
Autonomous Robot Dancing Driven by
Beats and Emotions of Music

Guangyu Xia
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
gxia@andrew.cmu.edu

Junyun Tay
∗

Mechanical Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

junyunt@cmu.edu
Roger Dannenberg

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

rbd@cs.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

veloso@cmu.edu

ABSTRACT
Many robot dances are preprogrammed by choreographers
for a particular piece of music so that the motions can be
smoothly executed and synchronized to the music. We are
interested in automating the task of robot dance choreogra-
phy to allow robots to dance without detailed human plan-
ning. Robot dance movements are synchronized to the beats
and reflect the emotion of any music. Our work is made up
of two parts: (1) The first algorithm plans a sequence of
dance movements that is driven by the beats and the emo-
tions detected through the preprocessing of selected dance
music. (2) We also contribute a real-time synchronizing al-
gorithm to minimize the error between the execution of the
motions and the plan. Our work builds on previous research
to extract beats and emotions from music audio. We created
a library of parameterized motion primitives, whereby each
motion primitive is composed of a set of keyframes and du-
rations and generate the sequence of dance movements from
this library. We demonstrate the feasibility of our algorithms
on the NAO humanoid robot to show that the robot is capa-
ble of using the mappings defined to autonomously dance to
any music. Although we present our work using a humanoid
robot, our algorithm is applicable to other robots.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, and generation

General Terms
Algorithms

Keywords
autonomous robot dancing, motion-emotion mapping,
scheduling, real-time synchronization

∗Junyun Tay is in the Carnegie Mellon University-Nanyang
Technological University Dual PhD Programme.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Dancing motions for robots are usually created by chore-

ographers and designed for a particular piece of music. If
the piece of music changes, the dance movements of the
robot will have to be recreated. We are interested in au-
tomating the task of robot dance choreography by generat-
ing sequences of dance movements from a motion library.
The automatically generated choreography should satisfy
several goals. First, the choreography should be safe for
performance. For example, it should not cause the robot
to fall or break. Second, the choreography should reflect
the emotional character of the music. Peaceful music should
be choreographed differently from music that sounds angry.
Third, the dance should be synchronized to the music. Fi-
nally the dance should not be deterministic. Even when the
emotion and tempo of the music remain constant, the dance
should contain interesting variations.

To address the goal of safety, we compose dances from
sequences of motion primitives. A motion primitive is a
sequence of keyframes (static poses), interpolated to form a
continuous motion. The motion primitives are designed to
be interesting and safe when performed in any sequence.

We represent emotion using a two-dimensional activation-
valence emotion space, which is commonly used to describe
emotional states. We create a large library of motion prim-
itives, by dividing the joints of the NAO humanoid robot
into 4 categories, where each category of joints can actuate
independently. Given that there is a large number of mo-
tion primitives, we contribute another algorithm that uses
labelled emotional static postures data, collected with the
NAO humanoid robot, to estimate the activation-valence
values for each motion primitive. Motion primitives are then
selected to match the emotional state of the music.

To synchronize dance to the music, we use the fact that
motion primitives can be executed with different durations.
We adjust the duration of each motion primitive so that the
duration will be an integer multiple of beats. In practice, as
the movements on the NAO humanoid robot may not exe-
cute according to the planned schedule of motion primitives,
we maintain synchronization with the music by adjusting the
durations of motion primitives in real time to compensate for
differences between the schedule and the actual execution.

205

To create interesting variations in the dance, we use a
first-order Markov model to generate dances stochastically.
States correspond to motion primitives. The state transi-
tion probabilities are designed to produce smooth motion
sequences by favoring next states that begin with a keyframe
near the final keyframe of the current state. The state tran-
sition probabilities also depend upon the current emotion in
the music, such that at any given time, state transition prob-
abilities will prefer states that reflect the current emotion in
the music. Figure 1 summarizes the process we described.
We demonstrate the feasibility of our algorithms on the NAO
humanoid robot to show that the robot is capable of using
the mappings defined to autonomously dance to any music.
Our algorithms are applicable to other robots as well.

Figure 1: Summary of system diagram

2. RELATED WORK
Robot dances are generally preprogrammed by choreogra-

phers specifically for a piece of music. Researchers created
motions for robots using motion capture data of humans
dancing [13]. Our algorithm enables the robot to dance au-
tonomously to any piece of music that is preprocessed using
a library of predefined motions. Many explored emotional
expressions of robots using the robot’s facial features [2, 10]
and did not consider using entire body postures and move-
ments. Paul Ekman proposed 6 primary emotions: Happy,
Sad, Angry, Surprised, Fear and Disgust [3], and we explore
the use of body postures on humanoid robots to express 6
primary emotions. We use the information collected from
these static emotion body postures to estimate the emotion
of dance movements and organized them to reflect the emo-
tions detected in music.

