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Introduction

Fugue is 4 language for music composition and sound synthesis. Fugue extends the traditional
“approach to sound synthesis' with concepts borrowed from functional programmipg.? The resulting
language can express signal processing algorithms for sound synthesis, musical scores, and higher
Jevel musical procedures. In contrast, the traditional approach requires separate languages for each
of these tasks. A , .

: In addition to offering integration, Fugue is interactive, making it easy to explore new ideasorto
synthesize and listen to sound examples. Because Fugue is based on ;Liép,‘all of Lisp’s aQstraction
capabilities are present, including function definitions and data structures. In addition, Fugue
supports behavioral abstraction, which simplifies the expression of temporal behavior.

Tn this paper, we first describe the traditional approach to software for music synthesis, which

. originated with the Music 11 programs developed by Max Mathews at Bell Labs. In many respects,

~ Fugue isa generalizationand an extension of the concepts introduced by these early languages. Then

we describe other approaches to score languages and sound synthesis, and present different aspects
of Fugue. We also describe how Fugue was used to generate the composition “Spomin.”

The traditional approach

Fugue is best understood by examining the features of traditional software synthesis systems,
which include Music V., cmusic,' and Csound.® All of these are based on similar principles: A “score
language” is used to describe alist of notes or sounds to be synthesized. Each note in this list specifies
astarting time, aduration, an instrument name, and other parameters particulartothe instrument(such
as pitch, loudness, and articulation). Figure 1 is based on an actual Music V score, but the notation
has been altered to make it more readable. The score consists of statements to initialize function tables,
followed by two notes in sequence.

A separate “‘orchestra language” defines a set of instruments, each of which specifies a panicular
signal processing algorithm. An instrument is defined by a set of interconnected signal processing
steps known as unit generators. Typical unit generators are oscillators, filters, adders, and multipliers.
Figures 2 and 3 show two representations of an instrument definition. Figure 2 is based on an actual
Music V program that defines one instrument composed of five unit generators. The graphical
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Score:
; initialize some function tables:
EnvTab=PWL 00 .99 20 .99 491 0 511 ; piece-wise linear function
OscTab = PWL 0 0 .99 50 .99 205 -.99 306 -.99 461 0 511
VibTab = SIN 1 ; I period of a sine function
VibTone 0 2 1000 262 8 ; play a middle C
VibTone 2 1 1000 330 8 ; play an E
TER 3 ; stop at 3 seconds

Figure 1. An example of a stylized Music V score with two notes. The PWL and SIN operations
initialize function tables used by the “orchestra.” There are two notes to be played by the VibTone
instrument, one starting at time 0 with duration 2, and one at time 2 with duration 1. The
parameters of the notes specify starting time, duration, amplitude, pitch, and vibrato rate.

Orchestra;
VibTone: Amp, Hz, VibHz ;

define the instrument VibTone
B1 = 0OSC Amp, 1/Dur, EnvTab
B2 = OSC Hz/100, VibHz, VibTab
B3 = ADD Hz, B2
B4 =0OSCB1, B3, OscTab

OUT B4

Figure 2. The “orchestra” consists of one instrument named VibTone, which is controlled by three
. explicit parameters: Amp, Hz, and VibHz (the starting time and duration are implicit parameters to
every instrument). Reading from the bottom up, the output signal (B4) is generated by an oscillator
(OSC) whose amplitude (B1) is generated by another oscillator, and whose frequency (B3) is
produced by an adder (ADD). The adder sums an average frequency (Hz) with a vibrato signal (B2)
produced by another oscillator. The amount of vibrato is chosen to be 1 percent of the frequency
(Hz/100). The overall amplitude signal (B1) is generated by a very low frequency (1/Dur) oscillator
that interpolates through an envelope function (Env) exactly once over the entire duration (Dur) of
each note. The envelope is scaled by the note amplitude (Amp).

representation in Figure 3 illustrates the same computation in terms of a flow graph where each node
corresponds to a unit generator in the instrument definition, and arcs between nodes represent streams
of audio or control signal samples. This notion in which unit generators can be combined into a flow
graph is an important contribution of Music V.

Each note in the score language gives rise to an instance (essentially a copy) of an instrument in
the orchestra. This instrument instance computes sound for the duration of the note according to the
parameters of the note statement. The resulting sound is typically added to that of the other notes in
the score and written to a disk file. After computation, the synthesized music can be read from the
disk in real time and converted into analog form for listening.

