. Fugue Reference Manual

Version 1.0

Roger B. Dannenberg
19 August 1991

Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213, US.A.

TABLE OF CONTENTS

Table of Contents

" 1. Introduction and Overview

1.1. Installation

1.2. Examples
1.2.1. Waveforms
1.2.2. Sequences
1.2.3. Envelopes

1.3. Pre-defined Constants

2. Behavioral Abstraction :

2.1. The Environment

2.2. Sequential Behavior

2.3. Simultaneous Behavior
2.4. Sounds vs. Behaviors
2.5, The At Transformation
2.6. Nested Transformations
2.7. Defining Behaviors

3. More Examples

3.1. Stretching Sampled Sounds
3.2. Saving Sound Files
3.3. Frequency Modulation

4. Fugue Functions.

4.1. Sounds
4.1.1. What is a Sound?
_ 4.1.2. Creating Sounds
4.1.3. Accessing Sounds
4.1.4. Low-Level Manipulation Primitives
4.1.5. Other Low-Level Primitives
4.1.6. Miscellaneous Operations
4.2. Behaviors
4.2.1. Using Previously Created Sounds
4.2.2, Sound Synthesis
4.3. Transformations
4.4, Combination and Time Structure

Appendix I. ICMC Conference Paper on Fugue
Appendix II. Lazy Evaluation

IL1. Data Types

IL2. The Sample Structure

11.3. The Node Structure
I1.4. The Sound Structure

Appendix III. C Functions And Example

II1.1. Constructors
I11.2. Destructors
I11.3. Manipulators
I1LA4. fugue.c

II.5. Examples

Appendix IV. Intgen

IV.0.1. Extending Xlisp
IV.1. Header file format
IV.2, Using #define’d macros
IV.3. Lisp Include Files
IV.4. Example

Page i

o Ui kbW W

Page ii FUGUE MANUAL

IV.5. More Details 46
Appendix V. XLISP: An Object-oriented Lisp 47
V.1. Introduction 48
V.2. A Note From The Author 48
V.3. XLISP Command Loop 49
V.4. Break Command Loop ' 49
V.5. Data Types ' 49
V.6. The Evaluator 50
V.7. Lexical Conventions 50
V.8. Readtables 51
V.9. Lambda Lists 52
V.10. Objects : 53
V.11. The ‘“Object’’ Class 54
V.12. The ‘“Class’’ Class 54
V.13. SYMBOLS 35
V.14, Evaluation Functions 56
V.15. Symbol Functions 57
Y.16. Property List Functions 58
V.17. Array Functions 59
V.18. List Functions 59
V.19. Destructive List Functions 62
V.20. Predicate Functions 63
V.21. Control Constructs 65
V.22, Looping Constructs : 67
V.23. The Program Feature 68
V.24. Debugging and Error Handling 69
V.25. Arithmetic Functions) 70
V.26. Bitwise Logical Functions 72
V.27. String Functions 72
V.28. Character Functions 74
V.29. Input/Qutput Functions 76
V.30. The Format Function 77
V.31. File I/O Functions ' 77
V.32, String Stream Functions) 78
V.33. System Functions ' 79
V.34. File I/O Functions 80
V.34.1. Input from a File 80
V.34.2. Output to a File 81
V.34.3. A Slightly More Complicated File Example 81

Index 83

PREFACE Page 1

Preface
This manual is a guide for users of Fugue, a language for composition and sound synthesis.
Fugue grew out of a series of research projects, notably the languages Arctic and Canon. Along
with Fugue, these languages promote a functional style of programming and incorporate time
into the language semantics.

Please help by noting any errors, omissions, or suggestions you may have. You can send your
suggestions to Dannenberg@CS.CMU.EDU (internet) via computer mail, or by campus mail to
Roger B. Dannenberg, School of Computer Science, or by ordinary mail to Roger
B. Dannenberg, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213-3890, USA.

Several people have contributed to Fugue. Chris Fraley wrote the original implementation as a
student of Roger Dannenberg. George Polly augmented the original version with some new
functions. Peter Velikonja and Dean Rubine were early users, and their bravery in dealing with a_
fragile system let to the discovery of many bugs. The latest version of Fugue has undergone a
considerable amount of rewriting, debugging, and enhancement by this author.

I also wish to acknowledge support from CMU and from Yamaha for this work.

INTRODUCTION AND OVERVIEW Page

1. Introduction and Overview

Fugue is a language for sound synthesis and music composition. Unlike score languages that
tend to deal only with events, or signal processing languages that tend to deal only with signals
and synthesis, Fugue handles both in a single integrated system. Fugue is also flexible and easy
to use because it is based on an interactive Lisp interpreter.

With Fugue, you can design instruments by combining functions (much as you would using
the orchestra languages of Music V, cmusic, or Csound). You can call upon these instruments
and generate a sound just by typing a simple expression. You can combine simple expressions
into complex ones to create a whole composition.

Fugue runs under any Unix environment and it produces sound files as output. If you can play
a sound file by typing a command to a Unix shell, then you can get Fugue to play sounds for
you. Fugue is currently configured to run on a NeXT machine, using the built-in sound system
to play Fugue output.

To use Fugue, you should have a basic knowledge of Lisp. An excellent text by Touretzky is
recommended [Touretzky 84]. Appendix V is the reference manual for XLisp, of which Fugue
is a superset.

There are several articles about the design of Fugue and the problems that it solves. The
shortest of these, which appeared in the Proceedings of the ICMC 1989, is included as Appendix
I. The July 1991 issue of IEEE Computer gives more complete coverage. In this manual, I will
give some examples to show how Fugue can be used and describe in detail the available
functions. Appendix III describes the implementation and how to extend it.

1.1. Installation
Fugue is a C program intended to run under the Unix operating system. Fugue is distributed as

a compressed tar file named fugue.tarZ. To install Fugue, copy fugue.tar.Z to your
machine and type:

zcat fugue.tar.Z | tar xf -

cd fugue

make
The first line creates a fugue directory and some subdirectories. Assuming the make completes
successfully, you can run fugue as follows:

cd test

. ./ fugue
When you get the prompt, you may begin typing expressions such as the ones in the following
section. : '

Note: Fugue looks for the file init.1lsp in the current directory. If you look in the
init.lsp in test, you will notice two things. First, init .1lsp loads fugue.lsp from the
fugue directory, and second, init . 1sp defines the function play. It assumes you have a unix
command play that will play a 16-bit mono, 22050 Hz sample rate file with no headers. A play
program for the NeXT machine is included in the distribution, but you will have to make it and
set up your paths so that it will be found.

Page 4 FUGUE MANUAL

1.2. Examples

We will begin with some simple Fugue programs. Detailed explanations of the functions used
in these examples will be presented in later chapters, so at this point, you should just read these
examples to get a sense of how Fugue is used and what it can do. The details will come later.
Most of these examples can be found in the directory fugue/test/ex.

Our first example makes and plays a sound:

;> Making a sound.

(play (osc 60)) |, generate aloud sine wave
This example is about the simplest way to create a sound with Fugue. The osc function
generates a sound using a table-lookup oscillator. There are a number of optional parameters,
but the default is to compute a sinusoid with an amplitude of 1.0. The parameter 60 designates a
pitch of middle C. (Pitch specification will be described in greater detail later.) The result of the
osc function is a sound. To hear a sound, you must use the play function, which (at least in
the NeXT implementation) writes the sound as a 16-bit sound file and runs a Unix program that
plays the file through the machine’s D/A converters.

1.2.1. Waveforms

Our next example will be presented in several steps. The goal is to create a sound using a
wavetable consisting of several harmonics as opposed to a simple sinusoid. In order to build a
table, we will use a function that computes a single harmonic and add harmonics to form a
wavetable, An oscillator will be used to compute the harmonics.

The next step is to add several harmonics together. The function mkwave calls upon
build-harmonic to generate a total of four harmonics with amplitudes 1.0, 0.5, 0.25, and
0.12. These are scaled (by s~scale) and added (by s-add) to create a waveform which is
bound to table. Note: The functions s-add and s-scale should be used with care, and
normally apply only to special non-time-domain signals like wave tables. Other examples will
illustrate how to perform similar operations on the more usual time-domain signals.

A complete Fugue waveform is a list consisting of a sound, a pitch, and t, indicating a
periodic waveform. The pitch gives the nominal pitch of the sound. (This is implicit in a single
cycle wave table, but a sampled sound may have many cycles.) This dotted pair is formed in the
last line of mkwave: we compute the pitch by dividing the sample rate by the table length to get
Hertz, and then convert this to a pitch number.

(defun mkwave ()
(let ((table
(s-add (s-scale (build-harmonic 1.0) 1.0)
(s-add (s-scale (build-harmonic 2.0) 0.5)
{(s-add (s-scale (build-harmonic 3.0) 0.25)
(s-scale (build-harmonic 4.0) 0.12))))))
(setf *wave*
(list table
(hz-to~step (/ *SOUND-SRATE* 2048.0))

£)) o))

The last step of this example is to build the wave. The following code calls mkwave only if
wave is undefined. Since *wave* is set by mkwave, mkwave will not be called again

INTRODUCTION AND OVERVIEW Page 5

when the file is reloaded:
(1f (not (boundp '*wave*)) (mkwave))

1.2.2. Sequences
Finally, we define note to use the waveform, and play several notes in a simple score:

(defun note (pitch dur) (osc pitch dur 0 *wave*))

(play (seqg (note c4 i)
(note d4 i)
(note f£4 1i)
(note g4 i)
(note d4 q)))
Here, note is defined to take pitch and duration as parameters; it calls osc to do the work of
generating a waveform, using *wave* as a wave table.

The seq function is used to invoke a sequence of behaviors. Each note is started at the time
the previous note finishes. The parameters to note are predefined in Fugue: ¢4 is middle C, i
(for elghth note) is 0.5, and g (for Quarter note) is 1.0. See Section 1.3 for a complete
description. The result is the sum of all the computed sounds.

1.2.3. Envelopes
The next example will illustrate the use of envelopes. In Fugue, envelopes are just ordinary
sounds (although they normally have a low sample rate). An envelope is applied to another
sound by multiplication using the mult function. The code shows the definition of env-note,
defined in terms of the note function in the previous example. In env-note, a 4-phase
envelope is generated using the env function, which is illustrated in figure 1.

(env tlt21t4111213 dur)
L1

L2
L3
tl 2 t4

i

dur

Figure 1: An envelope generated by the env function.

Page 6

; env-note produces an enveloped note. The duration
; defaults to 1.0, but stretch can be used to change
; the duration.

,(defun env-note (p)
(mult (note p 1.0)
(env 0.05 0.1 0.5 1.0 0.5 0.4)))

, try it out:

,(play (env—note c4))

; now use stretch to play different durations

(play (seq (stretch 0.25
(seq (env-note c4)
: {env-note d4)))
(stretch 0.5
(seq (env-note £f4)
(env-note g4)))
(env-note c4)))

FUGUE MANUAL

The end of this example shows the use of stretch to modify durations. There are several
transformations supported by Fugue, and transformations of abstract behaviors is perhaps the
fundamental idea behind Fugue. The next section is devoted to explaining this concept, and

further elaboration can be found in Appendix I.

1.3. Pre-defined Constants

For convenience and readability, Fugue pre-defines some constants, mostly based on the

notation of the Adagio score language, as follows:

e Dynamics
lppp =0.33
lpp=0.5
1p=0.75
1mp =0.90
Imf=0.11
1£=1.33
1££=2.00
1£ff£=3.00
dBO = 1.00
dBl =1.122
dB10 = 3.1623

¢ Durations

INTRODUCTION AND OVERVIEW

s = Sixteenth = 0.25

i =elghth=0.5
q = Quarter= 1.0
h=Half =2.0

w = Whole = 4.0

sd, id, qgd, hd,

wd = dotted durations.

st, it, gt, ht, wt = tripletdurations.

¢ Pitches

c0=12.0
cs0, d4d£f0=13.0
do =14.0
ds0, ef0=15.0
e0 =16.0
£0=17.0
fs0, gf0=18.0

g0=19.0
gs0, af0=20.0
a0=21.0
as0, bf0=220
b0 =23.0
cl..bl=240..350
c2..b2=36.0..47.0
c3..b3=48.0..59.0
c4..b4=60.0..71.0
c5..b5=72.0..83.0
c6..b6=84.0..950
c7..b7=96.0..107.0
c8 ..b8=108.0..119.0

Page 7

Page 8

FUGUE MANUAL

BEHAVIORAL ABSTRACTION Page 9

2. Behavioral Abstraction

In Fugue, all functions are subject to transformations. You can think of transformations as
additional parameters to every function, and functions are free to use these additional parameters
in any way. The set of transformation parameters is captured in what is referred to as the
transformation environment. (Note that the term environment is heavily overloaded in computer
science. This is yet another usage of the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to the transformation
environment. This environment may contain certain abstract notions, such as loudness,
stretching a sound in time, etc. These notions will mean different things to different functions.
For example, an oscillator should produce more periods of oscillation in order to stretch its
output. An envelope, on the other hand, might only change the duration of the sustain portion of
the envelope in order to stretch. Stretching a sample could mean resampling it to change its
duration by the appropriate amount.

Thus, transformations in Fugue are not simply operations on signals. For example, if I want to
stretch a note, it does not make sense to compute the note first and then stretch the signal. Doing
so would cause a drop in the pitch. Instead, a transformation modifies the #ransformation
environment in which the note is computed. Think of transformations as making requests to
functions. It is up to the function to carry out the request. Since the function is always in
complete control, it is possible to perform transformations with ‘‘intelligence;”’ that is, the
function can perform an appropriate transformation, such as maintaining the desired pitch and
stretching only phase 3 of an envelope to obtain a longer note.

2.1, The Environment

The transformation environment consists of a set of special Lisp variables. These variables
should be considered read-only and should never be set directly by the programmer. Instead,
they are automatically maintained by transformation operators, which will be described below.

The transformation environment consists of the following elements. Although each element
has a ‘‘standard interpretation,”’ the designer of an instrument or the composer of a complex
behavior is free to interpret the environment in any way. For example, a change in *volume*
may change timbre more than amplitude, and *transpose* may be ignored by percussion
instruments:

time Logical starting time. Note: this is the abstract or perceptual starting time of
a behavior. The actual or physical starting time can be earlier or later. As
examples, a pickup-note to a phrase or the rise-time of a note may occur
before *time*.

70 luxﬁe Loudness, expressed as a linear factor. The default (nominal) loudness is
1.0.

transpose Pitch transposition, expressed in semitones.

stretch Amount by which to stretch in time.

duty The ‘‘duty factor’’, or amount by which to separate or overlap sequential

notes. For example, staccato might be expressed with a *duty* of 0.5,
while very legato playing might be expressed with a *duty* of 1.2.

Page 10 FUGUE MANUAL

Specifically, *duty* stretches the duration of notes (articulation) without
affecting the inter-onset time (the rhythm).

start Start time of a clipping region. Note: unlike the previous elements of the
environment, *start* has a precise interpretation: no sound should be
generated before *start*. This is implemented in all the low-level sound
functions, so it can generally be ignored.

stop Stop time of clipping region. By analogy to *start*, no sound should be
generated after this time.

control-sratex
Sample rate of control signals. This environment element provides the
default sample rate for control signals. There is no formal distinction
between a control signal and an audio signal.

sound-srate Sample rate of musical sounds. This environment element provides the
default sample rate for musical sounds.

2.2. Sequential Behavior
Previous examples have shown the use of seq, the sequential behavior operator. We can now
explain seq in terms of transformations. Consider the simple expression:

(play (seq (note c4 q) (note d4 i)))

This expression is evaluated as follows: first, *time* is set to 0, and (note c4 q) is
evaluated. A sound is returned and saved. The sound has an ending time, which in this case will
be 1.0 because the duration q is 1.0. This ending time, 1.0, is assigned to *time*, and the
second note is evaluated. The second note will start at *t ime* which is now 1.0. The sound
that is returned is now added to the first sound to form a composite sound, whose duration will
be 2.0. *time* is restored to 0. 0.

Notice that the semantics of seq can be expressed in terms of transformations. To generalize,
the operational rule for seq is: evaluate the first behavior at the current *time*. Evaluate
each successive behavior with *time* set to the ending time of the previous behavior. Restore
time to its original value and return a sound which is the sum of the results. -

2.3. Simultaneous Behavior v
Another operator is sim, which invokes multiple behaviors at the same time. For example,

(play (sim (note <4 g) (note d4 i)))
will play both notes starting at the same time.

The operational rule for sim is: evaluate each behavior at the current *t ime* and retum the
result. The following example uses sim and illustrates two concepts: first, a sound is not a
behavior, and second, the at transformation can be used to place sounds in time.

BEHAVIORAL ABSTRACTION Page 11

2.4. Sounds vs. Behaviors
The following example loads a sound from a file and stores it in a-snd:

: load a sound

(setf a-snd (sf-load
"/usr0/rbd/fugue/test/ex/demo-snd.nh"
22050.0))

;play it
,(play a-snd)

One might think that the following would then work:
(seq a-snd a-snd) ,WRONG!

but in fact, the result would not be a sequence of two sounds. Why? Recall that seq works by
modifying *time*, not by operating on sounds. So, seq will proceed by evaluating a~snd
with different values of *time*. However, the result of evaluating a~snd (a Lisp variable) is
always the same sound, regardless of the environment; in this case, the second a-snd will start
at time 0. 0, just like the first.

