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Music Structure Analysis from Acoustic Signals 
Roger B. Dannenberg and Masataka Goto 

 
Abstract 
Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of 
phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information 
about music texture or pitch content. Texture generally refers to the average spectral shape and statistical 
fluctuation, often reflecting the set of sounding instruments, e.g. strings, vocal, or drums. Pitch content 
reflects melody and harmony, which is often independent of texture. Structure is found in several ways. 
Segment boundaries can be detected by observing marked changes in locally averaged texture. Similar 
sections of music can be detected by clustering segments with similar average textures. The repetition of a 
sequence of music often marks a logical segment. Repeated phrases and hierarchical structures can be 
discovered by finding similar sequences of feature vectors within a piece of music. Structure analysis can 
be used to construct music summaries and to assist music browsing. 

Introduction 
Probably everyone would agree that music has structure, but most of the interesting musical information 
that we perceive lies hidden below the complex surface of the audio signal. From this signal, human 
listeners perceive vocal and instrumental lines, orchestration, rhythm, harmony, bass lines, and other 
features. Unfortunately, music audio signals have resisted our attempts to extract this kind of information. 
Researchers are making progress, but so far, computers have not come near to human levels of 
performance in detecting notes, processing rhythms, or identifying instruments in a typical (polyphonic) 
music audio texture. 

On a longer time scale, listeners can hear structure including the chorus and verse in songs, sections in 
other types of music, repetition, and other patterns. One might think that without the reliable detection 
and identification of short-term features such as notes and their sources, that it would be impossible to 
deduce any information whatsoever about even higher levels of abstraction. Surprisingly, it is possible to 
automatically detect a great deal of information concerning music structure. For example, it is possible to 
label the structure of a song as AABA, meaning that opening material (the “A” part) is repeated once, 
then contrasting material (the “B” part) is played, and then the opening material is played again at the end. 
This structural description may be deduced from low-level audio signals. Consequently, a computer might 
locate the “chorus” of a song without having any representation of the melody or rhythm that 
characterizes the chorus. 

Underlying almost all work in this area is the concept that structure is induced by the repetition of similar 
material. This is in contrast to, say, speech recognition, where there is a common understanding of words, 
their structure, and their meaning. A string of unique words can be understood using prior knowledge of 
the language. Music, however, has no language or dictionary (although there are certainly known forms 
and conventions). In general, structure can only arise in music through repetition or systematic 
transformations of some kind. 

Repetition implies there is some notion of similarity. Similarity can exist between two points in time (or 
at least two very short time intervals), similarity can exist between two sequences over longer time 
intervals, and similarity can exist between the longer-term statistical behaviors of acoustical features. 
Different approaches to similarity will be described. 

Similarity can be used to segment music: contiguous regions of similar music can be grouped together 
into segments. Segments can then be grouped into clusters. The segmentation of a musical work and the 
grouping of these segments into clusters is a form of analysis or “explanation” of the music. 
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Features and Similarity Measures 
A variety of approaches are used to measure similarity, but it should be clear that a direct comparison of 
the waveform data or individual samples will not be useful. Large differences in waveforms can be 
imperceptible, so we need to derive features of waveform data that are more perceptually meaningful and 
compare these features with an appropriate measure of similarity.  

Feature Vectors for Spectrum, Texture, and Pitch 
Different features emphasize different aspects of the music. For example, mel-frequency cepstral 
coefficients (MFCCs) seem to work well when the general shape of the spectrum but not necessarily pitch 
information is important. MFCCs generally capture overall “texture” or timbral information (what 
instruments are playing in what general pitch range), but some pitch information is captured, and results 
depend upon the number of coefficients used as well as the underlying musical signal. 

When pitch is important, e.g. when searching for similar harmonic sequences, the chromagram is 
effective. The chromagram is based on the idea that tones separated by octaves have the same perceived 
value of chroma  (Shepard 1964). Just as we can describe the chroma aspect of pitch, the short term 
frequency spectrum can be restructured into the chroma spectrum by combining energy at different 
octaves into just one octave. The chroma vector is a discretized version of the chroma spectrum where 
energy is summed into 12 log-spaced divisions of the octave corresponding to pitch classes (C, C#, D, … 
B). By analogy to the spectrogram, the discrete chromagram is a sequence of chroma vectors. 

It should be noted that there are several variations of the chromagram. The computation typically begins 
with a short-term Fourier transform (STFT) which is used to compute the magnitude spectrum. There are 
different ways to “project” this onto the 12-element chroma vector. Each STFT bin can be mapped 
directly to the most appropriate chroma vector element (Bartsch and Wakefield 2001), or the STFT bin 
data can be interpolated or windowed to divide the bin value among two neighboring vector elements 
(Goto 2003a). Log magnitude values can be used to emphasize the presence of low-energy harmonics. 
Values can also be averaged, summed, or the vector can be computed to conserve the total energy. The 
chromagram can also be computed by using the Wavelet transform. 

Regardless of the exact details, the primary attraction of the chroma vector is that, by ignoring octaves, 
the vector is relatively insensitive to overall spectral energy distribution and thus to timbral variations. 
However, since fundamental frequencies and lower harmonics of tones feature prominently in the 
calculation of the chroma vector, it is quite sensitive to pitch class content, making it ideal for the 
detection of similar harmonic sequences in music. 