This approach has been used without much change for over two decades, indicating that it offers
excellent and robust ideas. However, there are also some weaknesses. One of the most obvious
problems is the separation of the score and orchestra languages. This creates a one-way flow of
information from the score to the orchestra. The composer is also burdened with an additional
language and the task of deciding at an early stage whether a function is better handled by the score
or the orchestra.
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. Figure 3. The VibTone instrument can be
Hz/100 VibHz described by a dataflow graph in which
arcs represent audio signals and nodes
represent unit generators. There are three
VibTab oscillators shown. The left input of each
oscillator is the amplitude control and the
% right input is the frequency control. The
label, for example, Env, denotes a
Amp  1/Dur Hz function table that describes one period of
B2 the oscillation. Note that there is a one-to-
one correspondence between this figure
and the text version shown in Figure 2.

EnvTab

N\ +

Any alternative to the Music V class of
systerns must continue to offer the same
] advantages. One of these advantages is the
OscTab ability to specify the starting time and dura-
/1 tion of each note in the score. These tempo-

\__J ral attributes are implicit parameters to
each instrument instance, specifying when
B4 : to start and how many samples to compute.
Anextension of this concept is supported in
@ Fugue and described in a later section.

Another important contribution of Mu-

o - sic V is the notion of unit generators and the

] idea that these can be combined into a

signal flow graph. Fugue offers this same capability. Although one would expect instruments to be

interchangeable with unit generators, hierarchical instruments are not supported by Music V or most

other synthesis languages. In Fugue, there is no distinction between instruments and unit generators,
making hierarchical descriptions possible.

B1 B3

Other approaches

Since Music V, there have been many other developments in sound synthesis and control. In this
section, we consider some of these and their relationships to Fugue.

SRL* s a signal processing language that represents signals as parameterized computations. SRL
signals are immutable objects that can be reused. Lazy evaluation is supported in that signals are
evaluated only when they are needed. SRL also supports function caching: The system will try to find
an existing signal with identical parameters to avoid computing a copy. SRL lacks many musically
useful concepts such asthe starting time and duration of signals and behavioral abstraction, soitwould
not be useful as a score language.

Formes® takes an object-oriented approach to the computation of control signals for music
synthesis. Objects in Formes encapsulate the parameters of functions and retain the state needed to
compute signals incrementally. Formes objects can be combined hierarchically to construct complex
signals, but Formes is not designed to compute audio directly. Instead, Formes is used to compute
control information for the Chant” synthesis system. Formes is interesting because it successfully
integrates notions of continuous control signals with discrete events such as parameter updates or note
instantiations. Formes also provides a number of features in support of the notion that programmed
behaviors should take place at certain times or in certain temporal relationships to other behaviors.
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Arctic,? like Formes, is intended to compute functions of time that in tumn control audio signal
processing. Unlike Formes, Arctic is a functional language in which functions of time are primitive
data types. However, functions of time and real numbers are the only data types implemented in
Arctic, soithas difficulty expressing many state-oriented algorithms. Arctic and Formes both assume
that audio signal pi'ocessing is performed by a separate system; thus both languages fail to provide
an integrated composition and synthesis language. However, Arctic’s functional approach, its
behavioral abstraction mechanism, and its general semantics are incorporated into Fugue.

In addition to signal processing support, languages can provide support for higher levels of
organization. The early, nonhierarchical lists of notes have given way to more computationally
oriented score languages and notations that mirror common-practice music notation. More recently,
attention has focused on visual representations of music, displaying common-practice music
notation, graphical notations, or visual programming languages. A problem with visual representa-
tions is the difficulty of expressing both static (note list) information and dynamic (computation)
information in a single visual notation.

Kyma® and the Sun/Mercury Workstation' treat sound manipulators and sound generators as
objects that can be “patched” together into a dataflow graph, and both systems provide a graphical
means for making interconnections. This results in intuitive systems for synthesis, but there are
problems when these systems are extended for composing larger structures. Various extensions have
become necessary to handle graphs that change over time, adding complexity to programs. Symbolic
processing and working with data structures are also difficult with these graph-oriented program
representations. Also, both systems run all objects in synchrony, thereby assuming a global sample
rate for digital signals. This last limitation could undoubtedly be overcome, but it underscores the fact
that these graphical interface systems are primarily oriented toward synthesis.

Programs as scores

Historically, musical scores have been static data structures created by composers. Traditional
scores do not express computation beyond a few simple abbreviations to indicate repeats or alternate
endings. There is a good reason for this: Traditional scores are data intensive and contain a wealth
of detailed information. Traditionally, composers have wanted to express the results of their
creativity, rather than the process of creation. .

