Fugue: Composition and Sound Synthesis
With Lazy Evaluation and Behavioral Abstraction

Roger B. Dannenberg Christopher Lee Fraley
School of Computer Science Microsoft Corporation
Camegie Mellon University 166011 NE 36 Way

Pittsburgh, PA 15213 Box 97017

Redmond, WA 98073-9717

_ Abstract

Fugue is an interactive language for music composition and synthesis. The goal of Fugue is to simplify
the task of generating and manipulating sound samples while offering greater power and flexibility than
other software synthesis languages. In contrast to other computer music systems, sounds in Fugue are
abstract, immutable objects, and a set of functions are provided to create and manipulate these sound objects.
Fugue directly supports behavioral abstraction whereby scores can be transformed using high-level abstract
operations. Fugue is embedded in a Lisp environment, which provides great flexibility in manipulating
scores and in performing other related symbolic processing. The semantics of Fugue are derived from
Arctic and Canon which have been used for composition, research, and education at Camegie Mellon
University for several years.

Introduction

“7 Fugue is a language for composition and sound synthesis. Features of Fugue include:
(1) a full interactive environment based on Lisp, (2) a language which does not force a
~ high-level distinction between the ‘‘score’’ and the ‘‘orchestra’’, (3) support for
behavioral abstraction, (4) the ability to work both in terms of actual and perceptual start
and stop times, and (5) a time- and memory-efficient implementation.

The Lisp environment provides an interactive interface, flexibility in manipulating
sounds, and a base for performing other related symbolic processing. Sounds are first-
class types in Fugue, hence they can be assigned to variables, passed as parameters, and
stored in data structures. Storage for sounds is dynamically allocated as needed and
reclaimed by automatic garbage collection. This allows ‘‘instruments’’ to be implemented
as ordinary Lisp functions and eliminates the orchestra/score dichotomy.

Fugue semantics include behavioral abstraction as introduced by Arctic (Dannenberg,
McAvinney, and Rubine 1986) and Canon (Dannenberg 1989). The motivation for
behavioral abstraction is the idea that one should be able to describe behaviors that
respond appropriately to their environment. For example, stretching a sound may mean
one thing in the context of granular synthesis and another in the context of sampling. It
almost never means to compute a short sound and then resample it to make it longer.
Fugue allows the programmer to describe abstract behaviors that ‘‘know’’ how to stretch,
transpose, change loudness, and shift in time. Transformation operators are provided to
operate on these abstractions.

Composition requires that sounds be placed simultaneously together, in sequence, and at
arbitrary offsets. Because musical sounds often have attack and release portions, we make
a distinction between the absolute first and last samples of a sound and the perceptual start
and end to which other sounds should be aligned.

Fugue is designed with powerful workstations in mind. The current implementation

76
In Proceedings of the 1989 International Computer Music Conference, pages
76-79, International Computer Music Association, San Francisco, 1989

relies upon virtual memory and a large disk memory to eliminate the need for explicit file
access and buffer management. The low-level operations in Fugue are amenable to
implementation on array processors or DSP chips when these are available. Fugue uses
lazy evaluation to achieve reasonable performance without sacrificing its clean semantics.

Related Work
Many software synthesis and compositional systems have existed for years, each
encountering and addressing a slightly different set of problems. To understand Fugue, it
is beneficial to first review some other systems.

Music V takes a semi-functional approach to sound generation in that unit generators
can be combined as functions applied to sample streams. The resulting instruments can be
applied to parameter lists. Instruments cannot be applied to other instruments, nor can
scores be constructed hierarchically. This division between sound manipulators (or
generators) and parameter lists results in a corresponding separation between the orchestra
and the score. Other consequences include a non-interactive environment. An interesting
aspect of Music V is the idea that an instance of an instrument is created for each note
specified in the score.

Kyma (Scaletti 1989) and the Sun/Mercury Workstation (Rodet and Eckel 1988) take a
different approach, treating sound manipulators and sound generators as objects that can
be ‘‘patched’’ together. This results in an intuitive system for synthesis, but there are
problems. A level of indirection is required to manipulate graphs of unit generators which
in turn manipulate sounds rather than to manipulate sounds directly. Various extensions
have become necessary in order to handle graphs that change over time, but this also adds
complexity to programs. Symbol processing and working with data structures are also
difficult with these graph-oriented program representations. Both systems run all objects
in synchrony, thereby assuming a global sample rate.