While MFCCs and chroma vectors can be calculated from a single short term Fourier transform, features 
can also be obtained from longer sequences of spectral frames. Tzanetakis and Cook (1999) use means 
and variances of a variety of features in a one second window. The features include the spectral centroid, 
spectral rolloff, spectral flux, and RMS energy.  

Peeters, La Burthe, and Rodet (2002) describe “dynamic” features, which model the variation of the short 
term spectrum over windows of about one second. In this approach, the audio signal is passed through a 
bank of Mel filters. The time-varying magnitudes of these filter outputs are each analyzed by a short term 
Fourier transform. The resulting set of features, the Fourier coefficients from each Mel filter output, is 
large, so a supervised learning scheme is used to find features that maximize the mutual information 
between feature values and hand-labeled music structures. 

Measures of Similarity 
Given a feature vector such as the MFCC or chroma vector, some measure of similarity is needed. One 
possibility is to compute the (dis)similarity using the Euclidean distance between feature vectors. 
Euclidean distance will be dependent upon feature magnitude, which is often a measure of the overall 



R. Dannenberg and M. Goto Music Structure 16 April 2005 

- 3 - 

music signal energy. To avoid giving more weight to the louder moments of music, feature vectors can be 
normalized, for example, to a mean of zero and a standard deviation of one or to a maximum element of 
one. 

Alternatively, similarity can be measured using the scalar (dot) product of the feature vectors. This 
measure will be larger when feature vectors have a similar direction. As with Euclidean distance, the 
scalar product will also vary as a function of the overall magnitude of the feature vectors. If the dot 
product is normalized by the feature vector magnitudes, the result is equal to the cosine of the angle 
between the vectors. If the feature vectors are first normalized to have a mean of zero, the cosine angle is 
equivalent to the correlation, another measure that has been used with success. 

Lu, Wang, and Zhang (Lu, Wang, and Zhang 2004) use a constant-Q transform (CQT), and found that 
CQT outperforms chroma and MFCC features using a cosine distance measure. They also introduce a 
“structure-based” distance measure that takes into account the harmonic structure of spectra to emphasize 
pitch similarity over timbral similarity, resulting in additional improvement in a music structure analysis 
task. 

Similarity can be calculated between individual feature vectors, as suggested above, but similarity can 
also be computed over a window of feature vectors. The measure suggested by Foote (1999) is vector 
correlation: 
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where w is the window size. This measure is appropriate when feature vectors vary with time, forming 
significant temporal patterns. In some of the work that will be described below, the detection of temporal 
patterns is viewed as a processing step that takes place after the determination of similarity. 

Evaluation of Features and Similarity Measures 
Linear prediction coefficients (LPC) offer another low-dimensional approximation to spectral shape, and 
other encodings such as moments (centroid, standard deviation, skewness, etc.) are possible. Aucouturier 
and Sandler (2001) compare various approaches and representations. Their ultimate goal is to segment 
music according to texture, which they define as the combination of instruments that are playing together. 
This requires sensitivity to the general spectral shape, and insensitivity to the spectral details that vary 
according to pitch. They conclude that a vector of about 10 MFCCs is superior to LPC and discrete 
cepstrum coefficients (Galas and Rodet 1990).  

On the other hand, Hu, Dannenberg, and Tzanetakis (2003) compare features for detecting similarity 
between acoustic and synthesized realizations of a single work of music. In this case, the goal is to ignore 
timbral differences between acoustic and synthetic instruments, but to achieve fine discrimination of 
pitches and harmonies. They conclude that the chroma vector is superior to pitch histograms and MFCCs.  

Segmentation 
One approach to discovering structure in music is to locate segments of similar musical material and the 
boundaries between them. Segmentation does not rely on classification or the discovery of higher order 
structure in music. However, one can envision using segmentation as a starting point for a number of 
more complicated tasks, including music summarization, music analysis, music search, and genre 
classification. Segmentation can also assist in audio browsing, a task that can be enhanced through some 
sort of visual summary of music and audio segments. 
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Segmentation Using Texture Change 
Tzanetakis and Cook (1999) perform segmentation as follows: Feature vectors Vi are computed as 
described above. A feature time differential, Δi, is defined as the Mahalanobis distance: 

 Δi = (Vi – Vi−1)TΣ-1(Vi – Vi−1) (2) 

where Σ is an estimate of the feature covariance matrix, calculated from the training data, and i is the 
frame number (time). This measure is related to the Euclidean distance but takes into account the variance 
and correlations among features. Next, the first order differences of the distance, Δi − Δi-1, are computed. 
A large difference indicates a sudden transition. Peaks are picked, beginning with the maximum. After a 
peak is selected, the peak and its neighborhood are zeroed to avoid picking another peak within the same 
neighborhood. Assuming the total number of segments is given a priori, the neighborhood is 20% of the 
average segment size. Additional peaks are selected and zeroed until the desired number of peaks 
(segment boundaries) has been obtained. 

Segmentation by Clustering 
Logan and Chu (2000) describe a clustering technique for discovering music structure. The goal is to 
label each frame of audio so that frames within similar sections of music will have the same labels. For 
example, all frames within all occurrences of the chorus should have the same label. This can be 
accomplished using bottom-up clustering to merge clusters that are similar. Initially, the feature vectors 
are divided into fixed-length contiguous segments and each segment receives a different label. The 
following clustering step is iterated: 

Calculate the mean µ and covariance Σ of the feature vectors within each cluster. Compute a modified 
Kullback Leibler (KL) distance between each pair of clusters, as described below. Find the pair of 
clusters with the minimum KL2 distance, and if this distance is below a threshold, combine the 
clusters. Repeat this step until no distance is below the threshold. 

