques, it has many properties and
We then merged information from the transcribedpractical problems that do not exist in string
files with pitch estimates from the queries, computingmatching.
frequency differences at each 10ms time interval. We investigated several dynamic programming
Since the singers were allowed to start on anyalgorithms combining different characteristics. The
pitch they wanted, often they started on a pitch thaalgorithm that achieves the best results was invented
was actually in between 2 keys. Because of this, eveafter analyzing important properties of dynamic
if the singer had sung perfectly, his or her set ofprogramming algorithms.
differences between sung and expected pitch values
would all be off by as much as a quarter step. T(3.1 Edit Distance
eliminate this tuning problem, we transposed each
query such that the median of the differences becarr}%e
zero. i
After we collected these sets of normalized pitctheTﬂZs;ggilr%Obnetweenla_ah., weogandh by
. . pattern is:
differences, we merged them together and created a
histogram. The distribution is roughly Gaussian and [ diyja
evenly distributed about zero. This shows us that it is d,, =min fd +w(@_,b)[+w(,b,),
far more likely for a person to be a small amount off d. _ +w(,b_)
when singing, but very unlikely to off by a whole step v )
or more. We then used this data to build a (lsi=m, 1<j=n)
probabilistic distance function that estimates, given 2 a a a
pitches (one the expected pitch and one the sung 2 :
pitch), how likely it is that the singer was aiming for b, (I
the first pitch but actually sang the second.
To simplify our search, we shifted the histogram b | d. ld.
by periods of 12 into the [-6, +6] window, and m '< '< \
summed the overlapping bins. Therefore we got the
probabilistic distribution histogram within one b %’
octave. : Y

For the compared sequence AF&, ... , & and
query sequence B 3k, ... , b, d; represents

i-2,j-1

i-1,j-2

Figure 2. Calculation pattern.

We can think of the algorithm as shrinking the
musical contour of either the query or the compared
sequence to (locally) double the tempo at certain
positions, and then comparing two musical contours
exactly. It can also be viewed as assigning a penalty
for insertion/deletion.



3.2 Frame-Based Representation Although this is still a relatively small number, we

We call the usual note-by-note matching approacfpe”eve it is large enough to assessréiative quality

event-basedsearch to emphasize that notes areOf o_hfferent _melod|c comparison and search
Igorithms. Since the original files now have 10

discrete events rather than continuous functions o?

time. Another representation and search strategy vv{(-f;?grg:gtntgg\{cehr?glgg'e%f (t);:é Sl%a{ﬁgrﬁleqsoztshmse rrig(t)gw
have explored is callefdame-basedearch. (Mazzoni y

& Dannenberg, 2001) Instead of ‘working with SCO‘:%fgzlgllﬁa(t)ggter:Izfallle(.)rithms we used 37 queries
discrete notes, the frame-based representation 9 ! q

encodes a query rather directly by segmenting thég'rl]arl}grth(z\f: cli)srﬁdutt% gergzgﬁr;hgf Zliztsc?sr]r:ﬁgr]i.t Ft%r
time-varying pitch contour into frames of equal query, P y

duration. There is no segmentation into notes. Thiéeach entry in the database, and we determine the rank

approach is inspired by early speech recognitionorder of the correct database entry for the query. The

research (Itakura, 1975) and is also related to thguality of the algorithm is assessed by_ counting how
approach of Nisﬁimuraet al. (2001). Our search many searches return correct songs with a rank order

. . af 1, in the top 10, or in the top 100.
composes melodic contours represented by 10 pItCR ’ ’ : . .
frames per second. We tested two sets of pitch distance function

within the same dynamic programming algorithm,

. which achieves the best results among all the

3.3 Other Important Properties algorithms we have tested. The first distance function
In the conventional dynamic programming is quite simple. The weight

algorithm, there is a penalty for skipping the prefix (p. —p,) mod12

and suffix of the compared sequence from the w(a,b,)=min 12_’ _ 41t

original sequence. Alternatively, we can assign no ((p, =) mod12)

penalty for skipping the prefix and suffix. (McNad, p, represents the pitch of the notérasemitones.

al., 1996) Thus the initial conditions of the algorithm The range ofw is [0, 6].

are. ) The second one retrieves the probabilistic
do=0,i=0 ) distribution histogram and gets the probability
doj=Chjat W(@ b), j=1 depending on the difference from the expected pitch
We are not very sensitive to absolute pitch, so thé ©0 t'he sung pitch;pso the weight is set be

pitches of a melody can be shifted temsposedby w'(a,, b)) =~log(P(p, —p,))-

any interve}I. We simply t.ranspose queries into .e.ach Here P(x) represents the probability when the
of 12 possible keys, and ignore octave transpositiongitch difference(p, —p, )mod 12 is equal to x mod

This allows shifts of an octave within a melody
without penalty. The pitches of the frames are no

r’LZ. x ranges from —6 to 6. The range of is
guantized but are represented as floating point vaIuein +°°)-

To limit the cost of search, we ignore octaves here ag

well and search the database 12 times, transposing th 40

query by semitones. 35 OLinear Distance
In the same way that pitches can be offset without| _ 0 Function

changing the perceptual quality of a melody, time can é ;g |

also be scaled. We search the database with numeroy 3 15 | B Probablistic

time-scaled versions of queries (or alternatively, 10 | Distance

time-scaled versions of the database entries) to cove 51 Function

a reasonable range of tempos. At least one of thes 0]

time-scaled versions should be a close match to ¢ & Q\,Q KO-

correct target in the database. T KK

4 Experiment Figure 3. Algorithm comparison chart.

For the experiment, we collected and processed The result shows that under the same conditions,
598 MIDI files containing popular songs. Thesethe probabilistic model gets slightly better results
include rock songs, folk songs, and TV theme songshan the non-probabilistic model. It is also by far the
making it easy to invite non-musicians to sing thebest among all the algorithms we have tested.
theme of a song included in the database. The files Though the difference between these two
contain a total of 1,239,138 notes. algorithms are not large, we believe it is significant

The data is processed using theddrT thematic  since the probabilistic model found all of the
extractor (Meek & Birmingham, 2001), which locates melodies found by the non-probabilistic model as
the 10 most common phrases or melodies from eachell as additional melodies not found by the non-
original file. After processing, there are 5980 entriesprobabilistic model.
in the database with an average length of 22 notes.
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