
Published as: Ning Hu, Roger B. Dannenberg, and Ann L. Lewis (2002). “A Probabilistic Model of
Melodic Similarity.” In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association.

A Probabilistic Model of Melodic Similarity

Ning Hu, Roger B. Dannenberg, Ann L. Lewis

School of Computer Science, Carnegie Mellon University
email: ninghu@cs.cmu.edu

Abstract
Melodic similarity is an important concept for music
databases, musicological studies, and interactive
music systems. Dynamic programming is commonly
used to compare melodies, often with a distance
function based on pitch differences measured in
semitones. This approach computes an “edit
distance” as a measure of melodic dissimilarity. The
problem can also be viewed in probabilistic terms:
What is the probability that a melody is a “mutation”
of another melody, given a table of mutation
probabilities? We explain this approach and
demonstrate how it can be used to search a database
of melodies. Our experiments show that the
probabilistic model performs better than a typical
“edit distance” comparison.

1 Introduction

1.1 Sequence Matching
Sequence matching techniques are used in various

research areas, including speech recognition,
biological sequence analysis, and text information
retrieval. Many algorithms and methods exist for
such purposes, i.e. dynamic programming algorithms
for approximate string matching, and algorithms
associated with Markov Models (e.g. the Viterbi
algorithm) and Hidden Markov Models (HMM).

As the dynamic programming technique is
popular for approximate matching and alignment, it is
only natural that it be broadly used in the area of
music processing since melodic contours can be
represented as sequences. Dynamic programming has
been used for computer accompaniment
(Dannenberg, 1984), comparison of melodic contour
in improvisations (Stammen & Pennycook, 1993), the
alignment of performances to scores for expressive
timing analysis (Hoshishiba, Horiguchi, & Fujinaga,
1996; Large, 1993), and music search (McNab, et al.,
1996).

1.2 MIR and Query by Humming
The goal of Music Information Retrieval (MIR) is

to process musical information and search music
databases by content. One interesting branch of MIR
is sometimes called “Query by Humming”.
Compared to other data entry methods, humming is

considered the easiest way for ordinary non-
musicians to express a music query. Unfortunately,
one feature of sung queries is a high error rate
exacerbated by a difficult transcription problem, so
robust matching techniques are essential. We are
interested in comparing and evaluating melodic
matching techniques that compare sung queries to
MIDI data. (In the future, we plan to investigate
searching audio data as well.)

1.3 Probabilistic Model
 To the best of our knowledge, previous

applications of dynamic programming to music have
relied upon an ad-hoc distance function. For example,
a melodic comparison function might count the
number of matches between the two melodies, or it
might find minimum number of semitones of
transposition required to make the melodies
consistent.

The same basic algorithm can be viewed in
probabilistic terms, as presented by Durbin, et al.
(1998). In this approach, we estimate the probability
that one melody is derived from the other. Viewing
the melodies as sequences of symbols, we assume
that each symbol of the derived melody is
independently generated according to some joint
probability pab, the probability that symbol b was
derived from symbol a. Under this assumption, the
probability of the entire sequence alignment is:

∏=
i

yixi

qq

p

yx ii

yxP
,

),(

Where p is the joint probability, and q is the
probability that a symbol occurs independently. This
ratio is known as the odds ratio. Because dynamic
programming computes sums of distances, we take
the logarithm of the odds ratio to get the log-odds
ratio:

ÿ=
i

ii yxsS),,(

where

)log(),(
ba

ab
qq

p
bas =

In our work, we assume that any symbol is
equally likely, so the q’s become constants that we
ignore. In the dynamic programming algorithm, the
“edit distance” for substituting pitch a for pitch b

 - 2 -

becomes -log(pab), where the minus sign is used
simply so we can view this as a “distance” to be
minimized. (Equivalently, we could maximize
log(pab)).

In the next section, we describe how to estimate
this function.

2 Probabilistic Distribution
We gathered 40 audio files labeled queries from 8

singers: 4 female and 4 male. We showed the singers
a list of songs from our database, asked them to select
songs that they knew how to sing, and to sing them
on any starting pitch they wanted.