The KL2 distance between two Gaussian distributions A and B is given by: 
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Segmentation and Hidden Markov Models 
Another approach to segmentation uses a hidden Markov model (HMM). In this approach, segments of 
music correspond to discrete states Q and segment transitions correspond to state changes. Time advances 
in discrete steps corresponding to feature vectors, and transitions from one state to the next are modeled 
by a probability distribution that depends only on the current state. This forms a Markov model that 
generates a sequence of states. Note that states are “hidden” because only feature vectors are observable. 
Another probability distribution, p(Vi | qi), models the generation of feature vector Vi from state qi. The 
left side of Figure 1 illustrates a 4-state ergodic Markov model, where arrows represent state transition 
probabilities. The right side of the figure illustrates the observation generation process, where arrows 
denote conditional probabilities between variables. 
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Figure 1. Hidden Markov model with four hidden states a, b, c, and d. As shown, 
feature vectors depend only upon the current state, which depends only upon the 
previous state. 

The HMM has advantages for segmentation. In general, feature vectors do not indicate the current state 
(segment class) unambiguously, so when a single feature vector is observed, one cannot assume that it 
was generated by particular state. However, some features are more likely to occur in one state than 
another, so one can observe the trend of feature vectors, ignoring the unlikely outliers and guessing the 
state that is most consistent with the observations. If transitions are very unlikely, one may have to 
assume many outliers occur. On the other hand, if transitions are common and segments are short, one can 
change states rapidly to account for different feature vectors. The HMM formalism can determine the 
segmentation (the hidden state sequence) with the maximum likelihood given a set of transition 
probabilities and observations, thus the model can formalize the tradeoffs between minimizing transitions 
and matching features to states. Furthermore, HMM transition probabilities can be estimated from 
unlabeled training data, eliminating the need to guess transition probabilities manually. 

Aucouturier and Sandler (2001) model the observation probability distribution P(Vi|qj) as a mixture of 
Gaussian distributions over the feature space: 
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where N is a Gaussian probability density function with mean µi,m, covariance matrix Γj,m, and cj,m is a 
mixture coefficient. Here, i indexes time and j indexes state. They train the HMM using the Baum-Welch 
algorithm using the sequence vectors from the single song chosen for analysis. The Viterbi algorithm is 
then used to find the sequence of hidden states with the maximum likelihood, given the observed feature 
vectors. 

0
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Figure 2. Segmentation of 20 seconds of a song. State 0 is silence, State 1 is voice, 
accordion, and accompaniment, and State 2 is accordion and accompaniment. 

One potential drawback of this approach is that the HMM will segment the signal according to fine-grain 
changes in spectral content rather than long-term elements of musical form. For example, in one of 
Aucoturier and Sandler’s test cases (see Figure 2), the HMM segmentation appears to isolate individual 
words of a singer rather than divide the song according to verses and instrumental interludes. 
(Aucouturier, Pachet, and Sandler 2005) In other words, the segments can be quite short when there are 
rapid changes in the music. Although this might be the desired result, it seems likely that one could detect 
longer-term, higher-level music structure by averaging features over a longer time span or applying 
further processing to the state sequence obtained from an HMM. 
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Peeters, La Burthe, and Rodet (2002) approach the problem of clustering with a two-pass algorithm. 
Imagine a human listener hearing a piece of music for the first time. The range of variation of music 
features becomes apparent, and templates or classes of music are formed. In the second hearing, the 
structure of the music can be identified in terms of the previously identified templates. 

An automated system is inspired by this two-pass model. In the first pass, texture change indicates 
segment boundaries, and “potential” states are formed from the mean values of feature vectors within 
segments. In the second pass, potential states that are highly similar are merged by using the K-means 
algorithm. The resulting K states are called the “middle” states. Because they represent clusters with no 
regard for temporal contiguity, a hidden Markov model initialized with these “middle” states is then used 
to inhibit rapid inappropriate state transitions by penalizing them. The Baum-Welch algorithm is used to 
train the model on the sequence of feature vectors from the song. Viterbi decoding is used to obtain a state 
sequence. Figure 3 shows the result of an analysis using this smoothing technique. 
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Figure 3. Classification of states in "Head Over Feet" from artist Alanis Morisette. 
(Adapted from Peeters, La Burthe, and Rodet, 2002). 

 

The Similarity Matrix 
A concept used by many researchers is the similarity matrix. Given a sequence of feature vectors Vi and a 
measure of similarity S(i, j), one can simply view S(i, j) as a matrix. The matrix can be visualized using a 
grayscale image where black represents dissimilar vectors and white represents similar vectors. Shades of 
gray represent intermediate values. Since any vector is similar to itself, the diagonal of the similarity 
matrix will be white. Also, assuming the similarity measure is symmetric, the matrix will be symmetric 
about the diagonal. The interesting information in the matrix is in the patterns formed off the diagonal.  

In very general terms, there are two interesting sorts of patterns that appear in the similarity matrix, 
depending on the nature of the features. The first of these appears when features correspond to relatively 
long-term textures. The second appears when features correspond to detailed short-term features such as 
pitch or harmony and where similar sequences of features can be observed. These two types of patterns 
are considered in the next two sections. 