Consequently, lists of notes and their attributes have been the standard form of machine-readable
scores for many years. As data structures, note lists can be transformed in time, in pitch, or along any
other dimension defined by note attributes. It is generally easier to generate and manipulate data
structures than programs. For example, making all the notes in a section louder is easy if the notes
arerepresented as data. On the otherhand, note lists can suffer from the fact that they are not programs.
In particular, there is a schism between the “score” and the “orchestra.” Controlling functions are
handled by the score, while executing functions are delegated to the orchestra. There is no integration
of these functions.

One way to address this dilemma is to use programs to compute note lists. This solves problems
such as expanding a single “drum roll” note into a sequence of individual drum strokes. This is a very
common practice, but it suffers from at least two problems. First, the composer is asked to deal with
yet another language (as if two were not enough!), and second, the ultimate result does not close the
gap between the score and orchestra. For example, note-generating procedures cannot use the results
of signal processing functions in the orchestra, and instruments in the orchestra cannot call upon the
note-generating capabilities of the score.

Fugue takes a new approach: “Scores” in Fugue are actually program expressions that, when
evaluated, return audio or control signals. Two constructs are used to combine sounds or notes into
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larger structures. The first combines sounds sequentially, and the second mixes sounds simulta-
neously:

(seq sl 23 ...) arrange each sound seﬁuentially in time (as in a melody)
(sim sl s2 83 ...) arrange each sound simultaneously in time (as in a chord)

Instruments are also defined in terms of expressions that denote audio signals. For example, the
following multiplies an envelope control signal by the output of an oscillator:

(s-mult (env 0.8) (osc C4))

Itis possible toembed a score inan instrument as well as to call on instruments from within a score.
In fact, Fugue makes no distinction whatsoever between instruments and scores.

The examples in Figures 1 and 2 can be expressed in Fugue as shown in Figure 4. This program
shows how both score information and synthesis algorithms can be representedinasingle expression-
oriented language.

Once this unification is made, it is possible to express SCOres and instruments in a more
flexible way. For example, in traditional synthesis systems, it is difficult to alter a phrase of many

notes by a single volume envelope because this requires a hierarchical nesting of notes within the
]

:; define an equivalent to the Music V OSC by

;; combining an FMOsc with a multiplier:

(defun Music50sc (Amp Pitch Modulation Table)
(S-Miilt Amp (FMOsc Pitch Modulation 0 Table)}))

:: define VibTone in terms of Music50sc:
(defun VibTone (Pitch VibHz)
(Music50sc (LFO (/ 1.0 *stretch*) 1.0 1.0 0 EnvTab) ; envelope
Pitch
(LFO VibHz (/ (Step-To-Hz Pitch) 100)) , vibrato
OscTab))

. initialize tables for oscillators:
(setf EnvTab (MakeTable (PWL .02 .99 491 99 .511))
(setf OscTab (MakeTable (PWL .05 .99 .205 .99
.306 -.99 461 -.99 .511)))
(play
(sim (at O (stretch 2 (vibtone c4 8.0))
(at 2 (stretch 1 (vibtone e4 8.0)))))

Figure 4. This Fugue program is equivalent to the Music V example shown in Figures 1 and 2. The
instrument definition is a nested expression rather than a statement list, eliminating the need for
naming intermediate results (B1 through B4). The Fugue FMOsc oscillator takes both a pitch offset
and a modulation input, eliminating the need for the ADD unit generator in the Music V version.
However, FMOsc does not have an amplitude modulation input, so a new function, Music50sc, is
defined to realize this aspect of the Music V 0OSC unit generator. The score (the last two lines) is
also a nested expression, using at and stretch transformations in place of the time and duration
specifications of Music V. The Amp parameter in the Music V version was omitted here because the
same effect can be achieved with Fugue's loud transformation.




volume envelope. In Fugue, however, scores and signals are all nested expressions, making it
very natural to represent hierarchical structures. Another possibility is to use Fugue for signal
analysis, using results of the analysis to determine aspects of a score. Signal analysis is a common
practice in computer music, but such programs are rarely integrated into traditional sound synthesis
languages.

Perhaps the most valuable feature of Fugue is that it encourages the composer todevelop apersonal
musical vocabulary, unencumbered by a particular model of how music, or music computation,
should be structured. Of course, any language, including Fugue, is bound to influence one’s approach
to programming or composition. However, since Fugue supports the Music V model of computation
as a subset, we can at least claim an improvement in flexibility and generality. Our early experience
bears this out, as demonstrated in the later section entitled “An example.”