SRL (Kopec 1985) is a signal processing language that represents signals as
parameterized computations. SRL signals are immutable objects that can be reused. SRL
supports lazy evaluation and function caching by retaining a symbolic representation of all
signals. SRL lacks in many musically useful concepts such as the starting time and
duration of signals and behavioral abstraction. Also the user must explicitly free buffers
when they are no longer needed.

Formes (Cointe and Rodet 1984) takes an object-oriented approach to the computation
of functions of time, but Formes was not designed to compute audio directly. Formes was
originally designed to compute control information for the Chant synthesis system.

Behavioral Abstraction

Fugue provides an elegant and hierarchical way to express scores that combines
qualities of both note lists and executable programs. Note lists of classical score
languages are attractive because they can be generated, stored, and manipulated as data.
For example, making all the notes in a section louder is easy to do if the notes are
represented as data. On the other hand, note lists suffer from the fact that they are not
programs. In particular, there comes a time when *‘loudness’’ (and every other note-list
parameter) must be interpreted to produce or control sound. The point at which
Interpretation starts defines the boundary between the ‘‘score’’ and the ‘‘orchestra’’.

_Fugue avoids the boundary through the use of declarative-style programs that ‘‘feel’’
like note lists and by using the same language to define both scores and synthesis
procedures. It is possible to alter Fugue scores by applying various transformations along

the ensions of time, loudness, pitch, articulation, and even sample rate.

. A potential lliability of these trapsfoxmations is that they may transform the wrong thing.
or example, in stretching a section of music that contains a trill, we do not necessarily

77

want the trill to slow down, and we almost certainly do not want the pitch to drop! Fugue
provides defaults for transformations, but allows the programmer/composer to override the
defaults with more appropriate behaviors.

Thus, the programmer/composer defines behaviors that ‘‘do the right thing’’ in the
context of a specified set of transformations. The definition of a class of behaviors that
are realized according to a context is called behavioral abstraction. A few examples
should clarify how Fugue works. The first example is a sequence of three sounds:

(seq (cue wind) (cue watér) (osc Bf3))

where cue is a behavior that simply plays a sound at a given time, and osc is a behavior
that plays a given pitch. wind and water are two sounds, perhaps loaded from sound
files. If we wanted to hear the same sequence at a lower amplitude and with the water
sound delayed by 2 seconds, we could write:

(loud 0.2 (seqg (cue wind) (at 2.0 (cue water)) (osc Bf3)))

Now suppose we wish to change the pitch. We could write
(transpose 3 (seq (cue wind) (cue water) (osc Bf£3)))

This would have the effect of transposing the sequence up by 3 semitones. However,
since the cue abstraction overrides and prevents transposition, only the osc behavior will
be affected.

Signal Processing
Fugue is intended as a versatile system for the, analysis, synthesis, and processing of
sound. Thus far, our efforts have focussed on building an extensible kernel for Fugue and
implementing some simple synthesis primitives. In the current implementation, sounds
may be obtained using a generalized oscillation function or by loading sounds from files.

Primitives are also supplied to manipylate the environment in which sounds are
generated and composed. These operations are used to perform cutting and splicing,
stretching, controlling the amount of /egato (sound overlap), loudness, and pitch. These
operations manipulate the environment in which sounds are computed and may be applied
from the score level all the way down to sound generation primitives.

System Organization
Fugue is implemented in a combination of C (Kernighan and Richie 1978) and XLisp
(Betz 1986). We use XLisp because it is fairly easy to extend with a new type. (XLisp is
itself written in C.) The use of two languages reflects our goal to provide an interactive
and efficient environment. New synthesis techniques can be introduced by combining
existing Lisp functions on sounds or by writing new sound synthesis algorithms in C and
making them callable from Lisp.

Multiple sample rates allow ‘‘control’’ signals to exist at a low sample rate as in
Music-11 (Vercoe 1981) and Csound (Vercoe 1986), reducing time and memory
requirements. Linear interpolation is used (by default) when it becomes necessary to
manipulate two sounds with different sample rates. There is no distinction between
control signals and audio signals. Filters can be used to modify spectra or to smooth
envelopes, and multiplication can be used uniformly for gain control, amplitude
envelopes, or audio-rate amplitude modulation.