Texture Patterns 
First, consider the case where features represent the general texture of the music, for example whether the 
music is primarily vocal, drum solo, or guitar solo. Figure 4 shows an idealized similarity matrix for this 
case. The white diagonal appears because feature vectors along the diagonal are identical. Notice that 
wherever there are similar textures, the matrix is lighter in color (more similar), so for example, all of the 
feature vectors for the vocals (V) are similar to one another, resulting in large light-colored square 
patterns both on and off the diagonal. Where two feature vectors correspond to different textures, for 
example drums and vocals, the matrix is dark. 



R. Dannenberg and M. Goto Music Structure 16 April 2005 

- 7 - 

D V G V

V

D

G

V

G

G

 
Figure 4. An idealized similarity matrix for segments of drum (D), vocal (V), and 
guitar (G) texture. 

Notice that along the diagonal, a checkerboard pattern appears at segment boundaries, with darker regions 
to the upper left and lower right, and lighter regions to the lower left and upper right. Foote (2000) 
proposes the correlation of the similarity matrix S with a kernel based on this checkerboard pattern in 
order to detect segment boundaries. The general form of the kernel is: 
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(Note that in Equation 6, row numbers increase in the downward direction whereas in the similarity 
matrix images, the row number increases in the upward direction. Therefore the diagonal in Equation 6 
runs from upper left to lower right.) The kernel image in Figure 5 represents a larger checkerboard pattern 
with radial smoothing. The correlation N(i) of this kernel along the diagonal of a similarity matrix S can 
be considered to be a measure of novelty (Foote 2000): 
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A graph of N(i) for the similarity matrix in Figure 4 is shown in Figure 5. A peak occurs at each transition 
because transition boundaries have the highest correlation to the checkerboard pattern. 
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Figure 5. The correlation of the kernel shown at lower left with a similarity matrix. 

Cooper and Foote (2003) extend this technique for finding segment boundaries with a statistical method 
for clustering segments. 
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Repeating Sequence Patterns 
While the texture patterns described above are most useful for detecting transitions between segments, the 
second kind of pattern can be used to discover repetition within a song. For these patterns to appear, it is 
important that features reflect short-term changes. Generally, features should vary significantly with 
changes in the pitch of a melody or with changes in harmony. If this condition is satisfied, then there will 
not be great similarity within a segment, and there will not be a clear pattern of light-colored squares as 
seen in Figure 4. However, if a segment of music repeats with an offset of j, then S(i, i) will equal S(i, 
i+j), generating a diagonal line segment at an offset of j from the central diagonal. This is illustrated 
schematically in Figure 6, where it is assumed that the vocal sections (V) constitute three repetitions of 
very similar music, whereas the two guitar sections (G) are not so similar. Notice that each non-central 
diagonal line segment indicates the starting times and the duration of two similar sequences of features. 
Also, notice that since each pair of similar sequences is represented by two diagonal line segments, there 
are a total of six (6) off-central line segments in Figure 6. 
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Figure 6. When sections of music are repeated, a pattern of diagonal line segments is 
generated. 

Although not shown in Figure 6, the similarity matrix can also illustrate hierarchical relationships. For 
example, if each vocal section (V) consists of a phrase that is repeated, the similarity matrix would look 
like the one in Figure 7.  
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Figure 7. The vocal segments (V) in this similarity matrix contain a repetition, 
generating additional pattern that is characteristic of music structure. 
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Figure 8 illustrates both texture patterns and repeated sequence patterns from the song “Day Tripper” by 
the Beatles. The bridge is displayed, starting with three repetitions of a two-measure guitar phrase in the 
first 11 seconds, followed by six measures of vocals. Notice how a checkerboard pattern appears due to 
the timbral self-similarity of the guitar section (0 to 11s) and the vocal section (11 to 21s). Finer structure 
is also visible. A repeated sequence pattern appears within the guitar section as parallel diagonal lines. 
This figure uses the power spectrum below 5.5kHz as the feature vector, and uses the cosine of the angle 
between vectors as a measure of similarity. 

 
Figure 8. Similarity matrix using spectral features from the bridge of "Day 
Tripper" by the Beatles. 

The Time-Lag Matrix 
When the goal is to find repeating sequence patterns, it is sometimes simpler to change coordinate 
systems so that patterns appear as horizontal or vertical lines. The time-lag matrix r is defined by: 

  r(t, l) = S(t, t−l), where t−l ≥ 0 (8) 

Thus, if there is repetition, there will be a sequence of similar frames with a constant lag. Since lag is 
represented by the vertical axis, a constant lag implies a horizontal line. The time-lag version of Figure 7 
is shown in Figure 9. Only the lines representing similar sequences are shown, and the grayscale has been 
reversed, so that similarity is indicated by black lines. 
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Figure 9. Time-lag matrix representation of the similarity matrix in Figure 7. 

Finding Repeating Sequences 
Of course, with audio data obtained from real audio recordings, the similarity or time-lag matrix will be 
full of noise and ambiguity arising from spurious similarity between different frames. Furthermore, 
repetitions in music are rarely exact; variation of melodic, harmonic, and rhythmic themes is an essential 
characteristic of music. In order to automate the discovery of musical structure, algorithms must be 
developed to identify the structure that lies within the similarity matrix. 