Fugue allows the composer to treat simple instruments and sounds as building blocks from which
more complex sound events are constructed. This development process is supported by the
abstraction capabilities of the language and an interactive language interpreter.

Behavioral abstraction

As we mentioned earlier, one of the important features of Music V is that note starting times and
durations are used to determine when and how long to instantiate an instrument. In addition to our
effort to unify the score and orchestra, we must also support this same idea; otherwise, temporal
aspects of compositions might be very difficult to express.

We note that starting times and durations in Music V provide a special kind of abstraction:
Instruments define a class of behaviors that can have any starting time or duration. Since in Fugue
we wish to support nested expressions, we view a starting time or duration as a transformation of time
rather than as a fixed value. This abstraction is important, as it allows us to denote an operation even
when its implementation is not obvious.

Forexample, a violinist typically lengthens anote by drawing the bow across the string foralonger
period of time. Yet if the note is a tremolo (a quick back-and-forth bowing), the implementation
required to lengthen the duration is to add more bow strokes. Lengthening is a type of strefching, an
abstract notion. Its implementation must be under the control of the software instrument designer, but
the user need not be aware of implementation details: The instrument simply behaves properly when
asked to lengthen a note. In Fugue, this concept is extended to allow transformations of articulation,
loudness, and pitch. Additional qualities can be made transformable if desired, and the composer can
then extend the system with new transformation operators.

The programmer/composer defines behaviors that describe how to generate a sound within a
transformation context. A context in Fugue reflects the cumulative effect of nested transformations
on environmental parameters such as current time, stretch, transposition, and overall loudness.
Behaviors can be hierarchical compositions of other behaviors. Once defined, a behavior can have
many instances, each of which can be evaluated in a different context andfor with different
parameters. In this way, concepts such as “drumroll” or “glissando” can be defined once but applied
in many different contexts.

The definition of behaviors realized according toacontextis called behavioral abstraction.® A few
examples should clarify how behavioral abstractions are used in Fugue. The first example is a
sequence of three sounds:

(seq (tremolo A3) (cue wind) (osc Bf3))

where cue is a behavior that simply plays a sound at a given time, and tremolo and osc play pitches




(A and B-flat below middle C). Osc and cue are built-in behaviors, while tremolo is defined by
the user with other built-in behaviors. Wind is a sound, perhaps loaded from a sound file.
If we want to hear the same sequence half as Joud and with the wind sound delayed by 2 seconds,

we can write

(loud 0.5
(seq (tremolo A3) (at 2.0 (cue wind)) (osc Bf3)))

Instead, suppose we wish to change the pitched sounds of the sequence. We can write
(transpose 3 (seq (tremolo A3) (cue wind) (osc Bf3)))

This will transpose the sequence up by three semitones. However, the cue abstraction overrides
and prevents the transposition of wind since cue is intended to be used with unpitched sounds.
Hence, only the tremolo and osc behaviors are affected.

If desired, one could replace cue with a behavior that would transpose the wind sound. In general,
transformations and built-in behaviors are defined to work like traditional unit generators. As aresult,
most instrument definitions in Fugue support the standard transformations implicitly, but the
composer is always able to customize the default behavior as needed.

Behavior definition and transformations

. Sa far, we have seen how expressions can be used to describe note lists and signal processing
{operations, and how transformation operators can be applied to these expressions. In this section, we
examine how new behaviors can be defined and how the composer can specify how the behavior will
respond to various transformations.
Behaviors are ultimately thinly disguised Lisp functions, and they are defined using defun. In the
following example, motive is defined to be a sequence of three pitches:

(defun motive ()
(seq (osc G4) (osc Bf) (osc A)))

Transformations can now be applied to motive with no additional programming effort:

(transpose -12 (motive)) ;; transpose down an octave
(stretch 2 (motive)) ;; double the duration
(loud 0.1 (motive)) ,; play motive softly

In practice, there are times when the default effect of transformations is not what the composer
wants. The tremolo example of the previous section illustrates this point; The default way to stretch
notes would be to lengthen each note, but itis understood that a tremolo s lengthened by adding notes
(i.e., bow strokes). It is up to the implementer of a behavior such as tremolo to ensure that instances
of the behavior respond appropriately to transformations.