We then created manual transcriptions for each
query consisting of the notes each person was
supposed to be singing, given the key they were in. It
was usually easy to infer the key they were in because
only once did a singer accidentally change key in the
middle of a query. For this case we chose the key this
singer started in to be the key to transcribe in. We
used the audio annotation feature of Audacity
(Dominic Mazzoni, 2001) to enter the transcriptions.

We then merged information from the transcribed
files with pitch estimates from the queries, computing
frequency differences at each 10ms time interval.

Since the singers were allowed to start on any
pitch they wanted, often they started on a pitch that
was actually in between 2 keys. Because of this, even
if the singer had sung perfectly, his or her set of
differences between sung and expected pitch values
would all be off by as much as a quarter step. To
eliminate this tuning problem, we transposed each
query such that the median of the differences became
zero.

After we collected these sets of normalized pitch
differences, we merged them together and created a
histogram. The distribution is roughly Gaussian and
evenly distributed about zero. This shows us that it is
far more likely for a person to be a small amount off
when singing, but very unlikely to off by a whole step
or more. We then used this data to build a
probabilistic distance function that estimates, given 2
pitches (one the expected pitch and one the sung
pitch), how likely it is that the singer was aiming for
the first pitch but actually sang the second.

To simplify our search, we shifted the histogram
by periods of 12 into the [-6, +6] window, and
summed the overlapping bins. Therefore we got the
probabilistic distribution histogram within one
octave.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-5
.8

-4
.8

-3
.8

-2
.8

-1
.8

-0
.8

0.
25

1.
25

2.
25

3.
25

4.
25

5.
25

Pitch Difference

F
re

qu
en

cy

Frequency

Figure 1. Probabilistic distribution histogram collapsed
into one octave. Bins have a width of 0.5 semitones.

3 Dynamic Programming
Although melodic search is inspired by string

matching techniques, it has many properties and
practical problems that do not exist in string
matching.

We investigated several dynamic programming
algorithms combining different characteristics. The
algorithm that achieves the best results was invented
after analyzing important properties of dynamic
programming algorithms.

3.1 Edit Distance
For the compared sequence A = a1, a2, … , am and

the query sequence B = b1, b2, … , bn, di,j represents
the dissimilarity between a1, a2, … , ai and b1, b2, … ,
bj. The calculation pattern is:

)b,a(w

)b,a(wd

)b,a(wd

d

mind ji

1ji2j,1i

j1i1j,2i

1j,1i

j,i +
�
�

�
�

�

�
�

�
�

�

+
+=

−−−

−−−

−−

,

(1 ÿ i ÿ m, 1 ÿ j ÿ n)

 2ia − 1ia − ia

2jb −

 2j,1id −−

1jb −

1j,2id −−

1j,1id −−

jb j,id

Figure 2. Calculation pattern.

We can think of the algorithm as shrinking the
musical contour of either the query or the compared
sequence to (locally) double the tempo at certain
positions, and then comparing two musical contours
exactly. It can also be viewed as assigning a penalty
for insertion/deletion.

 - 3 -

3.2 Frame-Based Representation
We call the usual note-by-note matching approach

event-based search to emphasize that notes are
discrete events rather than continuous functions of
time. Another representation and search strategy we
have explored is called frame-based search. (Mazzoni
& Dannenberg, 2001) Instead of working with
discrete notes, the frame-based representation
encodes a query rather directly by segmenting the
time-varying pitch contour into frames of equal
duration. There is no segmentation into notes. This
approach is inspired by early speech recognition
research (Itakura, 1975) and is also related to the
approach of Nishimura, et al. (2001). Our search
composes melodic contours represented by 10 pitch
frames per second.