Melodic Sequence Matching 
One way to find repetition is to transcribe the melody and perform matching on the resulting symbolic 
transcription. While extracting the melody from a polyphonic recording (Goto 2004) is very difficult in 
general, an approximate transcription from an instrumental recording or from a monophonic (melody 
only) recording is relatively easy. Dannenberg (2002) describes a simple transcription system based on 
the enhanced autocorrelation algorithm (Tolonen and Karjalainen 2000) applied to a ballad recorded by 
John Coltrane. The transcription results in a quantized integer pitch value pi and real inter-onset interval di 
for each note (inter-onset intervals are typically preferred over note duration in music processing). This 
sequence is processed as follows: 

1) First, a similarity matrix is constructed where rows and columns correspond to notes. This differs 
from the similarity matrix described above where rows and columns correspond to feature vectors 
with a fixed duration. 

2) Each cell of the similarity matrix S(i, j) represents the duration of similar melodic sequences 
starting at notes i and j. A simple “greedy” algorithm is used to match these two sequences. If 
note i does not match note j, S(i, j) = 0. 

3) Simplify the matrix by removing redundant entries. If a sequence beginning at i matches one at j, 
then there should be another match at i+1 and j+1. To simplify the matrix, find the submatrix 
S(i:u, j:v) where the matching sequences at i and j end at u and v. Zero every entry in the 
submatrix except S(i, j). Also, zero all entries for matching sequences of length 1. 

4) Now, any non-zero entry in S represents a pair of matching sequences. By scanning across rows 
of S we can locate all similar sequences. Sequences are clustered: the first non-zero element in a 
row represents a cluster of two sequences. Any other non-zero entry in the row that roughly 
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matches the durations of the clustered sequences is added to the cluster. After scanning the row, 
all pair-wise matches are zeroed so they will not be considered again. 

The result of this step is a set of clusters of similar melodic segments. Because repetitions in the music are 
not exact, there can be considerable overlap between clusters. It is possible for a long segment to be 
repeated exactly at one offset, and for a portion of that same segment to be repeated several times at other 
offsets. It may be desirable to simplify the analysis by labeling each note with a particular cluster. This 
simplification is described in the next section. 

Simplification or Music Explanation 
The goal of the simplification step is to produce one possible set of labels for notes. Ideally, the labels 
should offer a simple “explanation” of the music that highlights repetition within the music. The AABA 
structure common in songs is a typical explanation. In general, longer sequences of notes are preferable 
because they explain more, but when sequences are too long, interesting substructure may be lost. For 
example, the structure AABAAABA could also be represented as AABA repeated, i.e. the structure could 
be labeled AA, but most theorists would consider this to be a poor explanation. Hierarchical explanations 
offer a solution, but there is no formal notion as yet of the optimal simplification or explanation. 

Dannenberg uses a “greedy” algorithm to produce reasonable explanations from first note to last. 
(Dannenberg and Hu 2002) Notes are initially unlabeled. As each unlabeled note is encountered, search 
the clusters from the previous section to find one that includes the unlabeled note. If a cluster is found, 
allocate a new label, e.g. “A”, and label every note included in the cluster accordingly. Continue labeling 
with the next unlabeled note until all notes are processed. 

Figure 10 illustrates output from this process. Notice that the program discovered substructure within 
what would normally be considered the “bridge” or the B part, but this substructure is “real” in the sense 
that one can see it and hear it. The gap in the middle of the piece is a piano solo where transcription 
failed. Notice that the program correctly determines that the saxophone enters on the bridge (the B part) 
after the piano solo. The program also identifies the repeated 2-measure phrase at the end. It fails to notice 
the structure of ascending pitches at the very end because, while this is a clear musical gesture, it is not 
based on the repetition of a note sequence. 

 
Figure 10. A computer analysis of "Naima" by John Coltrane. The automatic 
transcription appears as a "piano roll" at the top, the computer analysis appears as 
shaded bars, where similar shading indicates similar sequences, and conventional 
labels appear at the bottom. 

Finding Similar Sequences in the Similarity Matrix 
Typically, transcription of a music signal into a sequence of notes is not possible, so similar sequences 
must be detected as patterns in the similarity or time-lag matrix. For example, Bartsch and Wakefield 
(2001) filter along diagonals of a similarity matrix to detect similarity. This assumes nearly constant 
tempo, but that is a good assumption for the popular music used in their study. Their objective was not to 
identify the beginnings and endings of repeating sequences but to find the chorus of a popular song for 
use as an “audio thumbnail” or summary. The thumbnail is selected as the maximum element of the 
filtered similarity matrix, with the additional constraints that the lag is at least one tenth of the length of 
the song and the thumbnail does not appear in the last quarter of the song. 

Peeters and Rodet (2003) suggest using a 2D structuring filter on the lag matrix to detect similar 
sequences. Their filter counts the number of values in the neighborhood to the left and right of a point that 
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are above a threshold. To allow for slight changes in tempo, which results in lines that are not perfectly 
horizontal, neighbor cells above and below are also considered. Lu, Wang, and Zhang (Lu, Wang, and 
Zhang 2004) suggest erosion and dilation operations on the lag matrix to enhance and detect significant 
similar sequences. 

Dannenberg and Hu (2003) use a discrete algorithm to find similar sequences and is based on the idea that 
a path from cell to cell through the similarity matrix specifies an alignment between two subsequences of 
the feature vectors. If the path goes through S(i, j), then vector i is aligned with j. This suggests using a 
dynamic time warping (DTW) algorithm (Rabiner and Juang 1993), and the actual algorithm is related to 
DTW.  