A simple example will help to illustrate how a default transformation can be overridden. Consider
the motive behavior defined above and imagine that the first note of the motive should always have
aduration of 0.1 seconds. The remaining time should be divided equally among the other two notes.
For now, we will assume that the total time is always greater than 0.1 seconds. The desired behavior

is defined by the following:
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(defun motive ()
(let ((str (/ (- *stretch* 0.1) 2)))
(seq (stretch-abs 0.1 (osc G4))
(stretch-abs str (osc Bf))
(stretch-abs str (osc A))))))

In this new version of motive, the let expression computes the duration of the second and third
notes and binds this value to str. This duration is the total duration minus 0.1 seconds and then divided
by 2. The total duration is in turn given by *stretch*, which is part of the transformation context. The
three notes are then instantiated within a seq expression as before, except each note is embedded'
within a stretch-abs transformation. The effect of stretch-abs (short for “stretch absolutely”) is to
provide a transformation in absolute rather than relative terms.

To summarize, the composer will generally override the default transformation for a behavior in
twosteps. First, the transformation context (e.g., *stretch*) is examined and parameters are computed
to characterize the desired behavior. Second, default transformations are overridden with the
computed parameters. Notice that the composer can “mix and match” default and custom transfor-
mations. In the motive example, the stretch transformation is customized, but the transpose and other
transformations still operate in the standard way.

Other examples of behavioral abstractions that exhibit interesting transformations include

* instruments that get “brighter” when they are played louder,

» rills, glissandi, tremolos, and other effects that are assembled from multiple notes and.are
subject to various transformations, ;

* vibrato functions that maintain a constant frequency even when stretched,

» grace notes that should always be short,

* percussion sounds that should not be transposed or stretched,

* amplitude envelopes whose initial attack portions may remain fixed when the rest of the
envelope is stretched,

* ostinato (repeating pitch and rhythm) patterns, and

+ stretched tuning instruments such as the piano, where transposition by a written octave may
more than double the fundamental frequency.

Developing behavioral abstractions is not always easy. In general, it is easier to program a specific
instance of a sound than to describe an entire class of sounds. Behavioral abstraction is important,
however, because once a behavior is implemented, it can be subjected to a wide variety of logical
transformations. These are generally simpler to manage than alternate approaches, such as filling in
long lists of parameters. It should also be observed that it is never a requirement to build elaborate
abstractions; however, the mechanisms are available when needed.

So far, we have examined small, simple examples of Fugue expressions and transformations of
them. These “toy” examples are meant to illustrate concepts without overwhelming the reader with
details. In the next section, we consider a larger example from a real composition.

An example

The composition “Spomin” is derived from thousands of transformations of a single human vocal
utterance. Fugue sound processing primitives were used to manipulate the source sound to varying
degrees. Thus, some sounds are clearly vocal, while other more highly processed sounds bear little
relation to their vocal source. Using Fugue, slices of the source were extracted, in some cases down
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Figure 5. Page 25 from the score of “Spomin.” The score was generated by replacing sound-
generation modules in Fugue with modules that output graphics commands, ensuring that
the score accurately reflects the sound. The final score, shown here, includes manually
added music symbols.

to the level of an individual period. A period, once extracted, can be cycled to form a sustained tone
(much like the technique used by sampling synthesizers). Quickly swapping periods during this
cycling produces a tone with a time-varying spectrum, a technique used extensively in the latter half
of the piece. In the first half, tones generated from extracted periods were used to create chords,
glissandi, and chorus effects.

“Spomin” illustrates the advantage of an integrated language for expressing score information as
well as signal processing. A composer can delegate signal processing routines to low-level functions,
then work more abstractly using high-level functions. Fugue modules, maodified to output printing
information rather than digital samples, were also used to produce the graphical portion of the score.
Figure 5 gives an example.




(defun osc-slice
(sound sndpitch start end pitch dur)
(s-mult (pwl (* dur .5) 1.0 dur)

(osc pitch dur 0
(extract start end sound)
sndpitch)))
(defun bb-grain (period pitch dur)
(osc-slice bb 49.0
(*period 0.008)
(+0.008 (* period 0.008))
pitch ’
dur))
(defun bb-pebble
(ngrains period pitch dur)
(seqrep (g ngrains)

(bb-grain (+ period g) pitch dur)))

(defun bb-necklace
(npebbles ngrains pitch dur)
(seqrep (p npebbles)
(bb-pebble ngrains p pitch dur)))
(sf-od.”
i (s-mult
(pwl 25.0 1.0 28.0 .5 35.0)
(bb-necklace 8 ; npebbles
90 ; ngrains
76.0 ; pitch
.05 ; dur
»)

,a slice from time start
Jto end is cut from
;sound, oscillated at
,pitch with an
senvelope of length dur,

~& grain consists of one such
soscillated slice. A grain

/is selected by the number
,period. The typical
Jlength of a slice is .008
sseconds.