The creation of dancing characters is a common theme in
computer animation research [8, 9, 11, 14, 15]. [11] uses a
given sequence of motions to synthesize music, while others
use given music to synthesize motion sequences. The work
[14] focuses on a topological model of dance styles, while [8,
9, 15] focus on synthesizing motions according to musical
beat times, which are very similar to our approach. Among
them, only [15] synthesizes motions according to musical
emotion. However their system uses only the intensity of
music as an indicator of emotion. Our work enhances the
use of beats by adopting a more recent and more accurate
technique to identify beats and tempo. We also use a state-
of-the-art emotion detection system coupled with our motion
primitives for robots to convey richer emotions.

3. DANCE MOTIONS FORMALIZATION
We demonstrate our work on a NAO humanoid robot (Fig-

ure 2). The NAO robot has 21 joints and is a stand-alone
autonomous robot with no facial features, except for LEDs
in the eyes and ears. We group the joints into 4 categories:

1. Head (Head): HeadYaw, HeadPitch

2. Left Arm (LArm): LShoulderPitch, LShoulderRoll,
LElbowYaw, LElbowRoll

3. Right Arm (RArm): RShoulderPitch, RShoulderRoll,
RElbowYaw, RElbowRoll

4. Legs (Legs): LHipYawPitch, LHipRoll, LHipPitch,
LKneePitch, LAnklePitch, LAnkleRoll, RHipRoll,
RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll

Figure 2: NAO humanoid robot

Each category of joints is defined to be c = 〈Jc,1, . . . , Jc,|c|〉,
where c ∈ {Head,LArm,RArm,Legs} and Jc,1, . . . , Jc,|c| are
the indices of the joints in the category. |c| is the total
number of joints in the category c. E.g., Head = 〈1, 2〉 where
1 is the index of HeadYaw and 2 is the index of HeadPitch.

3.1 Motion Primitive
Each keyframe is associated with a category c, and is de-

fined as Kc = 〈Vc,1, . . . , Vc,|c|〉, where Vc,j contains the joint
angle of joint index Jc,j . A motion primitive is Mc(β) =
〈Kc,1, βD1,Kc,2, . . . ,Kc,F−1, βDF−1,Kc,F 〉 where F is the
number of keyframes in Mc. D is the minimum time that it
takes to move (interpolate) from one keyframe, Kc,f , to the
next keyframe, Kc,f+1, and is pre-defined. We parameterize
the motion primitive with β, where β ∈ R and β ≥ 1. β is
calculated using the beat times of the music so as to syn-
chronize the motion primitive with the music (Section 5.2).

We assume independence of each body part by ignoring
the effects of dynamics generated by motions. This catego-
rization of joints according to body parts enables us to create
a large variety of motion primitives, as we can create motion
primitives for each category independently. We have a total
of 8(Head)× 9(LArm)× 9(RArm)× 26(Legs) = 16, 848 pos-
sible motion primitive combinations. The number of motion
variations is actually much greater because motions primi-
tives do not necessarily start and end synchronously. The 52
parameterized motion primitives are manually generated.

3.2 Schedule of Motion Primitives
A schedule of motion primitives belonging to the category

c is defined as Sc = 〈Kc,D,Mc,1, I1,Mc,2, . . . , Ip−1,Mc,p〉,
where p is the total number of motion primitives in Sc. Kc

contains the initial joint angles of the robot andD is the time
to interpolate from Kc to the first keyframe of Mc,1. Im is
the time to interpolate from the last keyframe of Mc,m to
the first keyframe of Mc,m+1. We show how to calculate Im
in Section 5.2.1. We plan 4 schedules of motion primitives—
SHead, SLArm, SRArm, SLegs independently according to the
emotions and beats of the music. Although the 4 schedules
are generated independently, the robot can execute these 4
schedules simultaneously. The behaviour of the robot at a
given point in time h is Bh = 〈MHead,MLArm,MRArm,MLegs〉

206

where Mc is the current motion primitive in Sc at time h
where c ∈ {Head,LArm,RArm,Legs}.

Our formalization of the motion primitive, schedules of
motion primitives and behaviour is general to use on differ-
ent robots given the independence of the joints of the robot
and that the joints can be actuated simultaneously.

