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Abstract 
Melodic similarity is an important concept for music 
databases, musicological studies, and interactive 
music systems. Dynamic programming is commonly 
used to compare melodies, often with a distance 
function based on pitch differences measured in 
semitones. This approach computes an “edit 
distance” as a measure of melodic dissimilarity. The 
problem can also be viewed in probabilistic terms: 
What is the probability that a melody is a “mutation” 
of another melody, given a table of mutation 
probabilities? We explain this approach and 
demonstrate how it can be used to search a database 
of melodies. Our experiments show that the 
probabilistic model performs better than a typical 
“edit distance” comparison. 

1 Introduction 

1.1 Sequence Matching 
Sequence matching techniques are used in various 

research areas, including speech recognition, 
biological sequence analysis, and text information 
retrieval. Many algorithms and methods exist for 
such purposes, i.e. dynamic programming algorithms 
for approximate string matching, and algorithms 
associated with Markov Models (e.g. the Viterbi 
algorithm) and Hidden Markov Models (HMM). 

As the dynamic programming technique is 
popular for approximate matching and alignment, it is 
only natural that it be broadly used in the area of 
music processing since melodic contours can be 
represented as sequences. Dynamic programming has 
been used for computer accompaniment 
(Dannenberg, 1984), comparison of melodic contour 
in improvisations (Stammen & Pennycook, 1993), the 
alignment of performances to scores for expressive 
timing analysis (Hoshishiba, Horiguchi, & Fujinaga, 
1996; Large, 1993), and music search (McNab, et al., 
1996). 

1.2 MIR and Query by Humming 
The goal of Music Information Retrieval (MIR) is 

to process musical information and search music 
databases by content. One interesting branch of MIR 
is sometimes called “Query by Humming”. 
Compared to other data entry methods, humming is 

considered the easiest way for ordinary non-
musicians to express a music query. Unfortunately, 
one feature of sung queries is a high error rate 
exacerbated by a difficult transcription problem, so 
robust matching techniques are essential. We are 
interested in comparing and evaluating melodic 
matching techniques that compare sung queries to 
MIDI data. (In the future, we plan to investigate 
searching audio data as well.) 

1.3 Probabilistic Model 
 To the best of our knowledge, previous 

applications of dynamic programming to music have 
relied upon an ad-hoc distance function. For example, 
a melodic comparison function might count the 
number of matches between the two melodies, or it 
might find minimum number of semitones of 
transposition required to make the melodies 
consistent. 

The same basic algorithm can be viewed in 
probabilistic terms, as presented by Durbin, et al. 
(1998). In this approach, we estimate the probability 
that one melody is derived from the other. Viewing 
the melodies as sequences of symbols, we assume 
that each symbol of the derived melody is 
independently generated according to some joint 
probability pab, the probability that symbol b was 
derived from symbol a. Under this assumption, the 
probability of the entire sequence alignment is: 
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Where p is the joint probability, and q is the 
probability that a symbol occurs independently. This 
ratio is known as the odds ratio. Because dynamic 
programming computes sums of distances, we take 
the logarithm of the odds ratio to get the log-odds 
ratio: 
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In our work, we assume that any symbol is 
equally likely, so the q’s become constants that we 
ignore. In the dynamic programming algorithm, the 
“edit distance” for substituting pitch a for pitch b 
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becomes -log(pab), where the minus sign is used 
simply so we can view this as a “distance” to be 
minimized. (Equivalently, we could maximize 
log(pab)). 

In the next section, we describe how to estimate 
this function. 

2 Probabilistic Distribution 
We gathered 40 audio files labeled queries from 8 

singers: 4 female and 4 male. We showed the singers 
a list of songs from our database, asked them to select 
songs that they knew how to sing, and to sing them 
on any starting pitch they wanted.  