,a pebble is formed from
sseveral (ngrains) grains.
JIn this example the grains
sbetween period and
;period + ngrains form
,/the pebble.

,a necklace is made from a
Jnumber (npebbles) of
,pebbles,

,sa necklace made from 8
spebbles, each containing 90
,grains of .05 seconds
sduration pitched at 2
J/(tenth above middle c), has
;4 piecewise-linear envelope
sapplied to it. The sound is
swritten (by sf-od) to an
soptical disk on a NeXT
;computer.

Figure 6. An example Fugue program taken from “Spomin,” showing multiple levels of
abstraction. Any level can be invoked interactively for testing or from within a higher level
expression serving as a score.

The code example (see Figure 6) illustrates the layering of several levels of abstraction. In this
example a short slice is cut from the source sound and cycled to form a grain. Grains of sound form
pebbles, which are strung on a necklace. The second band from the top in Figure 5 (page 25 from the
graphical score'") shows necklaces modified at the grain level to rise in pitch over time. Each grain
isrepresented by a short line, angled to indicate where (in the source) a slice was extracted. The third,
fourth, and fifth bands show timing and amplitude information. The top band shows glissandi of tones
built from extracted periods.

Without the abstraction capabilities and computational support provided by Fugue, the top level
of the score would consist of many thousands of notes, each corresponding to a tiny grain of sound.
Such a score is technically feasible, but impractical to construct or edit by hand.
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Since Fugue allows a composer to combine components to form complex structures, large sound
events can be controlled with a small number of commands. The interactive environment is an
important feature, as rapid feedback allows acomposer greater control over sound materials. Finally,
Fugue provides a supportive framework for exploring new musical forms and compositional
methods. This framework allows fora composer-defined musical syntax, where music can be defined
as a process rather than a simple series of notes. (It might also be mentioned that Fugue was this
composer’s first exposure to Lisp; Fugue is not restricted to use by programmers.)

Implementation

Fugue is implemented ina combination of C and XLisp to runon Unix workstations. (Written by
David Betz, XLisp is an interpreter which is in turn implemented in C.) We use XLisp because it is
fairly easy to extend with new data types, and it is also easy t0 interface with C programs for signal
processing. While Lisp provides convenient and powerful interaction, C allows for efficient
implementation of low-level functionality. It would be possible touse amore efficient compiled Lisp,
but most of the computation time is taken by signal processing primitives, so the Lisp interpretation
represents only a small overhead.

The transformation context in Fugue is implemented within Lisp. Operators such as transpose are
macros that bind an element of the context (*transpose* in this case) and then evaluate the embedded
expression. The binding is restored upon exit. The context is simply asetof global variables; however,
it is essential that they not be set except using the transformation operators. If desired, new
transférmations can be added simply by defining new transformation macros, but these macros would
only serve to manage additional context variables. Behaviors would also need to be created or
modified to respond to the extended context as well.

New synthesis techniques can be introduced into Fugue by combining existing behaviors or by
writingnew sound synthesis algorithmsinCand calling them from Lisp. The unit generator approach,
corresponding closely to Fugue signal processing behaviors, does not seem to be sufficient to
express arbitrary signal processing algorithms. Therefore, it is sometimes necessary to resort to Cto
add new synthesis techniques. This is one area where Fugue does not entirely live up to our goal of
integrating the full spectrum of synthesis and compositional activities into one language. Itis possible
to do signal processing directly in Lisp, but the overhead is quite high. Nevertheless, this technique
was used in the creation of “Spomin™ to analyze some of the source sounds for zero-crossings and
period length.

Several steps have been taken to increase time and memory efficiency, including multiple sample
rates and Jazy evaluation. Multiple sample rates allow for “control” signals at a low sample rate, as
in the Music-11 system and Csound,’ reducing time and memory requirements. When it becomes
necessary tomanipulate two sounds with different sample rates, linear interpolation is used by default
to resample the lower sample rate signal to the higher sample rate. Other types of interpolation can
be specified explicitly. Since there is no distinction between control and audio signals, filters can be
used to modify spectra or to smooth envelopes, and multiplication can be used uniformly for gain
control, amplitude envelopes, or audio-rate amplitude modulation.