How then do we obtain a sequence of two sounds? What we really need here is a behavior that
transforms a given sound according to the current transformation environment. That job is
performed by cue. For example, the following will behave as expected, producing a sequence
of two sounds:

(seq (cue a-snd) (cue a=-snd))

The lesson here is very important: sounds are not behaviors! Behaviors are computations that
generate sounds according to the transformation environment. Once a sound has been generated,
it can be stored, copied, added to other sounds, and used in many other operations, but sounds
are not subject to transformations. To transform a sound, use cue, sound, or control. The
differences between these operations are discussed later. For now, here is a ‘‘cue sheet’ style
score that plays 4 copies of a~snd:

; use sim and at to place sounds in time

{(play (sim (at 0.0 {(cue a-snd))
(at 0.7 (cue a-snd))
(at 1.0 (cue a-snd))
(at 1.2 (cue a-snd))))

2.5. The At Transformation _
The second concept introduced by the previous example is the at operation, which shifts the
t ime component of the environment. For example,
(at 0.7 (cue a-snd))

can be explained operationally as follows: add 0.7 to the *time* and evaluate (cue
a-snd). Return the resulting sound after restoring *t ime* to its original value. Notice how
at is used inside a sim construct to locate copies of a-snd in time. This is the standard way to
represent a note-list or a cue-sheet in Fugue.

Page 12 FUGUE MANUAL

2.6. Nested Transformations
Transformations can be combined using nested expressions. For example,

(sim (cue a-snd)
(loud 2.0 (at 3.0 (cue a-snd))))

scales the amplitude as well as shifts the second entrance of a-snd.

Transformations can also be applied to groups of behaviors:

(loud 2.0 (sim (at 0.0 (cue a-snd))
(at 0.7 (cue a-snd))))

2.7. Defining Behaviors
Groups of behaviors can be named using defun (we already saw this in the definitions of
note and note-env). Here is another example of a behavior definition and its use. The
definition has one parameter:
(defun snds (dly)
(sim (at 0.0 (cue a-snd))
(at 0.7 (cue a=-snd))
(at 1.0 (cue a-dsnd))
{at (+ 1.2 dly) (cue a-snd))))

(play (snds 0.1))

(play (loud 2.5 (stretch 0.9 (snds 0.3))}))
In the last line, snds is transformed: the transformations will apply to the cue behaviors within
snds. The loud transformation will scale the sounds by 2.5, and stretch will apply to the
shift (at) amounts 0.0, 0.7, 1.0, and (+ 1.2 dly). The sounds themselves (copies of
a-snd) will not be stretched because cue never stretches sounds.

Section 4.3 describes the full set of transformations.

MORE EXAMPLES Page 13

3. More Examples

This chapter explores Fugue through additional examples. The reader may wish to browse
through these and move on to Chapter 4, which is a reference section describing Fugue
functions.

3.1. Stretching Sampled Sounds

This example illustrates how to stretch a sound, resampling it in the process:
; if demod4.Isp was not loaded, load sound sample:

(1f (not (boundp 'a-snd))
(setf a-snd
(sf-load "/usr0/rbd/fugue/test/ex/demo-snd.nh"
22050.0)))

; the SOUND operator shifts, stretches, clips and scales
; a sound according to the current environment

s

(play (stretch 3.0 (sound a-snd)))

(defun down ()

(seq (stretch 0.2 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.5 (sound a-snd))
(stretch 0.6 (sound a-snd))))

(play (down))
-, that was so much fun, let's go back up:

J(defun up ()

(seg (stretch 0.5 (sound a-snd))
(stretch 0.4 (sound a-snd))
(stretch 0.3 (sound a-snd))
(stretch 0.2 (sound a-snd))))

; and write a sequence

(play (seq (down) (up) (down)))

Notice the use of the sound behavior as opposed to cue. The cue behavior shifts and scales
its sound according to *time* and *volume*, but it does not change the duration or resample
the sound. In contrast, sound not only shifts and scales its sound, but it also stretches it by
resampling according to the *stretch* factor in the environment. (The *transpose*
element of the environment is ignored by both cue and sound.)

Notice that the overall duration of (stretch 0.5 (sound a=-snd)) will be half the
duration of a-snd.

MORE EXAMPLES Page 15

with no modulation input, and the result is a sine tone. The duration of the modulation
determines the duration of the generated tone (when the modulation signal ends, the oscillator
stops).

The next example uses a more interesting modulation function, a ramp from zero to Cy
expressed in hz. More explanation of pwl is in order. This operation constructs a piece-wise
linear function sampled at the *control-sratex*, The first breakpoint is always at (0, 0),
so the first two parameters give the time and value of the second breakpoint, the second two
parameters give the time and value of the third breakpoint, and so on. The last breakpoint has a
value of 0, so only the time of the last breakpoint is given. In this case, we want the ramp to end
at Cy4, so we cheat a bit by having the ramp return to zero ‘‘almost’’ instantaneously between
times 0.5 and 0.501.

To summarize, pwl always expects an odd number of parameters. The resulting function is
stretched according to *stretch*, and shifted according to *timex. Now, here is the
example:

; make a frequency sweep of one octave, the piece-wise linear function
; sweeps from O to (step-to-hz c4) because, when added to the c4
; fundamental, this will double the Jfrequency and cause an octave sweep.

(play (fmosc c4 (pwl 0.5 (step-to-hz c4) 0.501)))

The same idea can be applied to a non-sinusoidal carrier. Here, we assume that * fm-voice *
1s predefined:

; do the same thing with a non-sine table

(play (fmosc cs2 (pwl 0.5 (step-to-hz cs2) 0.501)
0 *fm-voicex* 0.0))

The next example shows how a function can be used to make a special frequency modulation
contour. In this case the contour generates a sweep from a starting pitch to a destination pitch:

MORE EXAMPLES Page 15

with no modulation input, and the result is a sine tone. The duration of the modulation
determines the duration of the generated tone (when the modulation signal ends, the oscillator
stops).

The next example uses a more interesting modulation function, a ramp from zero to C,,
expressed in hz. More explanation of pwl is in order. This operation constructs a piece-wise
linear function sampled at the *control-sratex. The first breakpoint is always at (0, 0),
so the first two parameters give the time and value of the second breakpoint, the second two
parameters give the time and value of the third breakpoint, and so on. The last breakpoint has a
value of 0, so only the time of the last breakpoint is given, In this case, we want the ramp to end
at Cy4, so we cheat a bit by having the ramp return to zero ‘‘almost’’ instantaneously between
times 0.5and 0.501.

To summarize, pwl always expects an odd number of parameters. The resulting function is
stretched according to *stretch*, and shifted according to *timex*. Now, here is the
example:

; make a frequency sweep of one octave, the piece-wise linear function
; sweeps from 0 to (step-to-hz c4) because, when added to the c4
; fundamental, this will double the frequency and cause an octave sweep.

(play (fmosc cd4 (pwl 0.5 (step-to-hz c4) 0.501)))

The same idea can be applied to a non-sinusoidal carrier. Here, we assume that * fm-voice *
is predefined:

; do the same thing with a non-sine table

(play (fmosc cs2 (pwl 0.5 (step-to-hz cs2) 0.501)
0 *fm-voice* 0.0))

The next example shows how a function can be used to make a special frequency modulation
contour. In this case the contour generates a sweep from a starting pitch to a destination pitch:

Page 16 FUGUE MANUAL

; make a function to give a frequency sweep, starting

; after <delay> seconds, then sweeping from <pitch-1>
; to <pitch-2> in <sweep-time> seconds and then

; holding at <pitch-2> for <hold-time> seconds.

(defun sweep (delay pitch-1 sweep~time pitch-2 hold-time)
(let ((interval (- (step-to-hz pitch-2)

(step-to-hz pitch-1))))
(pwl delay 0.0
; Sweep from pitch 1 to pitch 2
(+ delay sweep-time) interwval
; hold until about 1 sample from the end
(+ delay sweep-time hold-time -0.0005) interwval

; quickly ramp to zero (pwl always does this,
;S0 make it short)

(+ delay sweep-time hold-time))))

; now try it out

kplay (fmosc c¢s2 (sweep 0.1 cs2 0.6 gs2 0.5)
0 *fm-voice* 0.0))

FM can be used for vibrato as well as frequency sweeps. Here, we use the 1fo function to
generate vibrato. The 1fo operation is similar to osc, except it generates sounds at the
control-sratex, and the parameter is hz rather than a pitch:

(play (fmosc cs2 (s-scale (lfo 6.0) 10.0))
0 *fm-voice* 0.0))

What kind of manual would this be without the obligatory fm sound? Here, a sinusoidal
modulator (frequency C,) is multiplied by a slowly increasing ramp from zeroto 1000.0.

(setf modulator (s-mult (pwl 1.0 1000.0 1.0005)
(osc c4)))

; make the sound
(play (fmosc c4 modulator))

FUGUE FUNCTIONS Page 17

4. Fugue Functions

This chapter provides a language reference manual for Fugue. Operations are categorized by
functionality and abstraction level. Fugue is implemented in two important levels: the ‘‘high
level’” supports behavioral abstraction, which means that operations like stretch and at can
be applied. These functions are the ones that typical users are expected to use.

The ‘‘low-level’’ primitives directly operate on sounds, but know nothing of environmental
variables (such as *time*, *stretch¥*, etc.). The names of most of these low-level functions
start with ‘‘s="". In general, programmers should avoid any function with the ‘‘s-"" prefix.
Instead, use the ‘‘high-level’’ functions, which know about the environment and react
appropriately. The names of high-level functions do not have prefixes like the low-level
functions.

There are certain low-level operations that apply directly to sounds (as opposed to behaviors)
and are relatively ‘‘safe’’ for ordinary use. These operations are distinguished by the ‘‘snd-"’
prefix. To summarize:

no prefix: operation on behaviors

snd- prefix: commonly used operation on sounds
s - prefix: avoid using these

Fugue uses both linear frequency and equal-temperament pitch numbers to specify repetition
rates. Frequency is always specified in cycles per second (hz), and pitch numbers, also referred
to as ‘‘key numbers’’ (thanks to MIDI) are floating point numbers such that 48 = Middle C, 49 =
C#, 49.23 is C# plus 23 cents, etc. The mapping from pitch number to frequency is the standard
exponential conversion, and fractional pitch numbers are allowed: frequency=440 x 2(pitch—69)/12

4.1. Sounds
A sound is a primitive data type in Fugue. Sounds can be created, passed as parameters,
garbage collected, printed, and set to variables just like strings, atoms, numbers, and other data

types.

4.1.1. What is a Sound?
Sounds have 5 components:

¢ srate — the sample rate of the sound.

e samples — the samples.

e signal-start — the time of the first sample.

. signai—stop —- the time of one past the last sample.

¢ logical-stop — the time at which the sound logically ends, e.g. a sound may
end at the beginning of a decay. This value defaults to signal-stop, but may be
set to any value.
It may seem that there should be logical-start to indicate the logical or perceptual
beginning of a sound as well as a Llogical-stop to indicate the logical ending of a sound. In
practice, only logical-stop is needed; this attribute tells when the next sound should begin
to form a sequence of sounds. In this respect, Fugue sounds are asymmetric: it is possible to

Page 18 FUGUE MANUAL

compute sequences forward in time by aligning the logical start of each sound with the
logical-stop of the previous one, but one cannot compute ‘‘backwards’’, aligning the
logical end of each sound with the logical start of its successor. The root of this asymmetry is
the fact that when we invoke a behavior, we say when to start, and the result of the behavior tells
us its lcl)gical duration. There is no way to invoke a behavior with a direct specification of when
to stop”.

Note: there is no way to enforce the intended ‘‘perceptual’’ interpretation of
logical-stop. As far as Fugue is concerned, these are just numbers to guide the alignment
of sounds within various control constructs.

4.1.2. Creating Sounds
The basic operations that create sounds are:

(s-create)
Returns a sound which is silence. The duration is zero.

(s-constant value duration)
Returns a sound of durarion, with the constant value at the sample rate srate. Note.:
since sounds are assumed to be zero at their start time,

(s-compose array srate)
Takes a Lisp array of integers and/or floats, and converts them into a sound sample with
the given srate.

(snd-load filename srate)
Loads a sound file named by the string filename from disk. There is no header on the
file, only continuous 16-bit words (MSB first). The sample is treated as if it were taken
at sample-rate srate (in hz). '

4.1.3. Accessing Sounds
Several functions display information concerning a sound and can be used to query the
components of a sound:

(snd-access sound time)
Retrieves the value of sound at time. If time is before or after sound, 0.0 is retumed.
The sound is linearly interpolated if time does not fall on an exact sample time.

(s-samples sound limit)
Converts the samples into a lisp array. The data is taken directly from the samples,
ignoring shifts. For example, if the sound starts at 3.0 seconds, the first sample will refer
to time 3.0, not time 0.0. s-extent (see below) will tell you the time range for the
sound. A maximum of /imit samples is returned.

(snd-srate Ssound)
Returns the sample rate of the sound.

(snd-show sound)

IMost behaviors will stop at their *start* + *stretch*, but this is by convention and is not a direct
specification.

FUGUE FUNCTIONS Page 19

Print the entire tree structure of the sound. (See Appendix II.)

(snd-stats sound)
Displays vital statistics about a sound. If sound is a sample, snd-stats will also
display the first and last 5 samples in the sound. The return value is sound. Note: since
some operations are lazily evaluated, sound may point to an expression to be evaluated
rather than computed samples. All other functions automatically evaluate a sound when
samples are needed except for snd-stats. Lazy evaluation can be defeated by
applying the flatten function, described below.

(snd-extent sound)
Returns a list of the time at which sound starts and the time at which it stops, i.e. the list

(signal-start signal-stop) .

(snd-logical-stop sound)
Returns the “‘perceptual’’ or logical stop time of a sound. Note: this is usually the same
as the actual stopping time returned by snd-extent because all built-in functions set
the logical stop time to signal-stop. The set-logical-stop operation can be
used to set the logical stop time. The function get-logical-stop is identical to
snd-logical-stop and should be used when defining behaviors.

(snd-maxsamp sound)
Returns the value of the maximum absolute value of any sample in sound.

4.1.4. Low-Level Manipulation Primitives

Low-level manipulation primitives provide basic operations that are implemented using lazy
evaluation. These operations are not behavioral abstractions, hence they are immune to
transformations, and for that reason should generally be avoided. They are used primarily in the
implementation of the built-in behaviors described in the next section.

(s~apply sound scale start stop shift stretch srate)
Takes the given sound, scales its samples by scale, extracts the period between srart and
stop, shifts this in time by shift, and finally stretches this resulting sound by strerch (that
is, the time shift and the extracted sample are both stretched). The logical-stop is
shifted and stretched as well. If srate is 0.0, then the sample rate of the sound is kept,
otherwise, the sample is re-sampled to the sampling rate of srate. This resulting sound is
returned.

(s-scale sound factor)
Returns a sound that is the same as sound, except each sample is multiplied by factor.

(s-clip sound start stop)
Returns a sound which is the portion of sound between the start and stop times.

(s-1lclip sound delta)
Returns a sound which is the portion of sound with the first delta seconds removed.

(s-rclip sound delta)
Returns a sound which is the portion of sound with the last delta seconds removed.

(s-shift sound amount)
Returns a sound which is sound shifted in time (forwards or backwards) by amount.

(s-stretch sound factor)
Returns a sound which is sound stretched in time by factor.

Page 20 FUGUE MANUAL

(s-set-logical-stop sound time)
Returns a sound which is sound, except that the logical stop of the sound occurs at time.
When defining a behavior, use set-logical-stop instead.

4.1.5. Other Low-Level Primitives

In addition to the basic primitives of the previous section, there are a number of *‘unit
generator’’ style operations. As before, these are not behaviors, so they are immune to
transformations. Their main purpose is in the implementation of behaviors. For example, the
osc function is implemented by a call to s-osc, after taking into account the current
transformation environment.

(s-add soundl sound2)
Returns the sum of the two sounds. In most cases, the corresponding behavior sim
should be called instead of s-add.

(s-mult soundl sound?)
Returns sound! multiplied by sound2. When the results of two behaviors should be
multiplied, the corresponding operation mult should be called as a matter of style, even
though it is identical to s-mult.

(s-osc sound pitch srate freq duration phase periodic)
Returns a sound which is the sound oscillated for the given duration (in seconds),
frequency (in hz), and srate (in hz). Phase currently indicates where in sound to begin
(in radians?). Pirch is a pitch or key number indicating what pitch sound is, so that things
can be appropriately resampled. (sound may be more than one period, so pitch is not
redundant.) Periodic should be T if this sample is to be looped, or nil if this represents
a non-periodic sample. The behavior osc should normally be called instead.of s-osc.

(s-amosc sound pitch srate pitch modulation phase periodic)

Returns a sound which is sound oscillated for the duration of sound modulation, where
pitch is the pitch or key number indicating the pitch of sound, srare is the desired sample
rate (in hz), pitch is the desired resultant pitch, modularion modulates the oscillator
output (using multiplication), phase is the initial phase in radians, and periodic should be
T if the sample is one period of a waveform, or nil if this is a sample that should not be
looped. If periodic is nil, you might be happier just using s-mult to multiply the two
signals. Even if periodic is nil, the resulting duration is still that of modulation, so
there may be some trailing silence. The behavior amosc should nommally be called
instead of s-amosc.