We then created manual transcriptions for each 
query consisting of the notes each person was 
supposed to be singing, given the key they were in. It 
was usually easy to infer the key they were in because 
only once did a singer accidentally change key in the 
middle of a query. For this case we chose the key this 
singer started in to be the key to transcribe in. We 
used the audio annotation feature of Audacity 
(Dominic Mazzoni, 2001) to enter the transcriptions. 

We then merged information from the transcribed 
files with pitch estimates from the queries, computing 
frequency differences at each 10ms time interval.  

Since the singers were allowed to start on any 
pitch they wanted, often they started on a pitch that 
was actually in between 2 keys. Because of this, even 
if the singer had sung perfectly, his or her set of 
differences between sung and expected pitch values 
would all be off by as much as a quarter step. To 
eliminate this tuning problem, we transposed each 
query such that the median of the differences became 
zero. 

After we collected these sets of normalized pitch 
differences, we merged them together and created a 
histogram. The distribution is roughly Gaussian and 
evenly distributed about zero. This shows us that it is 
far more likely for a person to be a small amount off 
when singing, but very unlikely to off by a whole step 
or more. We then used this data to build a 
probabilistic distance function that estimates, given 2 
pitches (one the expected pitch and one the sung 
pitch), how likely it is that the singer was aiming for 
the first pitch but actually sang the second.  

To simplify our search, we shifted the histogram 
by periods of 12 into the [-6, +6] window, and 
summed the overlapping bins.  Therefore we got the 
probabilistic distribution histogram within one 
octave.  
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Figure 1. Probabilistic distribution histogram collapsed 
into one octave. Bins have a width of 0.5 semitones. 

3 Dynamic Programming 
Although melodic search is inspired by string 

matching techniques, it has many properties and 
practical problems that do not exist in string 
matching. 

We investigated several dynamic programming 
algorithms combining different characteristics. The 
algorithm that achieves the best results was invented 
after analyzing important properties of dynamic 
programming algorithms.  

3.1 Edit Distance 
For the compared sequence A = a1, a2, … , am and 

the query sequence B = b1, b2, … , bn, di,j represents 
the dissimilarity between a1, a2, … , ai and b1, b2, … , 
bj. The calculation pattern is: 
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Figure 2. Calculation pattern. 

We can think of the algorithm as shrinking the 
musical contour of either the query or the compared 
sequence to (locally) double the tempo at certain 
positions, and then comparing two musical contours 
exactly. It can also be viewed as assigning a penalty 
for insertion/deletion. 
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3.2 Frame-Based Representation 
We call the usual note-by-note matching approach 

event-based search to emphasize that notes are 
discrete events rather than continuous functions of 
time. Another representation and search strategy we 
have explored is called frame-based search. (Mazzoni 
& Dannenberg, 2001) Instead of working with 
discrete notes, the frame-based representation 
encodes a query rather directly by segmenting the 
time-varying pitch contour into frames of equal 
duration. There is no segmentation into notes. This 
approach is inspired by early speech recognition 
research (Itakura, 1975) and is also related to the 
approach of Nishimura, et al. (2001). Our search 
composes melodic contours represented by 10 pitch 
frames per second. 

3.3 Other Important Properties 
In the conventional dynamic programming 

algorithm, there is a penalty for skipping the prefix 
and suffix of the compared sequence from the 
original sequence.  Alternatively, we can assign no 
penalty for skipping the prefix and suffix. (McNab, et 
al., 1996) Thus the initial conditions of the algorithm 
are: 

di,0 = 0, i �  0 
d0,j = d0,j-1 + w(φ, bj), j �  1             

We are not very sensitive to absolute pitch, so the 
pitches of a melody can be shifted, or transposed, by 
any interval. We simply transpose queries into each 
of 12 possible keys, and ignore octave transpositions. 
This allows shifts of an octave within a melody 
without penalty. The pitches of the frames are not 
quantized but are represented as floating point values. 
To limit the cost of search, we ignore octaves here as 
well and search the database 12 times, transposing the 
query by semitones. 