4. MUSIC INFORMATION EXTRACTION
We obtain information directly from music audio signals

to coordinate the robot dance motions with music. The ex-
tracted information consists of emotions, so that the robot’s
motions can be consistent with the mood of the music, and
beats, which allow the robot to synchronize to musical pulses.

4.1 Emotion Extraction
It is well known that musical emotion has a significant

impact on human dancers’ movements. Our autonomous
robot dance algorithm is driven by musical emotions.

We use SMERS [7], a state-of-the-art music emotion recog-
nition system based on audio features and support vector
regression (SVR). SMERS performs a forced classification
into 11 emotion categories and achieved a 94% agreement
with expert human labelers.

4.1.1 Emotion Representation
SMERS adopts Thayer’s 2-dimensional Activation-Valence

(AV) model [16] to represent musical emotion (Figure 3).

Figure 3: 2-dimensional emotion model

The emotion of a piece of music is represented by an AV
value, (a, v) where a denotes Activation and v denotes Va-
lence; a, v ∈ R, a ∈ [−1, 1], v ∈ [−1, 1]. SMERS was devel-
oped and tested assuming each track of music (song) has a
single main emotion. We consider that emotion may change
over time within a piece, so we use a 30-second sliding win-
dow with a 15-second overlap. Therefore, music emotion is
represented by a vector of (a, v) coordinates. The ith el-
ement in the vector (indexing starts at 0) represents the
emotion of the music at time 15i+ 15 seconds.

4.1.2 SVR training and decoding
Emotion labeling relies on SVR, which learns a mapping

between feature vectors and emotion vectors. In our appli-
cation, the feature vector xi ∈ R6 is a vector of extracted
music audio features, which include estimated key (one of 12

major or minor keys), average energy and standard devia-
tion of energy, estimated tempo, standard deviation of beat
duration, and harmonicity (see [7] for more details). The
emotion vector is an (a, v) coordinate denoted by yi ∈ R2.
Since the original training data contains music audio with
emotion labels such as Peaceful or Happy, we replace these
labels with the (a, v) coordinates of the middle of the corre-
sponding block as shown in Figure 3. Given a set of training
data (x1, y1), (x2, y2), . . . , (xn, yn), SVR will try to find the
optimal mapping function between input xi and output yi.
In the decoding step, for a segment of music audio, we ex-
tract the feature vector x and apply the learned regression
model to get the output (a, v) coordinates of the piece of
music. These coordinates could be quantized to obtain a
discrete label (e.g. Angry), but for choreography, we use
the continuous numerical representation directly.

4.2 Beat Tracking
Musical beats reflect the basic period or pulse of music.

It is typical for humans to synchronize the dance motions
to the musical beats, so it is important for our algorithm to
detect and track beats in music audio.

Much work has been done in the area of beat tracking.
Currently, most algorithms are based on autocorrelation anal-
ysis or onset component detecting [1, 4, 5, 6]. Most recently,
[1] proposed a beat tracking method that combines autocor-
relation analysis and Neural Networks learning. The work
done by Goto [6] is based on onset component and rhythm
structure analysis. In nearly all cases, beat detection is
based on some audio feature associated with note onsets
and drum beats, such as change in amplitude or spectrum.
Peaks in these features mark likely candidates for beat lo-
cations. Since musical beats mostly occur with an overall
stable frequency (tempo), these candidate locations are fil-
tered by looking for ones that are regularly spaced. Our
approach estimates a global tempo (the overall beats per
minute of a piece of music) by analyzing the autocorrelation
of onset features throughout a piece, and then finds the best
beat times by using dynamic programming [4]. This method
performed well in the MIREX-06 evaluations [4] and gener-
ally works well when there are clear beats and steady tempo.

4.2.1 Global tempo estimation
The global tempo estimation algorithm is executed in three

steps. First, the onset strength envelope (Figure 4) of the
whole piece of music is calculated from a crude perceptual
model (see [4] for more details). Second, the autocorrelation
of the onset strength is computed. When the lag matches
the beat or its multiples, the autocorrelation should be closer
to 1. The result of one piece of music is shown in Figure 5.
Third, the highest peak (ignoring the peak at 0) is detected
and the corresponding lag is chosen as the global tempo.

4.2.2 Find best beat times
Local beat times correspond to perceived onsets in the

audio signal of a piece of music. Given the global tempo,
the beat times should not only be local onset peaks but
should be equally spaced according to the global tempo. An
objective function is defined to reflect these two goals.