The goal is to find alignment paths that maximize the average similarity of the aligned features. A partial 
or complete path P is defined as a set of pairs of locations and is rated by the average similarity along the 
path: 
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where |P| is the path length using Euclidean distance. Paths are extended as long as the rating remains 
above a threshold. Paths are constrained to move up one cell, right one cell, or diagonally to the upper 
right as shown in Figure 11 (and adopting the orientation of the similarity matrix visualizations where 
time increases vertically and to the right). Therefore, every point that is on a path can be reached from 
below, from the left, or from the lower left. Each cell (i,j) of an array is computed by looking at the cell 
below, left, and below left to find the (previously calculated) best path (highest q(P)) passing through 
those cells. Three new ratings of r are computed by extending each of the three paths to include (i,j). The 
path with the highest rating is remembered as the one passing through (i,j).  

i

j j+1

i+1

 
Figure 11. Extending a path from S(i, j). 

Because cells depend on previously computed values to the lower left, cells are computed along diagonals 
of constant i+j, from lower left to upper right (increasing i+j). When no path has a rating above some 
fixed threshold, the path ends. A path may begin wherever S(i, j) is above threshold and no previous paths 
exist to be extended. 

Forming Clusters 
After alignment paths are found, they are grouped into clusters. So if sequence A aligns to sequence B, 
and sequence A also aligns to sequence C, then A, B, and C should be grouped in a single cluster. 
Unfortunately, it is unlikely that the alignments of A to B and A to C use exactly the same frames. It is 
more likely that A aligns to B and A′ aligns to C, where A and A′ are mostly overlapping. This can be 
handled simply by considering A to equal A′ when they start and end within some fraction of their total 
length, for example within 10 percent. Once clusters are formed, further simplification and explanation 
steps can be performed as described above. 

Isolating Line Segments from the Time-Lag Matrix 
If nearly constant tempo can be assumed, the alignment path is highly constrained and the alignment path 
approach may not work well. Taking advantage of the fact that similar sequences are represented by 
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horizontal lines in the time-lag matrix, Goto (2003a) describes an alternative approach to detecting music 
structure. In this work, the time-lag matrix is first normalized by subtracting a local mean value while 
emphasizing horizontal lines. In more detail, given a point r(t,l) in the time-lag matrix, six-directional 
local mean values along the right, left, upper, lower, upper-right, and lower-left directions starting from 
r(t,l) are calculated, and the maximum and minimum are obtained. If the local mean along the right or left 
direction takes the maximum, r(t,l) is considered a part of a horizontal line and emphasized by subtracting 
the minimum from r(t,l).  Otherwise, r(t,l) is considered a noise and suppressed by subtracting the 
maximum from r(t,l); noises tend to appear as lines along the upper, lower, upper-right, and lower-left 
directions. Then, a summary is constructed by integrating over time: 
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Rall is then smoothed by a moving average filter along the lag. The result is sketched in Figure 12. Rall is 
used to decide which lag values should be considered when searching for line segments in the time-lag 
matrix. A thresholding scheme based on a discriminant criterion is used. The threshold is automatically 
set to maximize the following between-class variance of the two classes established by the threshold: 

 2
2121

2 )( µµ!!" #=B  (11) 

where ω1 and ω2 are the probabilities of class occurrence (the fraction of peaks in each class), and µ1 and 
µ2 are the means of peak heights in each class. 

Each peak above threshold determines a lag value, lp. For each peak, the one-dimensional function r(τ, lp) 
is searched over lp ≤ τ ≤ t. A smoothing operation is applied to this function and the discriminant criterion 
of Equation 11 is again used to set the threshold. The result is the beginning and ending points of line 
segments that indicate repeated sections of music. 

Rall(t, l)

r(t, l)

l 
(l

a
g

)

t (time)

D V G V G V

 
Figure 12. The summary Rall(t, l) indicates the possibility that there are similar 
segments at a lag of l. 

Modulation Detection 
A common technique in pop music when repeating a chorus is to change the key, typically modulating 
upward by half steps. (Note that “modulation” in music is not related to amplitude modulation or 
frequency modulation in the signal processing sense.) Since modulation changes all the pitches, it is 
unlikely that a feature vector that is sensitive to pitch sequences could detect any similarity between 
musical passages in different keys. To a first approximation, a modulation in music corresponds to 
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frequency scaling, as if changing the speed of a vinyl record turntable or changing the sample rate of a 
digital recording. On a logarithmic frequency scale, modulation is simply an offset, and when the scale is 
circular as with pitch classes and chroma, modulation is a rotation. To rotate a vector by ζ, the value of 
the ith feature is moved to become feature (i + ζ) mod 12. One would expect the chroma vectors for a 
modulated passage of music to be quite similar to a rotation of the chroma vectors of the unmodulated 
version. 

Goto (2003a) exploits this property of the chroma vector by extending the time-lag matrix to incorporate 
chroma vector rotation by a transposition amount ζ. Denoting !

t
V  as a transposed (rotated) version of a 

chroma vector 
t
V , rζ(t, l) is the similarity between !

t
V  and the untransposed vector 0

lt
V !

. Since we cannot 
assume the number of semitones at the modulation in general, the line segment detection is performed on 
each of 12 versions of rζ(t, l) corresponding to the 12 possible transpositions (this usually does not 
increase harmful false matches). The segments from all 12 versions are combined to form the set of 
repeated sections of music, and the transposition information can be saved to form a more complete 
explanation of the music structure. 