(s-fmosc sound pitch srate freq modulation phase periodic)
Returns a sound which is sound oscillated for the duration of sound modulation, where
pitch is the pitch or key number indicating the pitch of sound, srate is the desired sample
rate (in hz), freq is the desired resultant center frequency, modulation frequency-
modulates the oscillator (by adding the modulation signal to an offset determined by
freq), phase is the initial phase in radians, and periodic should be T if the sound is a
period of a waveform, or nil to prevent looping. In the case where periodic is nil, the
resulting duration is still that of modulation, so there may be some trailing silence. The
modulation is expressed in hz, e.g. a sinusoid modulation signal with an amplitude of 1.0
(2.0 peak to peak), will cause a +/~ 1.0 hz frequency deviation in sound. Negative

ZPhases arc always in radians, but this can be changed by redefining the constant ANGLEBASE and recompiling.

FUGUE FUNCTIONS Page 21

frequencies are well defined but not currently implemented; instead the modulation signal
(again, the frequency deviation is the sum of freq and modulation) is simply clipped to
avoid negative frequencies. The behavior fmosc should normally be called instead of
s-fmosc.

(s—-env Ssrate tl fz f3 t4 l] 12 13)
Returns a sound which is an envelope as specified via the time and level parameters. The
sample-rate for the given samples is srate (in hz). The total time 1s f;+#)+I3+ly (in
seconds) and the level at end of each time interval zy; is In- The starting level, [, is not a
parameter and is always zero, as is the ending level, {,. Normally, the behavior env
should be called instead of s-env. -

(s-pwl srate list)
Returns a piece-wise linear signal described by breakpoints. Srate is the sample rate of
the result, and list is a list of breakpoints in the form (¢; a; t; ay t3 az ... t,). The
breakpoints are (0, 0), (¢;, a;), (3, a,), ... (ty, 0). Note the implicit zeros at the beginning
and end. Normally, the behavior pwl should be used instead of s-pwl.

(snd-save sound string)
Saves a copy of sound into the file named by string. The samples are muitiplied by
32767, rounded to the nearest integer and written as 16-bit signed integers.

(s-copy sound)
Returns a duplicate of sound.

(s-flatten sound)
Returns sound which has been normalized; any trees created by lazy-evaluation are
flattened. The sample’s scale and stretch will be 1.0, the sound’s start will be
0.0, stop will be the (number of samples) | srate. The shift, srate, and
logical-stop may be any values. :

(s-white-noise duration srate)
Computes white noise for the given duration at the given sample rate. Normally, the
behavior noise should be used instead.

(s-1p sound cutoff)
A first-order Butterworth low-pass filter is applied to sound with the specified cutoff
frequency (a float) in hertz. Normally, the behavior snd-1p should be used instead.

(s-1lp-var sound cutoff)
A first-order Butterworth low-pass filter is applied to sound with the specified variable
cutoff frequency. Cutoff is a sound (signal) whose sample rate determines the rate at
which filter coefficients are recomputed. Normally, the behavior snd-1p should be
used instead.

(s=hp sound cutoff)
A first-order Butterworth high-pass filter is applied to sound with the specified cutoff
frequency (a float) in hertz. Normally, the behavior snd-hp should be used instead.

(s-hp-var sound cutoff)
A first-order Butterworth high-pass filter is applied to sound with the specified variable
cutoff frequency. Cutoff is a sound (signal) whose sample rate determines the rate at
which filter coefficients are recomputed. Normally, the behavior snd-hp should be
used instead.

(s-reson sound center bandwidth)

Page 22 FUGUE MANUAL

A resonating filter is applied to sound with the specified center frequency and bandwidth,
both floats expressing hertz. The gain is unity at the center frequency. Normally, the
behavior snd-reson should be used instead.

(s-reson-var sound center bandwidth)
A resonating filter is applied to sound with the specified variable center frequency (a
signal) and constant bandwidrth (a float). The gain is unity at the center frequency.
Normally, the behavior snd-reson should be used instead.

4.1.6. Miscellaneous Operations
These functions provide some useful utility and query functions:

(normalize sound)
Return a scaled version of sound such that the maximum amplitude (absolute value) is
1.0.

(play sound) ,
Play the sound through the DAC. The play function writes the file temp.snd in the
current directory as a NeXT sound file and plays the sound. If the sound sample rate is
less than 22050, the sound is resampled to 22050. If the sound sample rate is between
22050 and 44100, the sound is resampled to 44100.

(step-to-hz pitch)
Returns a frequency in hz for pirch, a pitch number.

(hz-to-step freq)
Returns a pitch number for freq (in hz).

(get-logical-stop sound)
Returns the logical end time of sound.

4.2. Behaviors

4,2.1. Using Previously Created Sounds

These behaviors take a sound and transform that sound according to the environment. These
are useful when writing code to make a high-level function from a low-level function, or when
cuing sounds which were previously created:

(cue sound)
Applies *volume*, *time*, *start*, and *stop* to sound.

(cue~file filename)
Same as cue, except the sound comes from the named file, which is assumed to have the
current default *sound-srate* sample rate.

(sound sound)
Applies *volume*, *time*, *start*, *stop*, *stretch*, and
sound-srate to sound.

(control sound) v
Applies *volume*, *time*, *start*, *stop*, *stretch*, and
centrl-srate to sound.

FUGUE FUNCTIONS Page 23

4.2.2. Sound Synthesis
These functions provide musically interesting creation behaviors that react to their
environment; these are the ‘‘unit generators’’ of Fugue:

Creates a 4-phase envelope. f; is the duration of phase i, and /; is the final level of phase
i. t3 is implied by the duration dur, and I, is 0.0. If dur is not supplied, then 1.0 is
assumed. The envelope duration is the product of dur, *stretch*, and *duty*. Ify;
+ 1, + 2ms + 14 is greater than the envelope duration, then a two-phase envelope is
substituted that has an attack/release time ratio of #;/t,. The sample rate of the returned
sound is *entrl-srate*. (See pwl for a more general piece-wise linear function
generator.)

(Lfo freq lduration osc phase])

Just like osc (below) except this computes at the *cntrl-srate* and frequency is
specified in hz. The *transpose* is not applied.

(mult beh; beh, ...)

Returns the product of behaviors.

(osc pitch [duration table phase])

Returns a sound which is the table oscillated at pitch for the given duration, starting with
the phase. Defaults are: duration 1.0 (second), table *table*, phase 0.0. Note:
table is a list of the form

(sound pitch-number periodic)

where the first element is a sound, the second is the pitch of the sound (this is not
redundant, because the sound may represent any number of periods), and the third
element is T if the sound is one period of a periodic signal, or nil if the sound is a
sample that should not be looped. '

(amosc pitch modulation [table phase)])

Returns a sound which is rable oscillated at pirch. The output is multiplied by
modulation for the duration of the sound modulation. osc-table defaults to *table*,
and phase is the starting phase (default 0.0 radians) within osc-table. The modulation is
expressed in hz, e.g. a sinusoid modulation signal with an amplitude of 1.0 (2.0 peak to
peak), will cause a +/— 1.0 hz frequency deviation in sound.

(fmosc pitch modulation (table phase])

(pwl

Returns a sound which is table oscillated at pitch plus modulation for the duration of the
sound modulation. osc-table defaults to *table*, and phase is the starting phase
(default 0.0 radians) within osc-rable. The modulation is expressed in hz, e.g. a sinusoid
modulation signal with an amplitude of 1.0 (2.0 peak to peak), will cause a +/- 1.0 hz
frequency deviation in sound. Negative frequencies are well defined but not currently
implemented; instead the modulation signal is simply clipped to avoid negative
frequencies.

ty ooty

Creates a piece-wise linear envelope with breakpoints at (0, 0), (z;, {}), (¢5. L), ... (¢,,, 0.
The envelope is stretched by *stretch* and *duty*, the sample rate is

control~srate#, and the envelope shifted by *time*. Note that the times are
relative to 0; they are not durations of each envelope segment.

(osc-note pitch [duration env volume table])

Page 24 FUGUE MANUAL

Same as osc, but osc~note multiplies the result by env. The env may be a sound, or a
list supplying (¢; £ 24 1; 15 [3).

(rest [duration])
Create silence for the given duration. Default duration is 1.0 sec, and duration 1is scaled
by *stretch* and shifted by *time*.

(noise [duration])
Generate noise with the given duration. Duration (default is 1.0) is scaled by
stretch and shifted by *time*. The sample rate is *sound-srate* and the
amplitude is +/- *volume*.

(snd-1p sound cutoff)
Filters sound using a first-order Butterworth low-pass filter. Cuzoff may be a float or a
signal (for time-varying filtering) and expresses hertz. Filter coefficients (requiring trig
functions) are recomputed at the sample rate of cutoff.

(snd-hp sound cutoff)
Filters sound using a first-order Butterworth high-pass filter. Cutoff may be a float or a
signal (for time-varying filtering) and expresses hertz. Filter coefficients (requiring trig
functions) are recomputed at the sample rate of curoff.

(snd-reson sound center bandwidth)
Apply a resonating filter to sound with center frequency center (in hertz), which may be a
float or a signal. Bandwidth is a float and therefore constant for the duration of sound.
Filter coefficients (requiring trig functions) are recomputed at the sample rate of cuzoff.

4.3. Transformations ‘

These functions change the environment that is seen by other high-level functions. Note that
these changes are usually relative to the current environment. There are also ‘‘absolute”
versions of each transformation function, with the exception of seq, seqrep, sim, and
simrep. The ‘‘absolute’’ versions (starting with an ‘*abs-’" prefix) do not look at the current
environment, but rather set an environment variable to a specific value. In this way, sections of
code can be insulated from extemnal transformations.

{(abs-env beh)
Compute beh in the default environment. This is useful for computing waveform tables
and signals that are ‘‘outside’’ of time. For example, (at 10.0 (abs-env
(my-beh))) is equivalent to (abs~env (my-beh)) because abs-env forces the
default environment.

(at time beh)
Evaluate beh with *time* shifted by time.

(at-abs time beh) ,
Evaluate beh with *t ime* set to time.

(control-srate-abs srate beh)
Evaluate beh with *control-srate* set to sample rate srate. Note: there is no
‘‘relative’’ version of this function.

(extract start stop beh)
Returns a sound which is the portion of beh between start and stop. Note that this is done
relative to the current *time*. The result is shifted to start at *t ime*, so normally the
result will start at *t ime * rather than *t ime* + srart.

FUGUE FUNCTIONS _ Page 25

(extract-abs start stop beh)
Returns a sound which is the portion of beh between start and stop, independent of the
current *time*. The result is shifted to start at *t ime*.

(loud volume beh)
Evaluates beh with *volume* scaled by volume.

(loud-abs volume beh)
Evaluates beh with *volume* set to volume.

(sound-srate-abs srate beh)
Evaluate beh with *sound-srate* set to sample rate srare. Note: there is no
“‘relative’’ version of this function.

(stretch factor beh)
Evaluates beh with *stretch* scaled by factor.

(stretch-abs factor beh)
Evaluates beh with *stretch* set to factor.

(trans amount beh)
Evaluates beh with *t ranspose* shifted by amount.

(trans-abs amount beh)
Evaluates beh with *t ranspose* set to amount.

4.4. Combination and Time Structure
These behaviors combine component behaviors into structures, including sequences (melodies),
simultaneous sounds (chords), and structures based on iteration.

(Seq behl [bEhZ oo])
Evaluates the first behavior beh 7 at *time* and each successive behavior at the
logical-stop time of the previous one. The results are summed to form a sound
whose Logical-stop is the logical-stop of the last behavior in the sequence.

(segrep (var limit) beh)
Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive.
These sounds are then placed sequentially in time as if by seq.

(sim beh, [beh2 .0
Returns a sound which is the sum of the given behaviors evaluated with current value of
timex,

(simrep (var limit) beh) :
Iteratively evaluates beh with the atom var set with values from 0 to /imit-1, inclusive.
These sounds are then placed simultaneously in time as if by sim.

(set-logical~stop beh time)
Returns a sound with time as the logical stop time.

Page 26 FUGUE MANUAL

ICMC CONFERENCE PAPER ON FUGUE : Page 27

Appendix I
ICMC Conference Paper on Fugue

Fugue: Composition and Sound Synthesis
With Lazy Evaluation and Behavioral Abstraction

Roger B. Dannenberg Christopher Lee Fraley
School of Computer Science Microsoft Corporation
Carnegie Mellon University 166011 NE 36 Way

Pittsburgh, PA 15213 Box 97017

Redmond, WA 98073-9717

Abstract

Fugue is an interactive language for music composition and synthesis. The goal of Fugue is to simplify the task
of generating and manipulating sound samples while offering greater power and flexibility than other software
synthesis languages. In contrast to other computer music systems, sounds in Fugue are abstract, immutable objects,
and a set of functions are provided to create and manipulate these sound objects. Fugue directly supports behavioral
abstraction whereby scores can be transformed using high-level abstract operations. Fugue is embedded in a Lisp
environment, which provides great flexibility in manipulating scores and in performing other related symbolic
processing. The semantics of Fugue are derived from Arctic and Canon which have been used for composition,
research, and education at Carnegie Mellon University for several years.

Introduction

Fugue is a language for composition and sound synthesis. Features of Fugue include: (1) a full
interactive environment based on Lisp, (2) a language which does not force a high-level
distinction between the ‘‘score’’ and the ‘‘orchestra’’, (3) support for behavioral abstraction, (4)
the ability to work both in terms of actual and perceptual start and stop times, and (5) a time- and
memory-efficient implementation.

The Lisp environment provides an interactive interface, flexibility in manipulating sounds, and
a base for performing other related symbolic processing. Sounds are first-class types in Fugue,
hence they can be assigned to variables, passed as parameters, and stored in data structures.
Storage for sounds is dynamically allocated as needed and reclaimed by automatic garbage
collection. This allows ‘‘instruments’ to be implemented as ordinary Lisp functions and
eliminates the orchestra/score dichotomy.

Fugue semantics include behavioral abstraction as introduced by Arctic (Dannenberg,

Page 28 FUGUE MANUAL

McAvinney, and Rubine 1986) and Canon (Dannenberg 1989). The motivation for behavioral
abstraction is the idea that one should be able to describe behaviors that respond appropriately to
their environment. For example, stretching a sound may mean one thing in the context of
granular synthesis and another in the context of sampling. It almost never means to compute a
short sound and then resample it to make it longer. Fugue allows the programmer to describe
abstract behaviors that ‘‘know’’ how to stretch, transpose, change loudness, and shift in time.
Transformation operators are provided to operate on these abstractions.

Composition requires that sounds be placed simultaneously together, in sequence, and at
arbitrary offsets. Because musical sounds often have attack and release portions, we make a
distinction between the absolute first and last samples of a sound and the perceptual start and end
to which other sounds should be aligned.

Fugue is designed with powerful workstations in mind. The current implementation relies
upon virtual memory and a large disk memory to eliminate the need for explicit file access and
buffer management. The low-level operations in Fugue are amenable to implementation on
array processors or DSP chips when these are available. Fugue uses lazy evaluation to achieve
reasonable performance without sacrificing its clean semantics.

Related Work

Many software synthesis and compositional systems have existed for years, each encountering
and addressing a slightly different set of problems. To understand Fugue, it is beneficial to first
review some other systems.

Music V takes a semi-functional approach to sound generarion in that unit generators can be
combined as functions applied to sample streams. The resulting instruments can be applied to
parameter lists. Instruments cannot be applied to other instruments, nor can scores be
constructed hierarchically. This division between sound manipulators (or generators) and
parameter lists results in a corresponding separation between the orchestra and the score. Other
consequences include a non-interactive environment. An interesting aspect of Music V is the
idea that an instance of an instrument is created for each note specified in the score.

Kyma (Scaletti 1989) and the Sun/Mercury Workstation (Rodet and Eckel 1988) take a
different approach, treating sound manipulators and sound generators as objects that can be
‘‘patched’” together. This results in an intuitive system for synthesis, but there are problems. A
level of indirection is required to manipulate graphs of unit generators which in turn manipulate
sounds rather than to manipulate sounds directly. Various extensions have become necessary in
order to handle graphs that change over time, but this also adds complexity to programs. Symbol
processing and working with data structures are also difficult with these graph-oriented program
representations. Both systems run all objects in synchrony, thereby assuming a global sample
rate.

SRL (Kopec 1985) is a signal processing language that represents signals as parameterized
computations. SRL signals are immutable objects that can be reused. SRL supports lazy
evaluation and function caching by retaining a symbolic representation of all signals. SRL lacks
in many musically useful concepts such as the starting time and duration of signals and

ICMC CONFERENCE PAPER ON FUGUE Page 29

behavioral abstraction. Also the user must explicitly free buffers when they are no longer
needed.

Formes (Cointe and Rodet 1984) takes an object-oriented approach to the computation of
functions of time, but Formes was not designed to compute audio directly. Formes was
originally designed to compute control information for the Chant synthesis system.