3.3 Other Important Properties
In the conventional dynamic programming

algorithm, there is a penalty for skipping the prefix
and suffix of the compared sequence from the
original sequence. Alternatively, we can assign no
penalty for skipping the prefix and suffix. (McNab, et
al., 1996) Thus the initial conditions of the algorithm
are:

di,0 = 0, i � 0
d0,j = d0,j-1 + w(φ, bj), j � 1

We are not very sensitive to absolute pitch, so the
pitches of a melody can be shifted, or transposed, by
any interval. We simply transpose queries into each
of 12 possible keys, and ignore octave transpositions.
This allows shifts of an octave within a melody
without penalty. The pitches of the frames are not
quantized but are represented as floating point values.
To limit the cost of search, we ignore octaves here as
well and search the database 12 times, transposing the
query by semitones.

In the same way that pitches can be offset without
changing the perceptual quality of a melody, time can
also be scaled. We search the database with numerous
time-scaled versions of queries (or alternatively,
time-scaled versions of the database entries) to cover
a reasonable range of tempos. At least one of these
time-scaled versions should be a close match to a
correct target in the database.

4 Experiment
For the experiment, we collected and processed

598 MIDI files containing popular songs. These
include rock songs, folk songs, and TV theme songs,
making it easy to invite non-musicians to sing the
theme of a song included in the database. The files
contain a total of 1,239,138 notes.

The data is processed using the MUSART thematic
extractor (Meek & Birmingham, 2001), which locates
the 10 most common phrases or melodies from each
original file. After processing, there are 5980 entries
in the database with an average length of 22 notes.

Although this is still a relatively small number, we
believe it is large enough to assess the relative quality
of different melodic comparison and search
algorithms. Since the original files now have 10
representative melodies, our search algorithms report
the best match to any of the 10 themes as the match
score for the original file.

To evaluate the algorithms, we used 37 queries
similar to those used to generate the histogram. For
each query, we compute a measure of dissimilarity to
each entry in the database, and we determine the rank
order of the correct database entry for the query. The
quality of the algorithm is assessed by counting how
many searches return correct songs with a rank order
of 1, in the top 10, or in the top 100.

We tested two sets of pitch distance function
within the same dynamic programming algorithm,
which achieves the best results among all the
algorithms we have tested. The first distance function
is quite simple. The weight

�
�
�

�
�
�

−−
−

=
)12mod)pp((12

12mod)pp(
min)b,a(w

ij

ij

ji ,

ip represents the pitch of the note ai in semitones.

The range of w is [0, 6].
The second one retrieves the probabilistic

distribution histogram and gets the probability
depending on the difference from the expected pitch
pi to the sung pitch pj, so the weight is set be

))pp(Plog()b,a(w ijji −−=′ .

Here P(x) represents the probability when the
pitch difference)pp(ij − mod 12 is equal to x mod

12. x ranges from –6 to 6. The range of w′ is
[)∞+,0 .

0
5

10
15
20
25
30
35
40

Top
1

Top
10

Top
10

0

Top
59

8

N
um

be
r

Linear Distance
Function

Probablistic
Distance
Function

Figure 3. Algorithm comparison chart.

The result shows that under the same conditions,
the probabilistic model gets slightly better results
than the non-probabilistic model. It is also by far the
best among all the algorithms we have tested.

Though the difference between these two
algorithms are not large, we believe it is significant
since the probabilistic model found all of the
melodies found by the non-probabilistic model as
well as additional melodies not found by the non-
probabilistic model.

 - 4 -

5 Conclusions
Melodic similarity is an important subject for

many areas of study. In this article, we have
demonstrated an approach based on the concepts of
probability and maximum likelihood. This approach
works better than the use of ad-hoc distance functions
when tested on a query-by-humming database
problem.

We believe this result is significant for other
applications. In particular, it could be used for
computer accompaniment, where it is known that
certain errors are more likely than others. This gives
further support to other research on accompaniment
systems that incorporate learning and probabilistic
models. (Grubb & Dannenberg, 1997; Raphael, 1999)

Melodic similarity is also important for music
understanding and analysis. For example, the work of
Cope (Cope, 1996) relies upon melodic comparison
to identify similar fragments of scores, and dynamic
programming has been used by Rolland (Rolland &
Ganascia, 2000) to locate patterns in music.