Chorus Selection after Grouping Line Segments 
Since each line segment indicates just a pair of repeated contiguous segments, it is necessary to organize 
into a cluster the line segments that have mostly overlapping frames. When a segment is repeated n times 
(n ≥ 3), the number of line segments to be grouped in a cluster should theoretically be n(n-1)/2 in the 
time-lag matrix. Aiming to exhaustively detect all the repeated segments (choruses) appearing in a song, 
Goto (2003a) describes an algorithm that redetects missing (hidden) line segments to be grouped by top-
down processing using information on other detected line segments. The algorithm also appropriately 
adjusts the start and end times of line segments in each cluster because they are sometimes inconsistent in 
the bottom-up line-segment detection. Lu, Wang, and Zhang (Lu, Wang, and Zhang 2004) describe 
another approach to obtain the best overall combination of segment similarity and duration by adjusting 
segment boundaries. 

A cluster corresponding to the chorus can be selected from those clusters. In general, a cluster that has 
many and long segments tends to be the chorus. In addition to this property, Goto (2003a) uses heuristic 
rules to select the chorus with a focus on popular music; for example, when a segment has half-length 
repeated sub-segments, it is likely to be the chorus. The choruslikeness (chorus possibility) of each cluster 
is computed by taking these rules into account, and the cluster that maximizes the choruslikeness is 
finally selected. 

Texture Sequences 
Detecting repeating patterns in the similarity matrix is equivalent to finding sequences of similar feature 
vectors. An alternative is to find sequences of similar texture classes. Aucouturier and Sandler (2002) 
perform a segmentation using hidden Markov models as described earlier. The result is a “texture score,” 
a sequence of states, e.g. 11222112200, in which patterns can be discovered. They explore two methods 
for detecting diagonal lines in the similarity matrix. The first is kernel convolution, similar to the filter 
method of Bartsch and Wakefield (2001). The second uses the Hough Transform (Leavers 1992), a 
common technique for detecting lines in images. The Hough Transform uses the familiar equation for a 
line: y = mx+b. A line passing through the point (x,y) must obey the equation b = −mx+y, which forms a 
line in the (m,b) space. A series of points along the line y = m0x+b0 can be transformed to a series of lines 
in (m,b) space that all intersect at (m0,b0). Thus, the problem becomes one of finding the intersection of 
lines. This can be accomplished, for example, by making a sampled two-dimensional image of the (m,b) 
space and searching for local maxima. It appears that the Hough Transform could be used to find patterns 
in the similarity matrix as well as in the “texture score” representation. 
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One of the interesting features of the texture score representation is that it ignores pitch to a large extent. 
Thus, music segments that are similar in rhythm and instrumentation can be detected even if the pitches 
do not match. For example, “Happy Birthday” contains 4 phrases of 6 or 7 notes. There are obvious 
parallels between these phrases, yet they contain 4 distinct pitch sequences. It seems likely that pitch 
sequences, texture sequences, rhythmic sequences, and other feature sequences can provide 
complementary views that will facilitate structure analysis in future systems. 

Music Summary 
Browsing images or text is facilitated by the fact that people can shift their gaze from one place to 
another. The amount of material that is skipped can be controlled by the viewer, and in some cases, the 
viewer can make a quick scan to search for a particular image or to read headlines. Music, on the other 
hand, exists in time rather than space. Listeners cannot time-travel to scan a music performance, or 
experience time more quickly to search for musical “headlines.” At best, one can skip songs or use fast-
forward controls with recorded music, but even this is confusing and time-consuming. 

One application of music structure analysis is to enable the construction of musical “summaries” that give 
a short overview of the main elements of a musical work. Summaries can help people search for a 
particular piece of music they know or locate unfamiliar music they might like to hear in full. By analogy 
to low-resolution versions of images often used to save space or bandwidth, summaries of music are 
sometimes called “music thumbnails.” 

Cooper and Foote describe a simple criterion for a music summary of length L: the summary should be 
maximally similar to the whole. In other words, a summary can be rated by summing the similarity 
between each feature vector in the summary with each feature vector in the complete work. The rating for 
the summary beginning at feature vector i is: 
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The best summary is then the one starting at the value of i the maximizes QL(i). The formula can be 
extended by weighting S(m,n) to emphasize earlier or louder sections of the song. 

Other approaches to summary construction are outlined by Peeters, La Burthe, and Rodet (2002). Assume 
that music has been segmented using one of the techniques described above, resulting in three classes or 
labels A, B, and C. Some of the interesting approaches to musical summary are: 

• use the most common class, which in popular music is often the chorus. Some research 
specifically aims to determine the chorus as described earlier. (Bartsch and Wakefield 2001; Goto 
2003a); 

• use a sample of music from each class, i.e A, B, C. 
• use examples of each class transition, i.e. A→B, B→A, A→C. 