Behavioral Abstraction

Fugue provides an elegant and hierarchical way to express scores that combines qualities of
both note lists and executable programs. Note lists of classical score languages are attractive
because they can be generated, stored, and manipulated as data. For example, making all the
notes in a section louder is easy to do if the notes are represented as data. On the other hand,
note lists suffer from the fact that they are not programs. In particular, there comes a time when
‘‘loudness’” (and every other note-list parameter) must be interpreted to produce or control
sound. The point at which interpretation starts defines the boundary between the ‘‘score’” and
the ‘‘orchestra’’.

Fugue avoids the boundary through the use of declarative-style programs that ‘‘feel’’ like note
lists and by using the same language to define both scores and synthesis procedures. It is
possible to alter Fugue scores by applying various transformations along the dimensions of time,
loudness, pitch, articulation, and even sample rate.

A potential liability of these transformations is that they may transform the wrong thing. For .
example, in stretching a section of music that contains a trill, we do not necessarily want the trill
to slow down, and we almost certainly do not want the pitch to drop! Fugue provides defaults
for transformations, but allows the programmer/composer to override the defaults with more
appropriate behaviors.

Thus, the programmer/composer defines behaviors that ‘‘do the right thing’’ in the context of a
specified set of transformations. The definition of a class of behaviors that are realized
according to a context is called behavioral abstraction. A few examples should clarify how
Fugue works. The first example is a sequence of three sounds:

(seq (cue wind) (cue water) (osc Bf3))

where cue is a behavior that simply plays a sound at a given time, and osc is a behavior that
plays a given pitch. wind and watex are two sounds, perhaps loaded from sound files. If we
wanted to hear the same sequence at a lower amplitude and with the water sound delayed by 2
seconds, we could write:

(loud 0.2
(seq (cue wind) (at 2.0 (cue water)) (osc B£f3)))

Now suppose we wish to change the pitch. We could write
(transpose 3 (seq (cue wind) {(cue water) (osc Bf3)))

This would have the effect of transposing the sequence up by 3 semitones. However, since the
cue abstraction overrides and prevents transposition, only the osc behavior will be affected.

Page 30 FUGUE MANUAL

Signal Processing

Fugue is intended as a versatile system for the analysis, synthesis, and processing of sound.
Thus far, our efforts have focussed on building an extensible kernel for Fugue and implementing
some simple synthesis primitives. In the current implementation, sounds may be obtained using
a generalized oscillation function or by loading sounds from files.

Primitives are also supplied to manipulate the environment in which sounds are generated and
composed. These operations are used to perform cutting and splicing, stretching, controlling the
amount of legaro (sound overlap), loudness, and pitch. These operations manipulate the
environment in which sounds are computed and may be applied from the score level all the way
down to sound generation primitives.

System Organization

Fugue is implemented in a combination of C (Kernighan and Richie 1978) and XLisp (Betz

1986). We use XLisp because it is fairly easy to extend with a new type. (XLisp is itself written
in C.) The use of two languages reflects our goal to provide an interactive and efficient
environment. New synthesis techniques can be introduced by combining existing Lisp functions
on sounds or by writing new sound synthesis algorithms in C and making them callable from
Lisp.
Multiple sample rates allow ‘‘control’’ signals to exist at a low sample rate as in Music-11
(Vercoe 1981) and Csound (Vercoe 1986), reducing time and memory requirements. Linear
interpolation is used (by default) when it becomes necessary to manipulate two sounds with
different sample rates. There is no distinction between control signals and audio signals. Filters
can be used to modify spectra or to smooth envelopes, and multiplication can be used uniformly
for gain control, amplitude envelopes, or audio-rate amplitude modulation.

The fact that sounds in Fugue are immutable values implies that the implementation cannot
add several sounds directly into a buffer. If sounds are immutable, then each addition of two
sounds produces a new sound and requires storage allocation. One might expect an
implementation with immutable values to be very inefficient, but we avoid this problem through
lazy evaluation. When additions (and many other operations) are performed, our implementation
merely builds a small data-structure describing the desired operation without actually computing
any samples. This technique avoids many redundant copy operations but is completely hidden
from the user.

Also hidden from the user is the use of reference counting (Pratt 1975) to reclaim storage from
sounds that are no longer referenced. This reference counting scheme is integrated with the
XLisp mark-and-sweep garbage collector (Schorr and Waite 1967).

ICMC CONFERENCE PAPER ON FUGUE Page 31

Conclusion

Fugue is a new language that provides high-level operations on sounds. Fugue is unique in
that is spans a range of computational tasks from score manipulation to synthesis within a single
integrated language. Fugue already has an efficient implementation running on Unix
workstations. We intend to improve this further by taking advantage of virtual copy and mapped
file capabilities of the Mach (Accetta er. al. 1986) operating system and a DSP chip for signal
processing. We also plan to extend Fugue with more sound functions from other systems such as
Moore’s Cmusic (Moore 1982), Vercoe’s Csound (Vercoe 1986), NeXT’s Sound Kit (Jaffe and
Boynton 1989), and Lansky’s Cmix (Lansky 1987).

Lansky, P. 1987. ““CMIX’’. Princeton Univ.
(Software and documentation).
Moore, F. R. 1982. “‘The Computer Audio

ResearchLaboratoryatUCSD.”” ComputerMusic
Journal (6)1:18-29.

References

Accetta, M., Baron, R. Bolosky, W., Golub, D.,
Rashid, R., Tevanian, A., and Young,
M. “Mach: A New Kemel Foundation for
UNIX Development.”” Proc. of Summer
Usenix, July 1986.

Betz, D. 1986. XLISP: An Experimental Object-

Pratt, T. 1975. Programming Languages: designand
implementation. Englewood Cliffs: Prentice

oriented Language, Version 1.7. (program
documentation).

Cointe, P. and Rodet, X. 1984. ‘‘Formes: an
Object & Time Oriented System for Music

Composition and Synthesis.”” In 1984 Symposium

on LISP and Functional Programming. ACM
Press, pp. 85-95.

Dannenberg, R. B., McAvinney, P., Rubine,
D. 1986. ‘‘Arctic: A Functional Language for
Real- Time Systems.”” Computer Music
Journal 10(4):67-78.

Dannenberg, R. B. 1989. “The Canon Score
Language.”’ Computer Music Journal
13(1):47-56.

Jaffe, D. and Boynton, L. 1989. ‘“‘An Overview of
the Sound and Music Kits for the NeXT

Computer.”” Computer Music Journal
13(2):48-55.

Kemighan, B. M. and Richie, D. M. 1978, The C

Programming Language. Englewood Cliffs:
Prentice-Hall.

Kopec, G. E. 1985. *‘The Signal Representation

Language SRL.”” [EEE Transactions Acoustics,

Speech and Signal Processing. 33(4):921-932.

Hall.

Rodet, X. and Eckel, G. 1988. ‘‘Dynamic Patches:
Implementation and Control in the Sun-

Mercury Workstation,”” In Proceedings of the

1988 International =~ Computer — Music
Conference. Computer Music Association. pp
82-89.

Scaletti, C. 1989. ‘‘The Kyma/Platypus Computer
Music Workstation.”’ Computer Music
Journal 13(2):23-38.

Schorr, H. and Waite, W. 1967. ‘‘An Efficient and
Machine Independent Procedure for Garbage
Collection in Various List Structures.”” Comm.
ACM 10(8):501-506.

Vercoe, B. 1981. Reference Manual for the MUSIC 11

Sound Synthesis Language. MIT Experimental
Music Studio. '

Vercoe, B. 1986. CSOUND: A Manual for the Audio

Processing System and Supporting Programs.
MIT Media Lab.

Page 32 FUGUE MANUAL

LAZY EVALUATION , Page 33

Appendix II
Lazy Evaluation
The Fugue implementation uses lazy evaluation of sounds to implement nice language
semantics without losing efficiency. I will describe the rationale behind the semantics, show
where a potential problem arises, and then show how lazy evaluation solves the problem.

Fugue semantics say that sounds are values just like the number 3. Values (including sounds)
cannot change because allowing changes to sounds would admit the possibility of unwanted
side-effects. An example of a side-effect is passing a sound as a parameter to a function that
modifies the sound. Such modifications are sometimes avoided by making copies of parameters.
However, since Fugue guarantees the absence of side-effects, there is no need to make copies of
sounds (why make a copy if you know it will not change?). In fact there is no s-copy function
in Fugue. This all makes it very easy and efficient to pass sounds around as parameters, store
them in variables, etc. In the implementation, assignments simply generate new references to the
sole representation of a sound. This is semantically equivalent to a copy because the value of the
sound can never change.

To maintain this semantic requirement, each operation, such as adding two sounds together,
requires that new storage has to be allocated and data must be transferred from the two source
sounds to the destination (the sum). This is especially costly when the goal is to add a series of
short sounds (e.g. notes) to a large composition. In this case, the entire composition must be
copied for each note. Without the copy, however, the value semantics would not be preserved.

One way to avoid this problem is to simply abandon the value semantics and allow sounds to
be modified. A better approach, chosen for Fugue, maintains the nice value semantics and is still
quite efficient. The solution, called lazy evaluation, defers storage allocation and computation
until it is really needed. Usually, optimizations can be made on the deferred computation to
avoid what would otherwise require many copies.

When sounds are created and manipulated via the supplied primitives, sound samples are
generally not computed. Instead of allocating new memory for completely new samples
whenever a function is performed on a sound, an evaluation tree is built instead. This tree can
represent the sum of two sounds, scaling sounds by a constant, extracting a portion of a sound,
shifting sounds in time, stretching sound in time, and converting sounds to a new sample-rate.

The Fugue function snd-show can be used to examine the evaluation tree. For example, if
the following code is executed: '

(setf mysnd (osc c4))
(setf s (loud 2.0
" (seq (loud 0.02 (cue mysnd))
(loud 0.1 (cue mysnd))
{cue mysnd))))
(snd-show s)

then the structure of s will be printed as follows:

Page 34 FUGUE MANUAL

{85¢3¢c)} tag:SUMNODES
from:0 to:3 shift:0 stretch:1l
logTo:3 scale:l srate:22050 refCount:1
{855a8}->
{85¢00} tag:SUMNODES
from:0 to:2 shift:0 stretch:1
logTo:2 scale:l srate:22050 refCount:2
{85ac0}->
(85b88} tag:SAMPLES
from:0 to:1 shift:0 stretch:l
logTo:1l scale:0.04 srate:22050 refCount :3
sound: {85558}
refCount: 5 len:22050 srate:22050 data:{99fd0}
{856cc}~>
{85bc4} tag:SAMPLES
from:0 to:1 shift:l stretch:1
logTo:2 scale:0.2 srate:22050 refCount:2
sound: {85558}
refCount: 5 len:22050 srate:22050 data:{99fd0}
{855b4}->
{8fac0} tag:SAMPLES
from:0 to:1 shift:2 stretch:l
logTe:3 scale:2 srate:22030 refCount:2
sound: {85558}
refCount: 5 len:22050 srate:22050 data:{99£d0}

{SOUND: {85c3c} node[0:3]3]@22050}

The tag: SUMNODES indicates the structure represents the sum of sounds. This is followed by
parameters that apply to the whole sum, e.g. the sound runs from time O to time 3. The
SUMNODES structure has pointers (shown by ->) to two sounds, the first of which is another
SUMNODES structure, This one points to two SAMPLES structures which indicate
transformations on actual samples. The samples can be shared by many SAMPLES nodes. In
this example, all three SAMPLES nodes point to the sound structure at address 85558. This
sound has a reference count of 5 (3 references are shown here, the variable mysnd also points to
the sound, and the 5% reference is probably from a temporary variable that will be garbage
collected in the future). ‘ :

Functions which operate on actual samples as opposed to a lazy-evaluation tree must first
‘‘flatten’’, or normalize, their signal parameters so that the resulting sound is an array of samples
with no scale, from, to, stretch, and sample rate change to be applied. Note that shift is not in
this list — it is allowed to remain non-zero to avoid an initial silence (zeros), saving both
evaluation time and memory.

The s-flatten function converts any sound into a SAMPLES node by performing any
computation implied by transformation parameters or by a SUMNODES tree. The following
transcript shows what happens to the sound s computed above:

> (setf scopy s)
{SOUND: {85c3c} sample[0:3|3]@22050}
> (s~flatten s)
{SOUND: {85c3c} sample[0:313]@22050}
> (snd-show s) .
{85¢c3c} tag:SAMPLES
from:0 to:3 shift:0 stretch:1
logTo:3 scale:1l srate:22050 refCount:3
sound: {9074c}
refCount: 1 len:66150 srate:22050 data:{af864}
{SOUND: {85c3c¢c} sample[0:3131@22050}
>

This shows that a new sound was allocated and the SUMNODES tree was collapsed. Notice that

LAZY EVALUATION Page 35

the address of the sound structure, 85¢3cy,,, remains the same, indicating that the structure is
modified in place, and any copy of s, such as scopy, will also see the change. (This is a
desirable side-effect because all copies of s will continue to share memory and another flatten
operation is not needed for the copies.)

Normally, an internal version of s-flatten is called automatically by all sound processing
functions, so there is no need write calls to s-flatten.

There are three basic data structures which comprise this lazy-evaluation tree: the sample
structure, the node structure, and the sound structure. Below, each is described in detail.

IL.1. Data Types
There are two data types which specifically deal with samples:

typedef short SFDataType, *SFDataPtr;

typedef float SDataType, *SDataPtr;
SFDataType defines the type of data in sound files (on disk), while SDataType defines the
type of sample data used internally. Note that if SFDataType is changed, some routines
dealing with loading/storing sound files may need to be modified. SDataType may be changed
to double without any problems, but changing to an integer type will require extensive changes
to code to deal with overflows, resolution problems, etc.

IL.2. The Sample Structure
Samples are managed by the following structure:

typedef struct

{

int refCount;
int length;
float srate;

SDataPtr data;

} SampleType, *SamplePtr; .
RefCount is used to keep track of how many times this structure is referenced by others. This
count must be incremented when something references this structure, and must be decremented
when something stops referencing this structure. If the count goes to zero, this structure must be
freed.

Length indicates the length (in samples) of this sample. Srate is the sampling rate of this
sample. Data is a pointer to the actual samples. :

Note that this structure can only be referenced by something of SoundType.
IL3. The Node Structure

This structure is used to indicate the sum of one or more sounds. Note that this is an arithmetic
sum, and takes into account any time shifts, etc.

Page 36 FUGUE MANUAL

typedef struct
{

SoundPtr sound;

NodePtr node;

} NodeType, *NodePtr;
This structure forms one element in a linked list of nodes. Each element in this list points to a
sound which is to be simultaneously summed with the other sounds in this list.

Sound is a pointer to one of the sounds in this sum, node is a pointer to the next node. If
node is NULL, then this is the last node in the linked list.

I1.4. The Sound Structure
The sound structure contains several elements which facilitate lazy evaluation when sounds are
scaled, clipped, shifted in time, stretched in time, and added. The structure is defined as follows:

typedef struct
{
float scale;
double from, to, shift;
float stretch, srate;
double logstop;

int refCount;
short tag;
union

{

SamplePtr sample;

NodePtr node;

} ptr;

} SoundType, *SoundPtr;

Ptr points to either a node or a sample. If it points to a node, this represents a lazy add: this
sound is really the sum of several other sounds in the linked list pointed to by ptr.node.
Alternatively, pt r may point directly to a sample. Tag indicates what type ptr is: tag may
be SAMPLES or NODES or SILENCE. SILENCE is a special case, and indicates that this sound
contains no samples.

The scale, from, to, shift, stretch, srate, and logstop fields indicate how the
sample (when tag is SAMPLES) or the sum of other sounds (when tag is NODES) is to be
lazy-evaluated. For clarity, these fields will be described when applied to samples. When
applied to a sum of sounds, the result is the same as if these sounds were added together into a
single sample, and these fields were applied to this resulting sample.

scale is a constant by which each sample is to be multiplied. No scaling occurs
when scaleis1.0.

fromand to indicate what portion of a sample to extract. The units of £rom and to are
seconds. Note that the time origin is moved to the beginning of the extracted
sound. For example, if from is 10.0, then the signal is shifted back by
10.0 seconds so that what was at time 10.0 is now at the origin. No
extraction occurs if fromis 0.0 and to is beyond the extent of the sound.

shift says to shift in time by shift seconds. If shift is positive, this is

LAZY EVALUATION

stretch

srate

logstop

Page 37

equivalent to splicing silence onto the beginning of the sample. If negative,
this can have the effect of setting a logical start time for this sound: In order
to make the logical start time of a sound correspond to a given starting
time, it is convenient to shift the physical starting time back. Note that
the shift is applied after the extraction of a portion of a sound. A shift of 0.0
indicates the sample is not shifted at all.

takes a sound and stretches it in time. This usually entails resampling the
sound by linear interpolation. Since this is applied after the extraction and
shift, the sound may be shifted further in time by the amount of stretch.

indicates the sample rate that this sound will have when lazy-evaluated.

indicates the logical or perceptual end of the sound as opposed to to which
indicates the absolute end of (the last sample in) the sound.

Also note that some of these transformations are interactive (non-associative), such as from, to,
shift, stretch, and logical-stop. Hence, defining the order in which they are to be applied 1s
important. By definition, the order is from, to, shift, stretch, then logical-stop. This means that
the flatten operation does the following:

1. Scale the signal by scale;
2. Clip the signal on the left at from;

3. Clip the signal on the right at to;
4. Shift the signal by shift;
5. Stretch the signal by stretch;

6. Assert the logical-stop.

Hence, the normalized form for a sound is as follows:

scale
from

to
shift
stretch
srate
logstop
tag

0N nnun

1.0

0.0

(length of sample) / (srate of sample)
iy ard

1.0

(srate of sample)

??7

SAMPLES

By definition logical-stop is the logical end of a sound, after from, to, shift, and stretch have been
applied to the sample. Hence, it is not affected by flattening.