Finally, melodic similarity has important
applications in musicology. (Hewlett and Selfridge-
Field, 1998) The use of probabilistic models might
allow automated melodic comparison to better
approximate perceptual judgments of melodic
similarity.

While this work has demonstrated the
effectiveness of a probabilistic model of melodic
similarity, the model is a simple one. More complex
models might take context into account; for example,
we have observed that singing accuracy is lower at
the beginning of a note and increases somewhat
during the course of the note. This could be
incorporated into the model by making pab a function
of time position within each note. The model for
insertion and deletion penalties should also be refined
based on query data.

6 Acknowledgments
Dominic Mazzoni implemented the pitch analysis and
transcription software as well as the initial version of
the frame-based algorithm. This work is a part of the
MUSART project (http://musen.engin.umich.edu/
musearts.html) and has benefited greatly from
conversations with other project members. This work
was supported by the National Science Foundation,
Award #0085945.

7 References
Cope, D. (1996). Experiments in Musical Intelligence (Vol.

12). Madison, Wisconsin: A-R Editions, Inc.
Dannenberg, R. B. (1984, 1985). "An On-Line Algorithm

for Real-Time Accompaniment." Proceedings of the
1984 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 193-198.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998).
Biological sequence analysis: Cambridge University
Press.

Grubb, L., & Dannenberg, R. B. (1997). "A Stochastic
Method of Tracking a Vocal Performer." 1997
International Computer Music Conference. San
Francisco: International Computer Music Association.

Hewlett, W. and Selfridge-Field, E. (1998). Melodic
Similarity: Concepts, Procedures, and Applications.
Computing in Musicology (Vol. 11). Cambridge: MIT
Press.

Hoshishiba, T., Horiguchi, S., & Fujinaga, I. (1996). "Study
of Expression and Individuality in Music Performance
Using Normative Data Derived from MIDI Recordings
of Piano Music." International Conference on Music
Perception and Cognition. pp. 465-470.

Itakura, F. (1975). "Minimum prediction residual principle
applied to speech recognition." IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-23,
52-72.

Large, E. W. (1993). "Dynamic programming for the
analysis of serial behaviors." Behavior Research
Methods, Instruments, and Computers, 25(2), 238-241.

Mazzoni, D. (2001). "A Fast Data Structure for Disk-Based
Audio Editing." Proceedings of the 2001 International
Computer Music Conference. San Francisco:
International Computer Music Association, pp. 107-
110.

Mazzoni, D., & Dannenberg, R. B. (2001). "Melody
Matching Directly From Audio." 2nd Annual
International Symposium on Music Information
Retrieval. Bloomington: Indiana University, pp. 17-18.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L.,
& Cunningham, S. J. (1996). "Towards the digital
music library: Tune retrieval from acoustic input."
Proceedings of Digital Libraries '96. ACM.

Meek, C., & Birmingham, W. P. (2001). "Thematic
Extractor." 2nd Annual International Symposium on
Music Information Retrieval. Bloomington: Indiana
University, pp. 119-128.

Nishimura, T., Hashiguchi, H., Takita, J., Zhang, J. X.,
Goto, M., & Oka, R. (2001). "Music Signal Spotting
Retrieval by a Humming Query Using Start Frame
Feature Dependent Continuous Dynamic
Programming." International Symposium on Music
Information Retrieval. pp. 211-218.

Raphael, C. (1999). "Automatic Segmentation of Acoustic
Musical Signals Using Hidden Markov Models." IEEE
Transactions on PAMI, 21(4), 360-370.

Rolland, P.-Y., & Ganascia, J.-G. (2000). Musical pattern
extraction and similarity assessment. In E. Miranda
(Ed.), Readings in Music and Artificial Intelligence (pp.
115-144): Harwood Academic Publishers.

Stammen, D., & Pennycook, B. (1993). "Real-Time
Recognition of Melodic Fragments Using the Dynamic
Timewarp Algorithm." Proceedings of the 1993
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 232-235.