In the same way that pitches can be offset without 
changing the perceptual quality of a melody, time can 
also be scaled. We search the database with numerous 
time-scaled versions of queries (or alternatively, 
time-scaled versions of the database entries) to cover 
a reasonable range of tempos. At least one of these 
time-scaled versions should be a close match to a 
correct target in the database.  

4 Experiment 
For the experiment, we collected and processed 

598 MIDI files containing popular songs. These 
include rock songs, folk songs, and TV theme songs, 
making it easy to invite non-musicians to sing the 
theme of a song included in the database. The files 
contain a total of 1,239,138 notes. 

The data is processed using the MUSART thematic 
extractor (Meek & Birmingham, 2001), which locates 
the 10 most common phrases or melodies from each 
original file. After processing, there are 5980 entries 
in the database with an average length of 22 notes. 

Although this is still a relatively small number, we 
believe it is large enough to assess the relative quality 
of different melodic comparison and search 
algorithms. Since the original files now have 10 
representative melodies, our search algorithms report 
the best match to any of the 10 themes as the match 
score for the original file. 

To evaluate the algorithms, we used 37 queries 
similar to those used to generate the histogram. For 
each query, we compute a measure of dissimilarity to 
each entry in the database, and we determine the rank 
order of the correct database entry for the query. The 
quality of the algorithm is assessed by counting how 
many searches return correct songs with a rank order 
of 1, in the top 10, or in the top 100. 

We tested two sets of pitch distance function 
within the same dynamic programming algorithm, 
which achieves the best results among all the 
algorithms we have tested. The first distance function 
is quite simple. The weight 
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ip represents the pitch of the note ai in semitones. 

The range of w  is [0, 6]. 
The second one retrieves the probabilistic 

distribution histogram and gets the probability 
depending on the difference from the expected pitch 
pi to the sung pitch pj, so the weight is set be 
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Here P(x) represents the probability when the 
pitch difference )pp( ij −  mod 12 is equal to x mod 

12. x ranges from –6 to 6. The range of w′  is 
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Figure 3. Algorithm comparison chart. 

The result shows that under the same conditions, 
the probabilistic model gets slightly better results 
than the non-probabilistic model. It is also by far the 
best among all the algorithms we have tested. 

Though the difference between these two 
algorithms are not large, we believe it is significant 
since the probabilistic model found all of the 
melodies found by the non-probabilistic model as 
well as additional melodies not found by the non-
probabilistic model. 
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5 Conclusions 
Melodic similarity is an important subject for 

many areas of study. In this article, we have 
demonstrated an approach based on the concepts of 
probability and maximum likelihood. This approach 
works better than the use of ad-hoc distance functions 
when tested on a query-by-humming database 
problem. 

We believe this result is significant for other 
applications. In particular, it could be used for 
computer accompaniment, where it is known that 
certain errors are more likely than others. This gives 
further support to other research on accompaniment 
systems that incorporate learning and probabilistic 
models. (Grubb & Dannenberg, 1997; Raphael, 1999) 

Melodic similarity is also important for music 
understanding and analysis. For example, the work of 
Cope (Cope, 1996) relies upon melodic comparison 
to identify similar fragments of scores, and dynamic 
programming has been used by Rolland (Rolland & 
Ganascia, 2000) to locate patterns in music. 

Finally, melodic similarity has important 
applications in musicology. (Hewlett and Selfridge-
Field, 1998) The use of probabilistic models might 
allow automated melodic comparison to better 
approximate perceptual judgments of melodic 
similarity. 

While this work has demonstrated the 
effectiveness of a probabilistic model of melodic 
similarity, the model is a simple one. More complex 
models might take context into account; for example, 
we have observed that singing accuracy is lower at 
the beginning of a note and increases somewhat 
during the course of the note. This could be 
incorporated into the model by making pab a function 
of time position within each note. The model for 
insertion and deletion penalties should also be refined 
based on query data. 
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