Page 38 FUGUE MANUAL

Page 40 FUGUE MANUAL

Once you are done using a sound that you have created, you must call this routine. This
function free()’s all the structures referenced by the given sound if they are not still in
use by someone else.

void nodes free(NodePtr node)
Does the same for nodes as sound_free does for sounds.

void sample free(SamplePtr sample)
Does the same for samples as sound free does for sounds. Note this function will
free() both the sample structure and the sound samples themselves.

III.3. Manipulators

int soundp(LVAL lval)
Takes an XLisp LVAL and returns TRUE if this is a sound, and FALSE otherwise. See

XLisp documentation for info in LVAL’s.

SoundPtr s__flatten(SoundPtr sound)
““flattens’’ a sound by forcing evaluation. See Appendix II for more on lazy evaluation
and the flattening process. One must s_£ 1atten() before accessing any of a sound’s
sample data. After s_f1l atten() is called, one must still make sure sound->tag is
SAMPLES, and not SILENCE.

I11.4. fugue.c

Any of the functions declared in the header file fugue . h may also be called from C, as can
any new functions you create. When using the functions found in fugue . c, one must be sure
to #include fugue.h gaffer sound.h is #include’d. These functions behave the same
way when called from C as their corresponding XLisp functions behave when called from
XLisp. Here is the list of functions from fugue.h:

float s maxSample () /* LISP: (S-MAXSAMP SOUND) *x/
float s from() ; /* LISP: (S-FROM SOUND) */
float s_dur(); /* LISP: (S-DUR SOUND) */
float s to(); /* LISP: (S8-TO SOUND) */
LVAL s:samples(); /* LISP: (S-SAMPLES SOUND FIXNUM) */
SoundPtr s show(); /* LISP: (SND-SHOW_SOUND) */
float s_srate(); /* LISP: (SND-SRATE SOUND) */
SoundPtr s stats(); /* LISP: (S-STATS SOUND) */
float s_access () ; /* LISP: ({(SND-ACCESS SOUND FLONUM) */
SoundPtr s _apply();

/* LIsP: (S-APPLY SOUND FLONUM FLONUM FLONUM FLONUM FLONUM FLONUM) */
SoundPtr s scale(); /* LISP: (S-SCALE SOUND FLONUM) */
SoundPtr s:clip(); /* LISP: (S-CLIP SOUND FLONUM FLONUM) */
SoundPtr s_lclip(); /* LISP: (S~LCLIP SOUND FLONUM) */
SoundPtr s*rclip(); /* LISP: (S-RCLIP SQUND FLONUM) */
soundPtr s shift(); /* LISP: (S-SHIFT SOUND FLONUM) */
SoundPtr s:stretch(); /* LISP: (S-STRETCH SOUND FLONUM) */
SoundPtr s*add(); /* LISP: (S-ADD SOUND SOUND) */
SoundPtr s_mult(); /* LISP: (S-MULT SOUND SOUND) *x/

SoundPtr s_osc();
/*LISP: (S-0SC SOUND FLONUM FLONUM FLONUM FLONUM FLONUM FIXNUM) */
soundPtr s env{); .
/* LISP: (Z-ENV FLONUM FLONUM FLONUM FLONUM FLONUM FLONUM FLONUM FLONUM) *x/

SoundPtr s pwl(); /* LISP: (S-PWL FLONUM ANY) */

soundPtr sT_load(); /* LISP: (SF-LOAD STRING FLONUM) */
SoundPtr sf_save(); /* LISP: (SF-SAVE SOUND STRING) */
double st8p_to_hz(); /* LISP: (STEP-TO-HZ FLONUM) */
double hz to_step(); /* LISP: (HZ-TO-STEP FLONUM) */
double s_TogIcalTo () /* LISP: (S~LOGICALTO SOQUND) */
soundPtr s setLogicalTo(); /* LISP: (S~-SETLOGICALTO FLONUM SQUND) *x [/

double 1og () ; /* LISP: (LOG FLONUM) */

Page 42 FUGUE MANUAL

/*

* FILE: example2.c

* BY: Christopher Lee Fraley

*

* 1,0 (3-JUN-89) ~ created. (clf)
*

#$include <math.h>
#include "xlisp.h"
#include "sound.h"

soundptr round(sound, k)
SoundPtyx sound;
int k:;
{
SoundPtr val;
SpataPtr data;
int len, newlen;
double newSrate;
int i;
/* Must flatten sound before I can access its samples: */

(void)s_flatten(sound);
len = sound->ptr.sample->length;

/* Let’s create the return value: */

val = s create();

newlLen = len; /* Make return sound the same length as input sound */
newSrate = sound=->srate; /* Make val have same srate as input sound */
data = sdata create (newlen) ;

val->ptr.sample = spl_create(data, newLen, newSrate);

val->tag = SAMPLES;

val->to = val->logicalTo = newLen / newSrate;

val->srate = newSrate;

val->shift = sound->shift;

for (i=0; i<len && i<newlLen; i++)

{
/* Put your own calculations here, for example: */
val->ptr.sample->data[i] = floor (sound->ptr.sample->datafi] / k) * k;

return (val);

Again, we need to provide a . h file to interface the new C code to Lisp via Intgen:
/* '

*

FILE: example2.h
. .BY: Christopher Lee Fraley (cfOv@spice.cs.cmu.edu)
DESC: example of extending the Fugue/XLisp system.

1.0 (3-JUN-89) = created. (cfOv)

* ok b o ok

#include "sound.h"

SoundPtr round(); /* LISP: (ROUND SOUND FIXNUM) */

INTGEN Page 43

Ap]}endix IV
ntgen

This documentation describes Intgen, a program for generating XLISP to C interfaces. Intgen
works by scanning .h files with special comments in them. Intgen builds stubs that implement
XLISP SUBR’s. When the SUBR is called, arguments are type-checked and passed to the C
routine declared in the .h file. Results are converted into the appropriate XLISP type and
returned to the calling XLISP function. Intgen lets you add C functions into the XLISP
environment with very little effort.

The interface generator will take as command-line input:

e the name of the .c file to generate (do not include the .c extension; e.g. write
xlexten, not xlexten. c);

e a list of . h files.
The output is:
e a single . c file with one SUBR defined for each designated routine in a . h file.

ea .h file that declares each new C routine. E.g. if the .c file is named
xlexten.c, this file will be named xlextendefs.h;

e a .h file that extends the SUBR table used by)Elisp. E.g. if the .c file is named
xlexten.c, then this file is named xlextenptrs.h;

e 2 . 1sp file with lisp initialization expressions copied from the .h files. This file is
only generated if at least one initialization expression is encountered.

For example, the command line
intgen seint ~setypes.h access .h

generates the file seint . c, using declarations in setypes.h and access .h. Normally, the
.h files are included by the generated file using #include commands. A ~ before a file
means do not include the .h file. (This may be useful if you extend x1isp.h, which will be
included anyway). Also generated will be setintdefs.hand se intptrs.h.

IV.0.1. Extending Xlisp

Any number of . h files may be named on the command line to Intgen, and Intgen will make a
single . c file with interface routines for all of the . h files. On the other hand, it is not necessary
to put all of the extensions to Xlisp into a single interface file. For example, you can run Intgen
once to build interfaces to window manager routines, and again to build interfaces to a new data
type. Both interfaces can be linked into Xlisp. '

To use the generated files, you must compile the . < files and link them with all of the standard
Xlisp object files. In addition, you must edit the file localdefs.h to contain an #include
for each *defs.h file, and edit the file localptrs.h to include each *ptrs.h file. For
example, suppose you run Intgen to build soundint.c, fugueint.c, and tableint.c.
You would then edit localdefs.h to contain the following:

$include "soundintdefs.h"

#include "fugueintdefs.h”
$#include "tableintdefs.h”

Page 44 FUGUE MANUAL

and edit Localptrs.h to contain:

#include "soundintptrs.h"
$include "fugueintptrs.h"”
#include "tableintptrs.h"

These localdefs.h and localptrs.h files are in turn included by x1ftab.c which is
where Xlisp builds a table of SUBRs.

To summarize, building an interface requires just a few simple steps:
e Write C code to be called by Xlisp interface routines. This C code does the real
work, and in most cases is completely independent of Xlisp. "

e Add comments to .h files to tell Intgen which routines to build interfaces to, and to
specify the types of the arguments.

¢ Run Intgen to build interface routines.
e Edit localptrs.hand localdefs.h to include generated .h files.
e Compile and link Xlisp, including the new C code.

IV.1. Header file format

Each routine to be interfaced with ilisp must be declared as follows:
type-name routine-name () ; /* LISP:- (func-name type; type, ...) */

The comment may be on the line following the declaration, but the declaration and the comment
must each be on no more than one line. The characters LISP: at the beginning of the comment
mark routines to put in the interface. The comment also gives the type and number of
arguments. The function, when accessed from lisp will be known as func-name, which need not
bear any relationship to routine-name. By convention, underscores in the C routine-name should
be converted to dashes in func-name, and func-name should be in all capitals. None of this is
enforced or automated though.

Legal type. names are:

LVAL returns an ilisp datum.

atom type equivalent to LVAL, but the result is expected to be an atom.
value type a value as used in Dannenberg’s score editor.
event_type an event as used in Dannenberg’s score editor.

int interface will convert int to jaisp FIXNUM.

boolean interface will convertintto T ornil.

float or doubleinterface converts to FLONUM.

char *orstringorstring_type
interface converts to STRING. The result string will be copied into the
XLISP heap.

void interface will return nil.
It is easy to extend this list. Any unrecognized type will be coerced to an int and then
returned as a FIXNUM, and a waming will be issued.

INTGEN Page 45

The ***’’ after char must be followed by routine-name with no intervening space.

Parameter types may be any of the following:

FIXNUM C routine expects an int.

FLONUM or FLOATC routine expects a double.

STRING C routine expects char *, the string is not copied.

VALUE C routine expects a value type. (Not applicable to Fugue.)
 EVENT C routine expects an event_type. (Not applicable to Fugue.)

ANY C routine expects LVAL.

ATOM C routine expects LVAL which is a lisp atom.

FILE C routine expects FILE *.

SOUND C routine expects a SoundPtr.

Any of these may be followed by ‘‘*’’: FIXNUM*, FLONUM*, STRING*, ANY*, FILE*,
indicating C routine expects int *, double *,char **, LVAL *,or FILE ** _ This is
basically a mechanism for returning more than one value, not a mechamsm for clobbermg XLisp
values. In this spirit, the interface copies the value (an int, double, char *, LVAL,or FILE
*) to a local variable and passes the address of that variable to the C routine. On return, a list of
resulting ‘“*’’ parameters is constructed and bound to the global XLisp symbol *RSLT*.
(Strings are copied.) If the C routine is void, then the result list is also returned by the

corresponding XLisp function.

Note 1: this does not support C routines like strcpy that modify strings, because the C routine
gets a pointer to the string in the XLisp heap. However, you can always add an intermediate
routine that allocates space and then calls st rcpy, or whatever.

Note 2: it follows that a new §:€Lisp STRING will be created for each STRING* parameter.

Note 3: putting results on a (global!) symbol seems a bit unstructured, but note that one could
write a multiple-value binding macro that hides this ugliness from the user if desired. In
practice, I find that pulling the extra result values from *RSLT* when needed is perfectly
acceptable.

For parameters that are result values only, the character *‘~’’ may be substituted for ****". In
this case, the parameter is not to be passed in the XLisp calling site. However, the address of an
initialized local variable of the given type is passed to the corresponding C function, and the
resulting value is passed back through *RSLT* as ordinary result parameter as described above.
The local variables are initialized to zero or NULL,

IV.2. Using #define’d macros

If a comment of the form:
/* LISP: type-name (routine-name-2 type-l type-2 ...) */

appears on a line by itself and there was a #define on the previous line, then the preceding
#define is treated as a C routine, e.g.

Page 46 FUGUE MANUAL

#define leftshift (val, count) ((val) << (count))
/* LISP: int (LOGSHIFT INT INT) */

will implement the LeLisp function LOGSHIFT.

The type-name following ““LISP :’’ should have no spaces, e.g. use ANY*, not ANY *,

IV.3. Lisp Include Files
Include files often define constants that we would like to have around in the Lisp world, but
which are easier to initialize just by loading a text file. Therefore, a comment of the form:

/* LISP-SRC: (any lisp expression) */
will cause Intgen to open a file name . 1sp and append
(any lisp expression)

to name . 1sp, where name is the interface name passed on the command line. If none of the
include files examined have comments of this form, then no name . 1sp file is generated.

IV4. Example

This file was used for testing Intgen. It uses a trick (ok, it’s a hack) to interface to a standard
library macro (tolower). Since tolower is already defined, the macro ToLower is defined just to
give Intgen a name to call. Two other routines, strlen and tough, are interfaced as well.

/* igtest.h -- test interface for intgen */

#define ToLower (c) tolower (c)
/* LISP: int (TOLOWER FIXNUM) */

int strlen(); /* LISP: (STRLEN STRING) */

void tough();
/* LISP: (TOUGH FIXNUM* FLONUM* STRING ANY FIXNUM) */

IV.5. More Details

Intgen has some compiler switches to enable/disable the use of certain types, including VALUE
and EVENT types used by Dannenberg’s score editing work, the SOUND type used by Fugue, and
DEXT and SEXT types added for Dale Amon. Enabling all of these is not likely to cause
problems, and the chances of an accidental use of these types getting through the compiler and
linker seems very small.

XLISP: AN OBJECT-ORIENTED LISP Page 47

Appendix V
XLISP: An Object-oriented Lisp

Version 2.0
February 6, 1988

by
David Michael Betz
127 Taylor Road
Peterborough, NH 03458

(603) 924-6936 (home)
Copyright (c) 1988, by David Michael Betz

All Rights Reserved
Permission is granted for unrestricted non-commercial use

Page 48 FUGUE MANUAL

V.1. Introduction

XLISP is an experimental programming language combining some of the features of Common
Lisp with an object-oriented extension capability. It was implemented to allow experimentation
with object-oriented programming on small computers.

There are currently implementations of XLISP running on the IBM- PC and clones under MS-
DOS, on the Macintosh, the Atari-ST and the Amiga. It is completely written in the
programming language C and is easily extended with user written built-in functions and classes.
It is available in source form to non-commercial users.

Many Common Lisp functions are built into XLISP. In addition, XLISP defines the objects
Object and Class as primitives. Object is the only class that has no superclass and hence is the
root of the class hierarchy tree. Class is the class of which all classes are instances (it is the only
object that is an instance of itself).

This document is a brief description of XLISP. It assumes some knowledge of LISP and some
understanding of the concepts of object-oriented programming.

I recommend the book Lisp by Winston and Hom and published by Addison Wesley for
learning Lisp. The first edition of this book is based on MacLisp and the second edition is based
on Common Lisp. XLISP will continue to migrate towards compatibility with Common Lisp.

You will probably also need a copy of Common Lisp: The Language by Guy L. Steele, Jr.,
published by Digital Press to use as a reference for some of the Common Lisp functions that are
described only briefly in this document.

V.2. A Note From The Author

If you have any problems with XLISP, feel free to contact me for help or advice. Please
remember that since XLISP is available in source form in a high level language, many users have
been making versions available on a variety of machines. If you call to report a problem with a
specific version, I may not be able to help you if that version runs on a machine to which I don’t
have access. Please have the version number of the version that you are running readily
accessible before calling me.

If you find a bug in XLISP, first try to fix the bug yourself using the source code provided. If
you are successful in fixing the bug, send the bug report along with the fix to me. If you don’t
have access to a C compiler or are unable to fix a bug, please send the bug report to me and I'll
try to fix it.

Any suggestions for improvements will be welcomed. Feel free to extend the language in
whatever way suits your needs. However, PLEASE DO NOT RELEASE ENHANCED
VERSIONS WITHOUT CHECKING WITH ME FIRST!! I would like to be the clearing house
for new features added to XLISP. If you want to add features for your own personal use, go
ahead. But, if you want to distribute your enhanced version, contact me first. Please remember
that the goal of XLISP is to provide a language to learn and experiment with LISP and object-
oriented programming on small computers. I don’t want it to get so big that it requires
megabytes of memory to run.

XLISP: AN OBJECT-ORIENTED LISP Page 49

V.3. XLISP Command Loop

When XLISP is started, it first tries to load the workspace x1isp.wks from the current
directory. If that file doesn’t exist, XLISP builds an initial workspace, empty except for the
built-in functions and symbols.

Then XLISP attempts to load init .1lsp from the current directory. It then loads any files
named as parameters on the command line (after appending . 1sp to their names).

XLISP then issues the following prompt:
>

This indicates that XLISP is waiting for an expression to be typed.

When a complete expression has been entered, XLISP attempts to evaluate that expression. If
the expression evaluates successfully, XLISP prints the result and then returns to the initial
prompt waiting for another expression to be typed.