The signal data type in Fugue is called a sound. Sounds in Fugue are implemented as an extension
to Lisp. Sounds are immutable values, meaning that once a sound is created, it cannot be altered.
Therefore, the implementation cannot add several sounds directly into a single buffer. Instead, each
addition of two sounds produces anew sound. One might expectan implementation with immutable
values to be very inefficient, but we avoid this problem through lazy evaluation. When additions (and
many other operations) are performed, our implementation merely builds a small data structure
describing the desired operation without actually computing any samples until absolutely necessary.




Figure 7. Mysound after (setf Mysound MYSOUND
(SFLoad “mysound”)), assuming the duration
of Mysound is 1 second. The samples have Scale 1.0

been loaded from a file. From 0.0s
To 1.0s
End 1.0s
Shift  0.0s
Stretch 1.0
SRate 16KHz

Operations can then be combined; for example, it
is common that only one array is allocated to hold
the result of many additions. This technique avoids [ Samples for “mysound” ]
many needless copy operations but is completely
hidden from the user.

Example of lazy evaluation

Toillustrate how the implementation works, we show whatthe memory structures look like ateach

step of a sequence of operations. The operations are
4

(setf Mysound (sfload “mysound”))
(setf Demo (scale 2.0 (seq (cue Mysound)

(cue Mysound))))
(play Demo) s
DEMO
Scale 2.0
From 0.0s
To 2.0s
End 20s
Shift  0.0s
Stretch 3.0
SRate 16KHz
Sum
MYSOUND
Scale 1.0 Scale 1.0 Scale 1.0
From 0.0s From 0.0s From 0.0s
To 1.0s To 1.0s To 1.0s
End 1.0s End 1.0 End 1.0s
Shift  0.0s Shit  0.0s Shit  1.0s
Stretch 1.0 Stretch 1.0 Stretch 1.0
SRate 16KHz SRate 16KHz SRate 16KHz
I Samples for “mysound”

Figure 8. Demo after (setf Demo (stretch 3.0 (scale 2.0 (seq (cue 4 Mysound) (cue Mysound))))).
The transformations and summation are reflected in the data structure, so no new sound
samples need to be computed.

PN N




DEMO Figure 9. Demo after (play ngo). Samples
have been computed according to the

Scals 1.0 transformations in Figure 8. The resulting
From 0.0s samples are cached, replacing the previous
To 2.0s data structure with a new one.

End 20s
Shit  0.0s
Stretch 1.0
SRate 16KHz

The first line sets the variable Mysound to a
sound stored in the file “mysound.” Figure 7
shows the resulting configuration. The second
line evaluates a score consisting of two copies

[ Newly computed samples J

MYSOUND
of Mysound in sequence. Since only time shift-
’s::::: 2):23 ing and addition are involved here, essentially
To  1.0s no computation takes place. Figure 8 shows the
g:g‘ ;-gz resulting configuration. Notice that no addition
Stretch 1.0 is performed yet; instead, the sum is repre-
SRate 16KHz sented by a data structure. Finally, the third line

forces the system to produce samples for Demo.
The representation for Demo is replaced by one
in which the actual samples have been com-
[ Samples for ‘mysound” J puted and storage for samples has been allo-
cated, as shown in Figure 9. Note that this last
step is the only time that new storage for sample
data is allocated and a new sound sample is actually computed. Also, note that the multiplication
by 2.0 can be performed when the new sound sample is computed. Since modern processors can
perform multiplications as fast as they can access memory, it is important to avoid writing
intermediate results to memory and then reading them back again.
Imagine now a typical computation of the form

fori:=1to0 100do
myPiece := myPiece + MakeNote(i);

In Fugue, a roughly equivalent program would be
(seqrep (i 100) (make-note 1))

where seqrep is a control construct that concatenates some number of instances of a behavior —
in this case 100 copies of make-note. ’

Typically, MakeNote(i) generates a relatively short signal to be added to a much longer myPiece.
Without lazy evaluation, each addition requires

(1) the allocation of memory at least the size of myPiece to hold the sum of the two signals,
(2) copying myPiece into the new memory area, and
(3) adding the result of MakeNote to form the new signal.

The cost of this computation is dominated by the cost of allocating memory and copying signals.