In all cases, audio segments are extracted from the original music recording. Unfortunately, artificially 
and automatically generated transitions can be jarring to listeners. Music structure analysis can help to 
pick logical points for transitions. In particular, a cut from one phrase of music to a repetition of that 
phrase can be inaudible. When a cut must be made to a very different texture, it is generally best to make 
the cut at an existing point of strong textural change. In most music, tempo and meter create a framework 
that is important for listening. Cuts that jump from the end of one measure to the beginning of another 
preserve the short-term metrical structure of the original music and help listeners grasp the harmonic and 
melodic structure more easily. Segments that last 2, 4, or 8 measures (or some duration that relates to the 
music structure) are more likely to seem “logical” and less disruptive. Thus, music structure analysis is 
not only important to determine what sections of music to include in a summary, but also to organize 
those sections in a way that is “musical” and easy for the listener to comprehend. 
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An alternative to the construction of “music thumbnails” is to provide a “smart” interface that facilitates 
manual browsing of entire songs. The SmartMusicKIOSK music listening station (Goto 2003b) displays a 
time-line with the results of an automatic music structure analysis. In addition to the common stop, pause, 
play, rewind, and fast forward controls, the SmartMusicKIOSK has controls labeled “next chorus,” “next 
section,” and “prev section.” (See Figure 13.) These content-based controls allow users to skim rapidly 
through music and give a graphical overview of the entire music structure, which can be understood 
without listening to the entire song. 

 
Figure 13. The SmartMusicKIOSK user interface showing music structure and 
structure-related controls. 

Evaluation 
Most research in this area has been exploratory, with no means to evaluate whether computer-generated 
structures and segments are “correct.” In most cases, it is interesting simply to explore what types of 
structures can be uncovered and what methods can be used. Quantitative evaluations will become more 
important as problems are better understood and when competing methods need to be compared. 

Tzanetakis and Cook conducted a pilot study (1999) to compare their automatic segmentation with human 
segmentation. They found most human subjects agreed on more than half of the segments, and their 
machine segmentation found more than half of the segments that humans agreed upon. 

Bartsch and Wakefield (2001) hand-selected “true audio thumbnails” from 93 popular songs and 
measured “recall,” the fraction of true frames labeled by their program as the chorus, and “precision,” the 
fraction of labeled chorus frames that  are true frames. With the chorus length set to around 20 to 25 
seconds, the average recall and precision is about 70%, compared to about 30% for a chorus interval 
selected at random. 

Goto (Goto 2003a) also used hand-labeled choruses in 100 popular songs from the RWC Music Database, 
a source that enables researchers to work with common test data. (Goto et al. 2002) Goto judged the 
system output to be correct if the F-measure was more than 0.75. The F-measure is the harmonic mean of 
recall rate (R) and precision rate (P): F-measure = 2RP/(R+P). The system dealt correctly with 80 out of 
100 songs. 

Evaluating music structure descriptions is difficult. Structure exists at many levels and often exhibits 
hierarchy. The structure intended by the composer and perhaps determined by a music theorist may not 
correspond to the perception of the typical listener. Nevertheless, one can ask human subjects to identify 
pattern and structure in music, look for consistency between subjects, and then compare human 
descriptions to machine descriptions of music. One can also evaluate the impact of music structure 
detection upon tasks such a browsing, as in SmartMusicKIOSK (Goto 2003b). 
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Summary and Conclusions 
Knowledge of musical structure can be used to construct music summaries, assist with music 
classification, provide high-level interfaces for music browsing, and offer high-level top-down guidance 
for further analysis. Automatic analysis of music structure is one source of music meta-data, which is 
important for digital music libraries.  

High-level music structure is generally represented by partitioning the music into segments. Sometimes, 
segments are labeled to indicate similarity to other segments. There are two main principles used to detect 
high-level music structure. First, segment boundaries tend to occur when there is a substantial change in 
musical texture. In other words, this is where the music on either side of the boundary is self-similar, but 
the two regions differ from each other. Secondly, segments can be located by detecting patterns of 
repetition within a musical work. 

It should be noted that the music signal, viewed as a time-domain waveform, is not directly useful for 
analysis because repetition in music is never exact enough to reproduce phase and amplitude 
relationships. Therefore, the signal is processed to obtain features that capture useful and more-or-less 
invariant properties. In the case of texture analysis, features should capture the overall spectral shape and 
be relatively insensitive to specific pitches. Low-order MFCCs are often used to measure texture 
similarity. To detect music repetition, features should capture changes in pitch and harmony, ignoring 
texture which may change from one repetition to the next. The chroma vector is often used in this case. 

The similarity matrix results from a comparison of all feature vector pairs. The similarity matrix offers an 
interesting visualization of music, and it has inspired the application of various image-processing 
techniques to detect music structure. Computing the correlation with a “checkerboard” kernel is one 
method for detecting texture boundaries. Using filters to detect diagonal lines is one method for detecting 
repetition. 

Detecting segment boundaries or music repetition generates individual segments or pairs of segments. 
Further processing can be used to merge segments into clusters. Hidden Markov models, where each 
hidden state corresponds to a distinct texture, have been applied to this problem. When music is analyzed 
using repetitions, the structure can be hierarchical, and the structure is often ambiguous. Standard 
clustering algorithms assume a set of distinct, fixed items, but with music analysis, the items to be 
clustered are possibly overlapping segments whose start and end times might be adjustable. 

Music structure analysis is a rapidly-evolving field of study. Future work will likely explore the 
integration of existing techniques, combining texture-based with repetition-based segmentation. More 
sophisticated features including music transcription will offer alternative representations for analysis. 
Finally, there is the possibility to detect richer structures, including hierarchical patterns of repetition, 
rhythmic motives, harmonic progressions and key changes, and melodic phrases related by transposition. 
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