V.4. Break Command Loop
When XLISP encounters an error while evaluating an expression, it attempts to handle the
error in the following way:

If the symbol *breakenable* is true, the message corresponding to the error is printed. If
the error is correctable, the correction message is printed.

If the symbol *tracenable* is true, a trace back is printed. The number of entries printed
depends on the value of the symbol *tracelimit*. If this symbol is set to something other
than a number, the entire trace back stack is printed.

XLISP then enters a read/eval/print loop to allow the user to examine the state of the
interpreter in the context of the error. This loop differs from the normal top-level read/eval/print
loop in that if the user invokes the function continue, XLISP will continue from a correctable
error. If the user invokes the function clean-up, XLISP will abort the break loop and retumn to
the top level or the next lower numbered break loop. When in a break loop, XLISP prefixes the
break level to the normal prompt.

If the symbol *breakenable* is nil, XLISP looks for a surrounding errset function. If
one is found, XLISP examines the value of the print flag. If this flag is true, the error message is
printed. In any case, XLISP causes the errset function call to return nil.

If there is no surrounding errset function, XLISP prints the error message and returns to the top
level.

V.5. Data Types
There are several different data types available to XLISP programmers.

e lists

¢ symbols

Page 50 FUGUE MANUAL

e strings

® integers

e characters

o floats

¢ objects

e arrays

e streams

* subrs (built-in functions)
e fsubrs (special forms)

o closures (user defined functions)

V.6. The Evaluator
The process of evaluation in XLISP:

e Strings, integers, characters, floats, objects, arrays, streams, subrs, fsubrs and
closures evaluate to themselves.

e Symbols act as variables and are evaluated by retrieving the value associated with
their current binding.

e Lists are evaluated by examining the first element of the list and then taking one of
the following actions:
« If it is a symbol, the functional binding of the symbol is retrieved.

» If it is a lambda expression, a closure is constructed for the function described
by the lambda expression.

* If it is a subr, fsubr or closure, it stands for itself.

* Any other value is an error.
Then, the value produced by the previous step is examined:

* If it is a subr or closure, the remaining list elements are evaluated and the subr
or closure is called with these evaluated expressions as arguments.

*If it is an fsubr, the fsubr is called using the remaining list elements as
arguments (unevaluated).

*If it is a macro, the macro is expanded using the remaining list elements as
arguments (unevaluated). The macro expansion is then evaluated in place of
the original macro call.

V.7. Lexical Conventions
The following conventions must be followed when entering XLISP programs:

Comments in XLISP code begin with a semi-colon character and continue to the end of the
line. |

XLISP: AN OBJECT-ORIENTED LISP Page 51

Symbol names in XLISP can consist of any sequence of non-blank printable characters except
the following:

¢y Y "
Uppercase and lowercase characters are not distinguished within symbol names. All lowercase
characters are mapped to uppercase on input.

Integer literals consist of a sequence of digits optionally beginning with a + or ~. The range of
values an integer can represent is limited by the size of a C long on the machine on which
XLISP is running.

Floating point literals consist.of a sequence of digits optionally beginning with a + or - and
including an embedded decimal point. The range of values a floating point number can represent
is limited by the size of a C float (double on machines with 32 bit addresses) on the
machine on which XLISP is running.

Literal strings are sequences of characters surrounded by double quotes. Within quoted strings
the ‘‘\’’ character is used to allow non-printable characters to be included. The codes
recognized are:

¢ \\ means the character ‘“\”’
¢ \n means newline

* \t means tab

¢ \r means return

e \ £ means form feed

¢ \nnn means the character whose octal code is nnn

V.8. Readtables

The behavior of the reader is controlled by a data structure called a readrable. The reader uses
the symbol *readtable* to locate the current readtable. This table controls the interpretation
of input characters. It is an array with 128 entries, one for each of the ASCII character codes.
Each entry contains one of the following things:

e NIL — Indicating an invalid character
¢ :CONSTITUENT — Indicating a symbol constituent

¢ :WHITE-SPACE — Indicating a whitespace character

(:TMACRO . fun) — Terminating readmacro
e (:NMACRO . fun) — Non-terminating readmacro
e : SESCAPE — Single escape character ('\)
¢ :MESCAPE -— Multiple escape character (’I’)
In the case of : TMACRO and :NMACRO, the fun component is a function. This can either be a

built-in readmacro function or a lambda expression. The function should take two parameters.
The first is the input stream and the second is the character that caused the invocation of the

Page 52 FUGUE MANUAL

readmacro. The readmacro function should return NIL to indicate that the character should be
treated as white space or a value consed with NIL to indicate that the readmacro should be
treated as an occurence of the specified value. Of course, the readmacro code is free to read
additional characters from the input stream.

XLISP defines several useful read macros:
o '<expr> == (quote <expr>)
o #’<expr> == (function <expr>)
e #(<expr>...) == an array of the specified expressions
e #x<hdigits> ==a hexadeci:hal number (0-9,A-F)
e #o<odigits> == an octal number (0-7)
e #b<bdigits> == a binary number (0-1)
e f\<char> == the ASCII code of the character
e #| ... # == a comment
e #:<symbol> == an uninterned symbol
o ‘<expr> == (backquote <expr>)
® <expr> == (comma <expr>)

o @ <expr> == (comma-at <expr>)

V.9. Lambda Lists .

There are several forms in XLISP that require that a ‘‘lambda list”’ be specified. A lambda list
is a definition of the arguments accepted by a function. There are four different types of
arguments.

The lambda list starts with required arguments. Required arguments must be specified in
every call to the function. '

The required arguments are followed by the &optional arguments. Optional arguments may be
provided or omitted in a call. An initialization expression may be specified to provide a default
value for an &optional argument if it is omitted from a call. If no initialization expression is
specified, an omitted argument is initialized to NIL. It is also possible to provide the name of a
supplied=-p variable that can be used to determine if a call provided a value for the argument
or if the initialization expression was used. If specified, the supplied- p variable will be bound to
T if a value was specified in the call and NIL if the default value was used.

The &optional arguments are followed by the &rest argument. The &rest argument gets
bound to the remainder of the argument list after the required and &optional arguments have
been removed.

The &rest argument is followed by the &key arguments. When a keyword argument is passed
to a function, a pair of values appears in the argument list. The first expression in the pair should
evaluate to a keyword symbol (a symbol that begins with a *“:’"). The value of the second

XLISP: AN OBJECT-ORIENTED LISP Page 53

expression is the value of the keyword argument. Like &optional arguments, &key arguments
can have initialization expressions and supplied-p variables. In addition, it is possible to specify
the keyword to be used in a function call. If no keyword is specified, the keyword obtained by
adding a *‘:*’ to the beginning of the keyword argument symbol is used. In other words, if the
keyword argument symbol is foo, the keyword will be * : foo.

The &key arguments are followed by the &aux variables. These are local variables that are
bound during the evaluation of the function body. It is possible to have initialization expressions
for the &aux variables.

Here is the complete syntax for lambda lists:

(rarg... v
[&optional [oarg | (oarg [init [svar]]]...]
[&rest rarg]
[&key
{karg | ([karg | (key karg)] [init [svar]D]...
&allow-other-keys]
[&aux
[aux | (aux [init])]...]1)

where:

rarg is a required argument symbol
oarg is an &optional argument symbol
rarg is the &rest argument symbol
karg is a &key argument symbol

key is a keyword symbol

aux is an auxiliary variable symbol
iniz is an initialization expression

svar is a supplied-p variable symbol

V.10. Objects -
Definitions:
e selector — a symbol used to select an appropriate method

e message — a selector and a list of actual arguments

e method — the code that implements a message
Since XLISP was created to provide a simple basis for experimenting with object-oriented
programming, one of the primitive data types included is object. In XLISP, an object consists of
a data structure containing a pointer to the object’s class as well as an array containing the values
of the object’s instance variables.

Officially, there is no way to see inside an object (look at the values of its instance variables).
The only way to communicate with an object is by sending it a message.

You can send a message to an object using the send function. This function takes the object
as its first argument, the message selector as its second argument (which must be a symbol) and
the message arguments as its remaining arguments.

Page 54 FUGUE MANUAL

The send function determines the class of the receiving object and attempts to find a method
corresponding to the message selector in the set of messages defined for that class. If the
message is not found in the object’s class and the class has a super-class, the search continues by
looking at the messages defined for the super-class. This process continues from one super-class
to the next until a method for the message is found. If no method is found, an error occurs.

A message can also be sent from the body of a method by using the current object, but the
method lookup starts with the object’s superclass rather than its class. This allows a subclass to
invoke a standard method in its parent class even though it overrides that method with its own
specialized version.

When a method is found, the evaluator binds the receiving object to the symbol self and
evaluates the method using the remaining elements of the original list as arguments to the
method. These arguments are always evaluated prior to being bound to their corresponding
formal arguments. The result of evaluating the method becomes the result of the expression.

V.11. The ¢‘Object’’ Class
Object — the top of the class hierarchy.

Messages:
: show — show an object’s instance variables.
returns — the object

:class — return the class of an object
returns — the class of the object

: isnew — the default object initialization routine
returns — the object

: sendsuper sel args... — send superclass a message
sel — the message selector
args — the message arguments
returns — the result of sending the message

V.12. The ‘“Class’’ Class

Class — class of all object classes (including itself)

Messages:
:new — create a new instance of a class
returns — the new class object

:isnew ivars [cvars [super]] — initialize a new class
ivars — the list of instance variable symbols
cvars — the list of class variable symbols
super — the superclass (default is object)

Page 56 FUGUE MANUAL

e *print-case* — symbol output case (:upcase or :downcase)

There are several symbols maintained by the read/eval/print loop. The symbols +, ++, and
+++ are bound to the most recent three input expressions. The symbols *, ** and *** are
bound to the most recent three results. The symbol - is bound to the expression currently being
evaluated. It becomes the value of + at the end of the evaluation.

V.14. Evaluation Functions
(eval expr) — evaluate an xlisp expression
expr — the expression to be evaluated
returns — the result of evaluating the expression

(apply fun args) —— apply a function to a list of arguments
- fun — the function to apply (or function symbol)
args — the argument list
returns — the result of applying the function to the arguments

(funcall fun arg...) — call a function with arguments
fun — the function to call (or function symbol)
arg — arguments to pass to the function
returns — the result of calling the function with the arguments

(quote expr) — return an expression unevaluated
expr — the expression to be quoted (quoted)
returns — expr unevaluated

(function expr) — get the functional interpretation
expr — the symbol or lambda expression (quoted)
returns — the functional interpretation

(backquote expr) — fill in a template
expr — the template
returns — a copy of the template with comma and comma-at
expressions expanded

(lambda args expr...) — make a function closure
args — formal argument list (lambda list) (quoted)
expr — expressions of the function body
returns — the function closure

(get-lambda-expression closure) — get the lambda expression
closure — the closure
returns — the original lambda expression

(macroexpand form) — recursively expand macro calls

XLISP: AN OBJECT-ORIENTED LISP

form — the form to expand
returns — the macro expansion

(macroexpand-1 form) — expand a macro call
form — the macro call form
returns — the macro expansion

V.15. Symbol Functions

(set sym expr) — set the value of a symbol
sym — the symbol being set
expr — the new value
returns — the new value

(setq [sym expr]...) — set the value of a symbol
sym — the symbol being set (quoted)
expr — the new value
returns — the new value

(psetq [sym expr]...) — parallel version of setq
sym — the symbol being set (quoted)
expr — the new value
returns — the new value

(setf [place expr]...) — set the value of a field

place — the field specifier (quoted):
sym — set value of a symbol
(car expr) — set car of a cons node
(cdr expr) — set cdr of a cons node
(nth n expr) — set nth car of a list
(aref expr n) — set nth element of an array
(get sym prop) — set value of a property
(symbol-value sym) — set value of a symbol
(symbol-function sym) — set functional value of a symbol
(symbol-plist sym) — set property list of a symbol

expr — the new value

retumns — the new value

(defun sym fargs expr...) — define a function

(defmacro sym fargs expr...) — define a macro
sym — symbol being defined (quoted)
fargs — formal argument list (lambda list) (quoted)
expr — expressions constituting the body of the
function (quoted) returns — the function symbol

(gensym [rag]) — generate a symbol

Page 57

Page 58

tag — string or number
retums — the new symbol

(intemn pname) — make an interned symbol
pname — the symbol’s print name string
returns — the new symbol

(make-symbol pname) — make an uninterned symbol
pname — the symbol’s print name string
returns — the new symbol

(symbol-name sym) — get the print name of a symbol
sym — the symbol
returns — the symbol’s print name

(symbol-value sym) — get the value of a symbol
sym — the symbol
retums — the symbol’s value

(symbol-function sym) — get the functional value of a symbol
~ sym — the symbol
returmns — the symbol’s functional value

(symbol-plist sym) — get the property list of a symbol
sym — the symbol
returns — the symbol’s property list

(hash sym n) — compute the hash index for a symbol
sym — the symbol or string
n — the table size (integer)
returns — the hash index (integer)

V.16. Property List Functions

(get sym prop) — get the value of a property
sym — the symbol
prop — the property symbol
returns — the property value or nil

(putprop sym val prop) — put a property onto a property list
sym — the symbol
val — the property value
prop — the property symbol
returns — the property value

FUGUE MANUAL

XIISP: AN OBJECT-ORIENTED LISP

(remprop sym prop) — remove a property
sym — the symbol
prop — the property symbol
retums —nil

V.17. Array Functions

(aref array n) — get the nth element of an array
array — the array
n — the array index (integer)
returns — the value of the array element

(make-array size) -— make a new array
size — the size of the new array (integer)
returns — the new array

(vector expr...) — make an initialized vector
expr — the vector elements
returns — the new vector

V.18. List Functions

(car expr) — return the car of a list node
expr — the list node
retumns - the car of the list node

(cdr expr) — return the cdr of a list node
expr — the list node
returns — the cdr of the list node

(cxxr expr) — all cxar combinations
(cxxxr expr) — all cxxxr combinations
(cxxxxr expr) — all cxxxxr combinations
(first expr) — a synonym for car
(second expr) — a synonym for cadr
(third expr) — a synonym for caddr

(fourth expr) — a synonym for cadddr

Page 59

"Page 60

(rest expr) — a synonym for cdr

(cons exprl expr2) — construct a new list node
expr] — the car of the new list node
expr2 — the cdr of the new list node
retumns --- the new list node

(list expr...) — create a list of values
expr — expressions to be combined into a list
returns — the new list

(append expr...) — append lists.
expr — lists whose elements are to be appended
retumns — the new list

(reverse expr) — reverse a list
expr — the list to reverse
returmns — a new list in the reverse order

(last list) — return the last list node of a list
list — the list
retums — the last list node in the list

(member expr list &key :test :test-not) — find an expression in a list
expr — the expression to find
list — the list to search
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the remainder of the list starting with the expression

(assoc expr alist &key :test :test-not) — find an expression in an a-list
expr — the expression to find
alist — the association list
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
retums — the alist entry or nil

(remove expr list &key :test :test-not) — remove elements from a list
expr — the element to remove
list — the list
:test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — copy of list with matching expressions removed

(remove-if test list) — remove elements that pass test
test — the test predicate

FUGUE MANUAL

XLISP: AN OBJECT-ORIENTED LISP

list — the list
returns — copy of list with matching elements removed

(remove-if-not test list) — remove elements that fail test
test — the test predicate
list — the list
returns — copy of list with non-matching elements removed

(length expr) — find the length of a list, vector or string
expr — the list, vector or string
returns — the length of the list, vector or string

(nth n list) — return the nth element of a list
n — the number of the element to return (zero origin)
list — the list
returns — the nth element or nil if the list isn’t that long

(nthedr n list) — return the nth cdr of a list
n — the number of the element to retum (zero origin)
list — the list
retumns — the nth cdr or nil if the list isn’t that long

(mapc fcn list] list...) — apply function to successive cars
fen — the function or function name
listn — a list for each argument of the function
returns — the first list of arguments

(mapcar fen list] list...) — apply function to successive cars
fen — the function or function name
listn — a list for each argument of the function
returns — a list of the values returned

(mapl fcn list] list...) — apply function to successive cdrs
fcn — the function or function name
listn — a list for each argument of the function
returns — the first list of arguments

(maplist fcn list] list...) — apply function to successive cdrs
fen — the function or function name
listn — a list for each argument of the function
returns — a list of the values returned

(subst o from expr &key :test :test-not) — substitute expressions
to — the new expression
from — the old expression
expr — the expression in which to do the substitutions

Page 61

Page 62

:test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — the expression with substitutions

(sublis alist expr &key :test :test-not) — substitute with an a-list
alist — the association list
expr — the expression in which to do the substitutions
:test — the test function (defaults to eql)
‘test-not — the test function (sense inverted)
returns — the expression with substitutions

V.19. Destructive List Functions

(rplaca list expr) — replace the car of a list node
list — the list node
expr — the new value for the car of the list node
returns — the list node after updating the car

(rplacd list expr) — replace the cdr of a list node
list — the list node
expr — the new value for the cdr of the list node
returns — the list node after updating the cdr

(nconc list...) — destructively concatenate lists
list —: lists to concatenate
returns — the result of concatenating the lists

(delete expr &key :test :test-not) — delete elements from a list
expr — the element to delete
list — the list
‘test — the test function (defaults to eql)
:test-not — the test function (sense inverted)
returns — the list with the matching expressions deleted