With lazy evaluation, each “lazy” addition simply adds another level to a tree of sum nodes like
the one in Figure 8. When the final result is needed, the tree is traversed to determine the size of the
result, memory is allocated, and the leaves of the summation tree are added together. Note that this
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technique eliminates memory allocation and signal copying to form intermediate results. Another
approach (not supported by Fugue) to efficient execution would be to require the composer to
explicitly allocate a buffer to hold the final sum of the MakeNote signals, and to allow the buffer to
be modified by an add-signal operation. This approach would violate the principle that signals are
immutable and place more storage management burden on the composer. In short, lazy evaluation
allows Fugue to exhibit clean and simple semantics without loss of effictency.

Storage management

Sounds are managed at two levels in our implementation. At the Lisp level, the core of the Lisp
interpreter treats sounds as pointers (memory addresses). When operations are performed on sounds,
the interpreter passes a sound pointer to a C function that implements the operation. Similarly, the
garbage collector treats sounds like any other Lisp data.

The garbage collector locates and marks all data that can be accessed directly or indirectly, starting
from variables and the runtime stack. Anything that cannot be accessedis placed on a free list forreuse
at a later time. In the case of sounds, the garbage collector passes the sound pointer to a function —
the destructor for sounds — before reclaiming the pointer storage.

The pointers managed by Lisp point to small Fugue structures that keep track of transformations
such as amplitude scaling and time shifting. Since there may be several different structures that
represent various transformations of a single sample, we store the actual sound samples separately.
Each sound structure has a pointer to the samples. We use reference counts tokeep track of how many
structures are referencing a given set of samples so that we can deallocate the samples when they are
no longer referenced. R )

An alternative to the current memory management system would be to represent sound structures
and even sound samples within Lisp. This would allow the garbage collector to collect sounds
directly. We rejected this approach to make our sound management system more efficient and less
dependent on a particular Lisp implementation. Another alternative would be to store large sounds
in files rather than in virtual memory. This would facilitate computing long compositions that take
100 Mbytes of storage or more. (Ten minutes of stereo audio sampled at 50 kHz and stored as 32-
bit floating-point values take 240 Mbytes of storage.)

Future ciirections

We need to extend Fugue with more sound functions as in Moore’s cmusic (distributed by the
University of California at San Diego), Vercoe’s Csound (distributed by the MIT Media Lab),
NeXT’s Sound Kit, and Lansky’s Cmix (distributed by the Princeton University Music Department).
These systems are popular in part because of the library of synthesis techniques they provide.

A possibility forinvestigation is the use of Fugue in parallel computation. Because of its functional
style, Fugue programs contain explicit parallelism in the form of the sim (for “simultaneous”)
construct. Even when there are data dependencies such as in the seq construct, lazy evaluation often
defers signal computations so that the data dependencies can be resolved immediately. Then the
signal processing can proceed in parallel. If sounds in Fugue were implemented as streams, even more
parallelism could be obtained by lazily evaluating streams. Furthermore, this could dramatically
reduce the memory requirements for intermediate results in Fugue expressions. (Even with large
virtual memories and automatic garbage collection, storage is a serious problem in the current
implementation.)

An exciting potential of the lazy evaluation of streams is that of real-time execution. This would
require real-time garbage collection as well. There are many opportunities for compilation and
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optimization of Fugue behaviors that we have not yet explored.

Many of the ideas of Fugue seem appropriate for computer graphics and computer animation. The
idea of behavioral abstraction seems to fit nicely with graphical transformations (e.g., “make this
truck longer” or“make this tree bigger”) and also with action in animations (“run faster”). Incomputer
animation, Fugue’s notions of explicit timing and constructs for parallel and sequential behavior
might be useful. For images, new constructs might be added to represent spatial as well as temporal
relationships.

The semantics of Fugue can be extended in several ways. Currently, the context in Fugue can be
extended only by someone with a fair understanding of how contexts are implemented. This should
be simpler. Fugue should also support the use of MIDI files as scores so that existing music editors
can be used as a source of data. In its current form, Fugue has very little support for the conventions
of common-practice Western music such as beats, measures, and key signatures. Another area of
improvement would be to allow time-varying transformations,'” using signals in place of real
numbers to achieve musical effects such as accelerando (gradual increase in overall tempo) and
crescendo (gradual increase in overall loudness). Finally, multidimensional signals need to be
supported. We plan to make these changes in a future version.

Conclusions !

The word “composition” has a musical meaning and a mathematical one. In Fugue, musical
composition is supported by the mathematical composition of functions. We have shown how this
elegant modekcan unify the score and orchestra languages of traditional music synthesis systems, and
how behavioral abstraction can be used to extend the temporal semantics of earlier systems. Fugue
is an interpreted language and uses lazy evaluation to achieve an efficient implementation.
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