The fact that sounds in Fugue are immutable values implies that the implementation
cannot add several sounds directly into a buffer. If sounds are immutable, then each
addition of two sounds produces a new sound and requires storage allocation. One might
expect an implementation with immutable values to be very inefficient, but we avoid this
problem through lazy evaluation. When additions (and many other operations) are
performed, our implementation merely builds a small data-structure describing the desired

78

operation without actually computing any samples.

This technique avoids many

redundant copy operations but is completely hidden from the user.

Also hidden from the user is the use of reference counting (Pratt 1975) to reclaim
storage from sounds that are no longer referenced. This reference counting scheme is
integrated with the XLisp mark-and-sweep garbage collector (Shorr and Waite 1967).

~ Conclusion
Fugue is a new language that provides high-level operations on sounds. Fugue is unique
in that is spans a range of computational tasks from score manipulation to synthesis within

a single integrated language.

Fugue already has an efficient implementation running on

Unix workstations. We intend to improve this further by taking advantage of virtual copy
and mapped file capabilities of the Mach (Accetta et. al. 1986) operating system and a
DSP chip for signal processing. We also plan to extend Fugue with more sound functions
from other systems such as Moore’s Cmusic (Moore 1982), Vercoe’s Csound (Vercoe
1986), NeXT’s Sound Kit (Jaffe and Boynton 1989), and Lansky’s Cmix (Lansky 1987).

References

Accetta, M., Baron, R. Bolosky, W., Golub, D.;
Rashid, R., Tevanian, A., and Young,
M. “Mach: A New Kemel Foundation for
UNIX Development.”” Proc. of Summer
Usenix, July 1986.

Betz, D. 1986. XLISP: An Experimental Object- -

oriented Language, Version 1.7. (program
documentation).
Cointe, P. and Rodet, X. 1984, ‘‘Formes: an

Object & Time Oriented System for Music
Composition and Synthesis."’ In 1984
Symposium on LISP and Functional
Programming. ACM Press, pp. 85-95.

Dannenberg, R. B., McAvinney, P., Rubine,
D. 1986. ‘‘Arctic: A Functional Language for
Real- Time Systems.”” Computer Music
Journal 10(4):67-78.

Dannenberg, R. B. 1989. ‘‘The Canon Score
Language.”’ Computer Music Journal
13(1):47-56.

Jaffe, D. and Boynton, L. 1989. **An Overview of
the Sound and Music Kits for the NeXT
Computer.”” Computer Music Journal
13(2):48-55.

Kemighan, B. M. and Richie, D. M. 1978, The C
Programming Language. Englewood Cliffs:
Prentice-Hall.

Kopec, G. E. 1985. '‘The Signal Representation
Language SRL.” IEEE Transactions

Acoustics, Speech and Signal Processing.
33(4):921-932.

79

Lansky, P. 1987. ‘‘CMIX" Princeton Univ.
(Software and documentation).

Moore, F. R. 1982. ‘“The Computer Audio
Research Laboratory at UCSD.” Computer
Music Journal (6)1:18-29.

Pratt, T. 1975. Programming Languages: design
and implementation. Englewood Cliffs:
Prentice Hall.

Rodet, X. and Eckel, G. 1988. ‘‘Dynamic
Patches: Implementation and Control in the
Sun-Mercury Workstation.”” In Proceedings
of the 1988 International Computer Music
Conference. Computer Music Association. pp
82-89.

Scaletti, C. 1989. ‘‘The Kyma/Platypus Computer
Music Workstation.”’ Computer Music
Journal 13(2):23-38.

Schorr, H. and Waite, W. 1967. *‘An Efficient and
Machine Independent Procedure for Garbage '
Collection in Various List Structures.’’ Comm.
ACM 10(8):501-506.

Vercoe, B. 1981. Reference Manual for the

MUSIC 11 Sound Synthesis Language. MIT
Experimental Music Studio.

Vercoe, B. 1986. CSOUND: A Manual for the
Audio Processing System and Supporting
Programs. MIT Media Lab.