(delete-if test list) — delete elements that pass test
test — the test predicate
list — the list
returns — the list with matching elements deleted

(delete-if-not test list) — delete elements that fail test
test — the test predicate
list — the list
returns — the list with non-matching elements deleted

(sort list test) — sort a list

FUGUE MANUAL

XLISP: AN OBJECT-ORIENTED LISP Page 63

list — the list to sort
test — the comparison function
returns — the sorted list

V.20. Predicate Functions
(atom expr) - is this an atom?
expr — the expression to check
returns — t if the value is an atom, nil otherwise

(symbolp expr) — is this a symbol?
expr — the expression to check
returns — t if the expression is a symbol, nil otherwise

(numberp expr) — is this a number?
expr — the expression to check
returns — t if the expression is a number, nil otherwise

(null expr) — is this an empty list?
expr — the list to check
returns — t if the list is empty, nil otherwise

(not expr) — is this false?
expr — the expression to check
return — t if the value is nil, nil otherwise

(listp expr) — is this a list?
expr — the expression to check
retumns — t if the value is a cons or nil, nil otherwise

(endp list) — is this the end of a list
list — the list
returns — t if the value is nil, nil otherwise

(consp expr) — is this a non-empty list?
expr — the expression to check
returns — t if the value is a cons, nil otherwise

(integerp expr) — is this an integer?
expr — the expression to check
returns — t if the value is an integer, nil otherwise

(floatp expr) — is this a float?
expr — the expression to check
returns — t if the value is a float, nil otherwise

Page 64 FUGUE MANUAL

(stringp expr) — is this a string?
expr — the expression to check
returns — t if the value is a string, nil otherwise

(characterp expr) — is this a character?
expr — the expression to check
returns — t if the value is a character, nil otherwise

(arrayp expr) — is this an array?
expr — the expression to check
returns — t if the value is an array, nil otherwise

(streamp expr) — is this a stream?
expr — the expression to check
returns — t if the value is a stream, nil otherwise

(objectp expr) — is this an object?
expr — the expression to check
returns — t if the value is an object, nil otherwise

(boundp sym) — is a value bound to this symbol?
sym — the symbol
returns — t if a value is bound to the symbol, nil otherwise

(fboundp sym) — is a functional value bound to this symbol?
sym — the symbol
returns — t if a functional value is bound to the symbol,
nil otherwise

(minusp expr) — is this number negative?
expr — the number to test
returns — t if the number is negative, nil otherwise

(zerop expr) — is this number zero?
expr — the number to test
returns — t if the number is zero, nil otherwise

(plusp expr) — is this number positive?
expr — the number to test
returns — t if the number is positive, nil otherwise

(evenp expr) — is this integer even?
expr — the integer to test
returns — t if the integer is even, nil otherwise

XLISP: AN OBJECT-ORIENTED LISP Page 65

(oddp expr) — is this integer odd?
expr — the integer to test
returns — t if the integer is odd, nil otherwise

(eq exprl expr2) — are the expressions identical?
exprl — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

(eql exprl expr2) — are the expressions identical? (works with all numbers)
expr] — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

(equal exprl expr2) — are the expressions equal?
expr] — the first expression
expr2 — the second expression
returns — t if they are equal, nil otherwise

V.21. Control Constructs
(cond pair...) — evaluate conditionally
pair — pair consisting of:
(pred expr...)
where:
pred — is a predicate expression
expr — evaluated if the predicate isnot nil
returns — the value of the first expression whose predicate isnot nil

(and expr...) — the logical and of a list of expressions
expr — the expressions to be anded
retums — nil if any expression evaluates to nil, otherwise the value of the last
expression (evaluation of expressions stops after the first expression that
evaluates to nil) '

(or expr...) — the logical or of a list of expressions
expr — the expressions to be ored
returns — nil if all expressions evaluate to nil, otherwise the value of the first
non-nil expression (evaluation of expressions stops after the first expression that
does not evaluate tonil)

(if texpr exprl [expr2]) — evaluate expressions conditionally
texpr — the test expression
expr] — the expression to be evaluated if texpr is non-nil

Page 66 FUGUE MANUAL

expr2 — the expression to be evaluated if texpris nil
returns — the value of the selected expression

(when texpr expr...) — evaluate only when a condition is true
texpr — the test expression
expr — the expression(s) to be evaluated if texpr is non-nil
returns — the value of the last expression or ni.1

(unless rexpr expr...) — evaluate only when a condition is false
texpr — the test expression
expr — the expression(s) to be evaluated if texpris nil
returns — the value of the last expression or nil

(case expr case...) — select by case

expr — the selection expression

case — pair consisting of:
(value expr...)

where:
value — is a single expression or a list of expressions (unevaluated)
expr — are expressions to execute if the case matches

returns — the value of the last expression of the matching case

(let (binding...) expr...) — create local bindings

(let* (binding...) expr...) — let with sequential binding
binding — the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression
expr — the expressions to be evaluated
returns — the value of the last expression

(flet (binding...) expr...) — create local functions
(labels (binding...) expr...) — flet with recursive functions

(macrolet (binding...) expr...) — create local macros
binding — the function bindings each of which is:
(sym fargs expr...)
where:
sym — the function/macro name
fargs — formal argument list (lambda list)
expr — expressions constituting the body of the function/macro
expr — the expressions to be evaluated
returns — the value of the last expression

(catch sym expr...) — evaluate expressions and catch throws

XLISP: AN OBJECT-ORIENTED LISP Page 67

sym — the catch tag
expr — expressions to evaluate
returns — the value of the last expression the throw expression

(throw sym [expr]) — throw to a catch
sym — the catch tag
expr — the value for the catch to return (defaults to nil)
returns — never returns

(unwind-protect expr cexpr...) — protect evaluation of an expression
expr — the expression to protect
cexpr — the cleanup expressions
returns — the value of the expression
Note: unwind-protect guarantees to execute the cleanup expressions even if a non-local
exit terminates the evaluation of the protected expression

V.22. Looping Constructs
(loop expr...) — basic looping form
expr — the body of the loop
returns — never returns (must use non-local exit)

(do (binding...) (texpr rexpr...) expr...)
(do* (binding...) (texpr rexpr...) expr...)
binding — the variable bindings each of which is either:
1) a symbol (which is initialized to ni1)
2) a list of the form: (sym init [step]) where:
sym — is the symbol to bind
init — is the initial value of the symbol
step — s a step expression
texpr — the termination test expression
rexpr — result expressions (the default is nil)
expr — the body of the loop (treated like an implicit prog)
retumns — the value of the last result expression

(dolist (sym expr [rexpr]) expr...) — loop through a list
sym — the symbol to bind to each list element
expr — the list expression
rexpr — the result expression (the default is nil)
expr — the body of the loop (treated like an implicit prog)

(dotimes (sym expr [rexpr]) expr...) — loop from zero to n-1
sym — the symbol to bind to each value from 0 to n-1
expr — the number of times to loop
rexpr — the result expression (the default is nil)

Page 68 FUGUE MANUAL

expr — the body of the loop (treated like an implicit prog)

V.23. The Program Feature
(prog (binding...) expr...) — the program feature
(prog* (binding...) expr..) — prog with sequential binding
binding — the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression
expr — expressions to evaluate or tags (symbols)
returns — nil or the argument passed to the return function

(block name expr...) — named block
name — the block name (symbol)
expr — the block body
returns — the value of the last expression

(return {expr]) — cause a prog construct to return a value
expr — the value (defaults to nil)
returns -— Never returns

(return-from name [value]) — return from a named block
name — the block name (symbol)
value — the value to return (defaults tonil)
returns — never returns

(tagbody expr...) — block with labels
expr — expression(s) to evaluate or tags (symbols)
returmns — nil

(go sym) — go to a tag within a tagbody or prog
sym — the tag (quoted)
returns — never returns

(progv slist viist expr...) — dynamically bind symbols
slist — list of symbols
vlist — list of values to bind to the symbols
expr — expression(s) to evaluate
returns — the value of the last expression

(progl exprl expr...) — execute expressions sequentially
exprl — the first expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the first expression

XLISP: AN OBJECT-ORIENTED LISP

(prog2 exprl expr2 expr...) — execute expressions sequentially
expr] — the first expression to evaluate
expr2 — the second expression to evaluate
expr — the remaining expressions to evaluate
returns — the value of the second expression

(progn expr...) — execute expressions sequentially
expr — the expressions to evaluate
returns — the value of the last expression (or nil)

V.24. Debugging and Error Handling

(trace sym) — add a function to the trace list
sym — the function to add (quoted)
returns — the trace list

(untrace sym) — remove a function from the trace list
sym — the function to remove (quoted)
returns — the trace list

(error emsg [arg]) — signal a non-correctable error
emsg — the error message string
arg — the argument expression (printed after the message)
returns — never returns

(cerror cmsg emsg [arg]) — signal a correctable error
cmsg — the continue message string
emsg — the error message string
arg — the argument expression (printed after the message)
returns — ni1 when continued from the break loop

(break [bmsg [arg]]) — enter a break loop
bmsg — the break message string (defaults to * *pbreak**)
arg — the argument expression (printed after the message)
returns — nil when continued from the break loop

(clean-up) — clean-up after an error
returns — never returns

(top-level) — clean-up after an error and return to the top level
returns — never returns

(continue) — continue from a correctable error
retums — never returns

Page 69

Page 70

(errset expr [pflag]) — trap errors
expr — the expression to execute
pflag — flag to control printing of the error message
returns — the value of the last expression consed with nil
ornil on error

(baktrace [n]) -— print n levels of trace back information
n — the number of levels (defaults to all levels)
retums —nil

(evalhook expr ehook ahook [env]) — evaluate with hooks
expr — the expression to evaluate
ehook — the value for *evalhook™
ahook — the value for *applyhook*
env — the environment (defaultis nil)
returns — the result of evaluating the expression

V.25. Arithmetic Functions

(truncate expr) — truncates a floating point number to an integer
expr — the number
returns — the result of truncating the number

(float expr) — converts an integer to a floating point number
expr — the number
returns — the result of floating the integer

(+ expr...) — add a list of numbers
expr — the numbers
returns — the result of the addition

(- expr...) — subtract a list of numbers or negate a single number
expr — the numbers
returns — the result of the subtraction

(* expr...) — multiply a list of numbers
expr — the numbers
returns — the result of the multiplication

(/ expr...) — divide a list of numbers
expr — the numbers
returns — the result of the division

(1+ expr) — add one to a number
expr — the number

FUGUE MANUAL

XLISP: AN OBJECT-ORIENTED LISP

returns — the number plus one

(1- expr) — subtract one from a number
expr — the number
retums -— the number minus one

(rem expr...) — remainder of a list of numbers
expr — the numbers
returns — the result of the remainder operation

(min expr...) — the smallest of ‘a list of numbers
expr — the expressions to be checked
returns — the smallest number in the list

(max expr...) — the largest of a list of numbers
expr — the expressions to be checked
returns — the largest number in the list

(abs expr) — the absolute value of a number
expr — the number
returns — the absolute value of the number

(ged nl n2...) — compute the greatest common divisor
nl — the first number (integer)
n2 — the second number(s) (integer)
returns — the greatest common divisor

(random n) — compute a random number between 1 and n-1
n — the upper bound (integer)
retumns — a random number

(sin expr) — compute the sine of a number
expr — the floating point number
returns — the sine of the number

(cos expr) — compute the cosine of a number
expr — the floating point number
returns — the cosine of the number

(tan expr) — compute the tangent of a number
expr — the floating point number
returns — the tangent of the number

(expt x-expr y-expr) — compute X to the y power
x-expr — the floating point number

Page 71

Page 72

y-expr — the floating point exponent
returns — X to the y power

(exp x-expr) — compute e to the x power
x-expr — the floating point number
returmns — € to the x power

(sqrt expr) — compute the square root of a number
expr — the floating point number
returns — the square root of the number

(< nl n2...) — test for less than
(<= nl n2...) — test for less than or equal to
(=nl n2...) — test for equal to
(/= nl n2...) — test for not equal to
(>= nl n2...) — test for greater than or equal to
(> nl n2...) — test for greater than

nl — the first number to compare

n2 — the second number to compare

FUGUE MANUAL

returns — t if the results of comparing nl with n2, n2 with n3, etc., are all true.

V.26. Bitwise Logical Functions

(logand expr...) — the bitwise and of a list of numbers
expr — the numbers
returns — the result of the and operation

(logior expr...) — the bitwise inclusive or of a list of numbers
expr — the numbers
returns — the result of the inclusive or operation

(logxor expr...) — the bitwise exclusive or of a list of numbers
expr — the numbers
retums — the result of the exclusive or operation

(lognot expr) — the bitwise not of a number
expr — the number
returns — the bitwise inversion of number

V.27. String Functions

(string expr) — make a string from an integer ascii value
expr — the integer
returns — a one character string

Page 74

start — the starting position (zero origin)
end — the ending position + 1 (defaults to end)
returns — substring between start and end

(string< strl str2 &key :startl :endl :start2 :end2)
(string<= strl str2 &key :startl :endl :start2 :end2)
(string= strl str2 &key :startl :endl :start2 :end2)
(string/= strl str2 &key :startl :endl :start2 :end2)
(string>= strl str2 &key :startl :endl :start2 :end2)
(string> strl sir2 &key :startl :endl :start2 :end2)

strl — the first string to compare

str2 — the second string to compare

:start1 — first substring starting offset

:end1 — first substring ending offset + 1

:start2 — second substring starting offset

:end2 — second substring ending offset + 1

returns — t if predicate is true, nil otherwise

Note: case is significant with these comparison functions.

(string-lessp strl str2 &key :startl :endl :start2 :end2)
(string-not-greaterp strl str2 &key :startl :endl :start2 :end2)
(string-equalp st sir2 &key :startl :endl :start2 :end2)
(string-not-equalp strl str2 &key :startl :endl :start2 :end2)
(string-not-lessp strl str2 &key :startl :endl :start2 :end2)
(string-greaterp strl str2 &key :startl :endl :start2 :end2)

strl — the first string to compare

str2 — the second string to compare

:start] — first substring starting offset

:end1 — first substring ending offset + 1

:start2 — second substring starting offset

:end2 — second substring ending offset + 1

returns — t if predicate is true, nil otherwise

Note: case is not significant with these comparison functions.

V.28. Character Functions

(char string index) — extract a character from a string
string — the string
index — the string index (zero relative)
returns — the ascii code of the character

(upper-case-p chr) — is this an upper case character?
chr — the character

returns — t if the character is upper case, nil otherwise

(lower-case-p chr) — is this a lower case character?

FUGUE MANUAL

XLISP: AN OBJECT-ORIENTED LISP

chr — the character
returns — t if the character is lower case, nil otherwise

(both-case-p chr) — is this an alphabetic (either case) character?
chr — the character
returns — t if the character is alphabetic, nil otherwise

(digit-char-p chr) — is this a digit character?
chr — the character
returns — the digit weight if character is a digit, nil otherwise

(char-code chr) — get the ascii code of a character
chr — the character
returns — the ascii character code (integer)

(code-char code) — get the character with a specified ascii code
code — the ascii code (integer)
returns -— the character with that code or nil

‘ (char-upcase chr) — convert a character to upper case
' chr — the character
returns — the upper case character -

(char-downcase chr) — convert a character to lower case
chr — the character
returns — the lower case character

(digit-char n) — convert a digit weight to a digit
n — the digit weight (integer)
returns — the digit characteror nil

(char-int chr) — convert a character to an integer
chr — the character
returns — the ascii character code

(int-char int) — convert an integer to a character
inr — the ascii character code
returns — the character with that code

(char< chrl chr2...)
(char<= chrl chr2...)
(char=chrl chr2..)
(char/= chrl chr2...)
(char>= chrl chr2...)
(char> chrl chr2...)
chrl — the first character to compare

Page 75

Page 76

chr2 — the second character(s) to compare
returns — t if predicate is true, nil otherwise

Note: case is significant with these comparison functions.

(char-lessp chrl chr2...)

(char-not-greaterp chrl chr2...)

(char-equalp chrl chrl...)

(char-not-equalp chrl chr2...)

(char-not-lessp chrl chr2...)

(char-greaterp chrl chr2...)
chrl — the first string to compare
chr2 — the second string(s) to compare
retumns — t if predicate is true, nil otherwise

Note: case is not significant with these comparison functions.

V.29. Input/Output Functions

(read [stream [eof [rflag]]]) — read an expression
stream — the input stream (default is standard input)
eof — the value to return on end of file (default isnil)
rflag — recursive read flag (default is nil)
returns — the expression read

(print expr [stream]) — print an expression on a new line
expr — the expression to be printed
stream —- the output stream (default is standard output) -
returns — the expression

(prinl expr [stream]) — print an expression
expr — the expression to be printed :
stream — the output stream (default is standard output)
returns — the expression

(princ expr [stream]) — print an expression without quoting
expr — the expressions to be printed
stream — the output stream (default is standard output)
retumns — the expression

(pprint expr [stream]) — pretty print an expression
~expr — the expressions to be printed
stream — the output streamn (default is standard output)
returns — the expression

(terpri [stream]) — terminate the current print line
stream — the output stream (default is standard output)

FUGUE MANUAL

XLISP: AN OBJECT-ORIENTED LISP Page 77

returns — nil

(flatsize expr) — length of printed representation using prinl
expr — the expression
returns — the length

(flatc expr) — length of printed representation using princ
expr — the expression
returns — the length

V.30. The Format Function
(format stream fmt arg...) — do formated output
stream — the output stream
fmt — the format string
arg — the format arguments
returns — output string if stream is nil, nil otherwise

The format string can contain characters that should be copied directly to the output and
formatting directives. The formatting directives are:

~A — print next argument using princ
~S — print next argument using prinl
~% — start a new line

~~ — print a tilde character

V.31. File I/O Functions

(open fname &key :direction) — open a file stream
fname — the file name string or symbol
-direction — :input or :output (default is :input)
returns — a stream

(close stream) — close a file stream
stream — the stream
returns — nil

(read-char [stream]) — read a character from a stream
stream — the input stream (default is standard input)
returns — the character

(peek-char [flag [stream]]) — peek at the next character
flag — flag for skipping white space (default is nil)
stream — the input stream (default is standard input)
returns — the character (integer)

Page 78 ‘ FUGUE MANUAL

(write-char ch [stream]) — write a character to a stream
ch — the character to write
stream —- the output stream (default is standard output)
retums — the character

(read-line [stream]) — read a line from a stream
stream — the input stream (default is standard input)
returns — the string

(read-byte [stream]) — read a byte from a stream
stream — the input stream (default is standard input)
returns — the byte (integer)

(write-byte byte [stream]) — write 2 byte to a stream
byte — the byte to write (integer)
stream — the output stream (default is standard output)
returns — the byte (integer)

V.32. String Stream Functions
These functions operate on unnamed streams. An unnamed output stream collects characters

sent to it when it is used as the destination of any output function. The functions
get—-output—stream—string and string or a list of characters.

An unnamed input stream is setup with the make-st ring-input-stream function and
returns each character of the string when it is used as the source of any input function.

(make-string-input-stream str [start {end]])
str — the string
start — the starting offset
end — the ending offset + 1
returns — an unnamed stream that reads from the string

(make-string-output-stream)
returns — an unnamed output stream

(get-output-stream-string stream)
stream — the output stream
returns — the output so far as a string
Note: the output stream is emptied by this function

(get-output-stream-list stream)
stream — the output stream
returns — the output so far as a list

XLISP: AN OBJECT-ORIENTED LISP Page 79

Note: the output stream is emptied by this function

V.33. System Functions

(load fname &key :verbose :print) — load a source file
fname — the filename string or symbol
verbose — the verbose flag (default is t)
:print — the print flag (defaultis nil)
returns — the filename

(save fname) — save workspace to a file
fname — the filename string or symbol
returns — t if workspace was written, ni 1 otherwise

(restore fname) — restore workspace from a file
fname — the filename string or symbol
returns — nil on failure, otherwise never returns

(dribble [fname]) — create a file with a transcript of a session
fname — file name string or symbol (if missing, close current transcript)
returns — t if the transcript is opened, nil if it is closed

(gc) — force garbage collection
returns — nil

(expand num) — expand memory by adding segments
num — the number of segments to add
returns — the number of segments added

(alloc num) — change number of nodes to allocate in each segment
num — the number of nodes to allocate
returns — the old number of nodes to allocate

(room) — show memory allocation statistics
returns — nil

(type-of expr) — returns the type of the expression

expr — the expression to return the type of

returns — nil if the value is nil otherwise one of the symbols:
SYMBOL — for symbols
OBJECT — for objects
CONS —- for conses
SUBR — for built-in functions
FSUBR — for special forms
CLOSURE —- for defined functions

Page 80 FUGUE MANUAL

STRING — for strings

FIXNUM — for integers

FLONUM — for floating point numbers
CHARACTER — for characters
FILE-STREAM — for file pointers
UNNAMED-STREAM — for unnamed streams
ARRAY — for arrays

(peek addrs) — peek at a location in memory
addrs — the address to peek at (integer)
returns — the value at the specified address (integer)

(poke addrs value) — poke a value into memory
addrs — the address to poke (integer)
value — the value to poke into the address (integer)
returns — the value

(address-of expr) — get the address of an xlisp node
expr — the node
returns — the address of the node (integer)

(exit) — exit xlisp
returns — never returns

V.34. File I/O Functions

V.34.1. Input from a File

To open a file for input, use the open function with the keyword argument :direction set
to :input. To open a file for output, use the open function with the keyword argument
:direction set to :output. The open function takes a single required argument which is
the name of the file to be opened. This name can be in the form of a string or a symbol. The
open function retumns an object of type FILE-STREAM if it succeeds in opening the specified
file. It returns the value nil if it fails. In order to manipulate the file, it is necessary to save the
value returned by the open function. This is usually done by assigning it to a variable with the
setq special form or by binding it using 1et or let*. Here is an example:

(setqg fp (open "init.lsp" :direction :input))
Evaluating this expression will result in the file init . lsp being opened. The file object that
will be returned by the open function will be assigned to the variable £p.

It is now possible to use the file for input. To read an expression from the file, just supply the
value of the £p variable as the optional stream argument to read.

(read f£p)
Evaluating this expression will result in reading the first expression from the file init.1lsp.

XLISP: AN OBJECT-ORIENTED LISP Page 81

The expression will be returned as the result of the read function. More expressions can be
read from the file using further calls to the read function. When there are no more expressions
to read, the read function will return nil (or whatever value was supplied as the second
argument to read).

Once you are done reading from the file, you should close it. To close the file, use the
following expression:
(close fp)
Evaluating this expression will cause the file to be closed.

V.34.2. Output to a File

Writing to a file is pretty much the same as reading from one. You need to open the file first.
This time you should use the open function to indicate that you will do output to the file. For
example:

(setg fp (open "test.dat" :direction :output))

Evaluating this expression will open the file test . dat for output. If the file already exists, its
current contents will be discarded. If it doesn’t already exist, it will be created. In any case, a
FILE-STREAM object will be returned by the OPEN function. This file object will be assigned
to the £p variable.

It is now possible to write to this file by supplying the value of the £p variable as the optional
stream parameter in the print function.

(print "Hello there™ f£fp)

Evaluating this expression will result in the string ‘‘Hello there’’ being written to the file
test .dat. More data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like
closing an input file.
(close fp)
Evaluating this expression will close the output file and make it permanent.

V.34.3. A Slightly More Complicated File Example
This example shows how to open a file, read each Lisp expression from the file and print it. It
demonstrates the use of files and the use of the optional stream argument to the read function.
(do* ((fp (open "test.dat" :direction :input))
(ex (read fp) (read fp)))

((null ex) nil)
(print ex))

XLISP: AN OBJECT-ORIENTED LISP Page 81

The expression will be returned as the result of the read function. More expressions can be
read from the file using further calls to the read function. When there are no more expressions
to read, the read function will return nil (or whatever value was supplied as the second
argument to read).

Once you are done reading from the file, you should close it. To close the file, use the
following expression:
(close f£fp)
Evaluating this expression will cause the file to be closed.

V.34.2. Output to a File

Writing to a file is pretty much the same as reading from one. You need to open the file first.
This time you should use the open function to indicate that you will do output to the file. For
example:

(setqg fp (open "test.dat” :direction :output))

Evaluating this expression will open the file test.dat for output. If the file already exists, its
current contents will be discarded. If it doesn’t already exist, it will be created. In any case, a
FILE-STREAM object will be returned by the OPEN function. This file object will be assigned
to the f£p variable.

It is now possible to write to this file by supplying the value of the £p variable as the optional
stream parameter in the print function.

(print "Hello there" fp)

Evaluating this expression will result in the string ‘‘Hello there” being written to the file
test .dat. More data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like
closing an input file.

(close f£fp)
Evaluating this expression will close the output file and make it permanent.

V.34.3. A Slightly More Complicated File Example
This example shows how to open a file, read each Lisp expression from the file and print it. It
demonstrates the use of files and the use of the optional stream argument to the read function.
(do* ((fp (open "test.dat" :direction :input))
(ex (read fp) (read fp)))
((null ex) nil)
(print ex))

Page 82 FUGUE MANUAL

References

[Touretzky 84] Touretzky, David S. LISP: a gentle introduction to symbolic computation.
Harper & Row, New York, 1984.

INDEX

Index

#define'd macros 45

* 70

applyhook 55
breakenable 49, 55
control-sraie 10, 24
debug-io 55
duty 9
error-output 55
evalhook 55
float-format 55
gc-flag S5
gc-hook 55
integer-format 55
obarray $5
print-case 56
readtable 51, 55
RSLT 45 i
sound-srate 10, 25
standard-input 55
standard-output 55
start 10

stop 10
stretch 9

time 9, 24
race-output 53
acelimit 49, 55
tracelist 55
tracenable 49, 55
transposc 9
unbound 55
volume 9
wave 4

+ 70
- 70

3
= 72

i+ 70
- N

:answer 35
iclass 54
dsnew 54
mew 54
:sendsuper 54
:show 54

< 7i_
<= T2

=72

> 72
>= 72

Abs 71
Abs-env 24
Address-of 80
Alloc 79
Amosc 23
And 65
Append 60
Apply 56

Arcf 59

Arithmetic Functions 70
Array Functions 59
Arrayp 64

Assoc 60

At 24

At Transformation 11
Atom 63

Backquote 56
Baktrace 70
Behavioral abstraction 9, 11, 83
Behaviors 22

" Bitwise Logical Functions 72

Block 68
Both-case-p 75
Boundp §, 64
Break 49, 69
Build-harmonic 4

Cxxr 59

Cxxar 59

Cooor 59

Car 59

Case 66

Catch 66

Cdr 59

Cerror 69

Char 74

Charcode 75
Char-downcase 75
Char-equalp 76
Char-greaterp 76
Char-int 75
Char-lessp 76
Char-not-equalp 76
Char-not-greaterp 76
Char-not-lessp 76
Char-upcase 75
Char/= 75

Char< 75

Chare= 75

Char= 75

Char> 75

Char>= 75)
Character Functions 74
Characterp 64
Class 54

Class class 54
Clean-up 69

Close 77-
Code-char 75
Combination 25
Command Loop 49
Cond 65

Cons 60

Consp 63
Constructors 39
Continue 69
Control 22

Control Constructs 65
Control-srate-abs 24
Cos 71

Cue 22

Cue-file 22

Data Types 35, 49

Page 83

DBO 6

DB! 6

DB10 6

Debugging 69)
Defining Behaviors 12
Defmacro 57

Defun 57

Delete 62

Delete-if 62
Delete-if-not 62)
Destructive List Functions 62
Destructors 39
Digit-char 75
Digit-char-p 75

Do 67

Do* 67

Do* 67

Dolist 67

Dotimes 67

Dribble 79

Duration notation 6

Elghth 7

Endp 63

Env 5,23
Env-note 5
Envelope 5
Envelopes §
Environment 9
Eq 65

Eqt 65

Equal 65

Error 69 .
Error Handling 69
Errors 1

Errset 70

Eval 56
Evathook 70
Evaluation functions 56
Evaluator 50
Evenp 64

Exit 80

Exp 72

Expand 79

Expt 71
Extending Xlisp 43
Extensions to Fugue 41
Extract 24,25

Fboundp 64

File /O Functions 77, 80
First 59

Flaic 77

Flatsize 77

Flet 66

Float 70

Floatp 63

Fmosc 23

Format 77

Formes 29

Fourth 59

Frequency Modulation 14
Fugue.c 40

Funcall 56

Function 56

Ge 79

Page 84

Ged 71

Gensym 57

Get 58
Get-lambda-cxpression 56
Get-logical-stop 22
Get-output-stream-list 78
Get-output-stream-string 78
Go 68

H 7

Hash 58

Hd 7

Header file format 44
Ht 7 .
Hz-to-step 22
Hz_to_siep 40

17

d 7

If 65

Input from a File 80
Input/Output Functions 76
Int-char 75

Integerp 63

Intern 58

Intgen 43, 45, 83

It 7

Kyma 28

Labels 66
Lambda 56 _
Lambda Lists 52
Last 60

Lazj Evaluation 33,35,37,83

Length 61

Let 66

Let* 66)
Lexical conventions 50
Lf 6

Lff 6

LEff 6

Lfo 23

Lisp Include Files 46
List 60

List Functions 59
Listp 63

Lmf 6

Lmp 6

Load 79

Log 40

Logand 72
Logical-stop 17
Logior 72

Lognot 72

Logxor 72

Loop 67

Looping Constructs 67
Loud 25
Lower-case-p 74
Lp 6

Lpp 6

Lppp 6

Macroexpand 56
Macroexpand-1 57
Macrolet 66

Make-array 59
Make-string-input-stream 78

Make-string-output-stream 78

Make-symbol 58
Manipulators 40
Mapc 61
Mapcar 61
Mapl 61
Maplist 61
Max 71
Member 60
Min 71
Minusp 64
Mkwave 4
Mult 5,23
Music V 28

Nconc 62

Nested Transformations 12
Node Structure 35
Nodes_free 40
Noise 24
Normalize 22

Not 63

Nowe 5
Nstring-downcase 73
Nstring-upcase 73
Nth 61

Nthedr 61

Null 63

Numberp 63

N_create 39

Object 54
Object Class 54
Objectp 64
Objects 53
Oddp 65
Omissions |
Open 77

Or 65 _

Osc 4,23
Osc-note 23
Output 10 a File 81

Peek 80
Peck-char 77
Pitch notation 7
Play 4,22
Plusp 64

Poke 80
Pprint 76
Predicate Functions 63
Prinl 76
Princ 76

Print 76

Prog 68

Prog* 68
Prog* 68
Progl 68
Prog2 69
Progn 69
Progv 68
Property List Functions 58
Psetq 57
Putprop 58
Pwl 23

Random 71
Read 76
Read-byte 78
Read-char 77
Read-line 78
Readtables 51
Rem 71
Remove 60
Remove-if 60
Remove-if-not 61
Remprop 59
Rest 24,60
Restore 79
Return 68
Retumn-from 68
Reverse 60
Room 79
Rplaca 62
Rplacd 62

s 7

S-add 4,20
§-amosc 20
S-apply 19
S-clip 19
S-compose 18
S-constant 18
S-copy 21
S-create 18
S-env 21

S-flanen 21

S-pwi 21

S-rclip 19
S-reson 21
Sireson-var 22
§-samples 18
S-scale 4,19 ;
S-set-logical-stop 20
S-shift 19
S-stretch 19
S-white-noise 21
Sample Structure 35
Samples 17
Sample_free 40
Save 79

Saving Sound Files 14
Sda 7

Sdata_create 39
Second 59

Seq 25

Seqrep 25
Sequences 5
Sequential behavior 10
Set 57
Set-logical-stop 25
Setf 57

Setq 57

Sf_load 40
Sf_save 40
Signal-start 17
Signal-stop 17
Sim 25

FUGUE MANUAL

INDEX

Simrep 25
Simultancous Behavior 10
Sin 71

Sixteenth 7
Snd-access 18
Snd-extent 19
Snd-hp 24

Snd-load 18
Snd-logical-stop 19
Snd-lp 24
Snd-maxsamp 19
Snd-reson 24
Snd-save 21
Snd-show 18
Snd-srate 18
Snd-stats 19

Sort 62

Sound 22

Sound Structure 36
Sound-srate-abs 25
Soundp 40

Sounds 17

Sounds vs. Behaviors 11
Sound_free 39
Spl_create 39

Sqrt 72

Srate 17

SRL 28

St 7 N
Step-to-hz 22
Swep_to_hz 40
Strcat 73

Streamp 64

Swewch 6,25 _
Stretching Sampled Sounds 13
String 72 B
String Functions 72
String Stream Functions 78
String:downcase 73
String-equalp 74
String-left:tim 73
String-lessp 74
String-not-cqualp 74
String-not-greaterp 74
String-not-lessp 74
String-right-trim 73
String-trim 73
String-upcase 73
String/= 74

String< 74
String<= 74
String= 74

String> 74
String>= 74

Swringp 64

Sublis 62

Subseq 73

Subst 61
Suggestions |
Symbol Functions 57
Symbol-function 58
Symbol-name 58
Symbol-plist 58
Symbol-value 38
Symbolp 63
Symbols 55

System Functions 79
S_access 40

S_add 40

S_apply 40

S_clip 40
S_constant 39
S_copy 39
S_create 39
S_dur 40
S_env 40
S_flanen 40
S_from 40
S_lklip 40
S_logicalTo 40
S_maxSample 40
S_mult 40
S_osc 40
S_pwl 40
S_rclip 40

. S_samples 40

S_scale 40
S_setLogicalTo 40
S_shift 40
S_show 40
S_silence 39
S_srate 40
S_stats 40
S_strerch 40

S_to 40

Tagbody 68

Tan 71

Terprt 76

The Format Function 77
The Program Feature 68
Third 59

Throw 67 A

Time Structure 25

Top-level 69

Trace 69

Trans 25

Transformation environment 9
Transformations 9, 24
Triplet 7 -
Truncate 70

Type-of 79

Unless 66
Untrace 69
Unwind-protect 67
Upper—case-p 74

Vector 59

w7

wd 7

When 66
Write-byte 78
Write-char 78
wt 7

XLISP Command Loop 49
XLISP Data Types 49

XLISP evaluator 50

XLISP Lexical Conventions 50

Zerop 64

Page 85