S(T) = α

N∑

i

Onset(ti)− (1− α)

N∑

i+1

dist(ti − ti−1, C) (1)

Here, T = [t1, t2, . . . , tN] refers to the sequence of beat

207

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time(s)

Figure 4: Part of the onset envelope of the music

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

lag(s)

a
u

to
c
o

rr
e

la
ti
o

n

Figure 5: Autocorrelation as function of lag

times. α ∈ (0, 1) is a weighing parameter to balance the im-
portance of the two terms. Onset(ti) represents the onset
strength of the audio signal at time ti, while dist(ti−ti−1, C)
represents the difference between the beat interval and the
global tempo C, which is determined as described above. We
use dynamic programming to optimize the objective func-
tion by recursively finding each ti and hence the best T.

5. DANCING PLANNING
In this section, we explain how musical emotions and beat

times automatically determines the behaviour of the robot.
The musical emotion decides the motion primitive, while
beat times control fine timing and synchronization.

5.1 Generate Schedule of Motion Primitives
To generate a schedule of motion primitives according to

the emotions of the music, we need to have emotion labels
assigned to the motion primitives. It is time-consuming to
label each motion primitive with an AV value, so we devel-
oped an algorithm that estimates the AV value from emotion
labels of the static postures within the motion primitive.

5.1.1 Mapping Motion Primitive to Activation-
Valence Space From Static Postures Data

We collected 4 static postures of the NAO humanoid robot
for each of Ekman’s 6 basic emotions: Happy, Sad, An-
gry, Surprised, Fear and Disgust. Hence, we have a total

of 24 emotional static postures. Motion primitives are con-
tructed from these. The arms and head of a NAO humanoid
robot can be freely positioned, but there are only 5 differ-
ent heights and 5 different tilts of the robot to choose from
as shown in Figure 6. Static postures to express each emo-
tion using the NAO humanoid robot were collected inde-
pendently. Figure 7 shows a subset of the data we collected.

Figure 6: 5 heights and 5 tilts of the NAO robot

Figure 7: Examples of static postures and corre-
sponding selected keyframes in motion primitives.
Red circles indicate the points of interest

Table 1: AV Value for Paul Ekman’s six emotions
Emotion Activation (A) Valence(V)
Happy 1 1

Sad -1 -1
Angry 1 -1

Surprised 1 0
Fear 0.5 -1

Disgust -0.5 -0.5

We assigned each of the 6 basic emotions with an AV value
shown in Table 1. We recorded the joint angles of each emo-
tional static posture in a keyframe. To label each motion
primitive, we form a weighted sum based on the similarity
between motion primitives and static postures with known
AV values. SP[em] returns a vector of four static postures
(keyframes), where em ∈ {Happy, Sad,Angry,Disgusted,
Fear, Surprised}, e.g., SP[Happy] returns a vector of four
keyframes that reflect the Happy emotion. Algorithm 1 first
determines the most similar static posture for each em to
the motion primitive by using the points of interest (POI),

208

shown in Figure 7. The POI are chosen based on the con-
cepts of markers in motion capture systems. Algorithm 1
calculates DIST, the sum of the Euclidean distances be-
tween the 3-dimensional positions of the POI in each static
posture with emotion em and the 3D positions of POI of
the keyframes in the motion primitive Mc,n with the func-
tion GetDist and returns the least sum of Euclidean dis-
tances. Next, Algorithm 2 ranks the least sum of Euclidean
distances from each emotion and computes an exponential
weighting for each emotion based on its ranking and the
Euclidean distance. Lastly, Algorithm 3 estimates the AV
values of the motion primitives with the weights found and
the AV values in Table 1. Figure 7 shows keyframes from
motion primitives that best reflect the emotions. Figure 8
shows the estimated emotion values of all motion primitives.

Algorithm 1 Calculate the least sum of Euclidean distances
of points of interest of a motion primitive Mc,n and the
emotional static posture in SP[em]

GetLeastDiffEm(Mc,n, em)

1: for KF = 1 to |SP[em]| do
2: total← 0
3: for kf = 1 to numOfKeyframes(Mc,n) do
4: total← total + GetDist(Mc,n[kf], SP[em][KF])
5: end for
6: DIST[KF]← total
7: end for
8: return minKF(DIST[KF])

Algorithm 2 Calculate the vector of weights based on the
ranking of the Euclidean distances

GetWeightsBasedRank(distances)

1: for i = 1 to |distances| do
2: flippedDistances[i]← (

∑
j distances[j])− distances[i]

3: end for
4: sorted← sortAscending(flippedDistances)
5: meanValue← mean(flippedDistances)
6: for i = 1 to |flippedDistances| do

7: weights[i]← ek +
flippedDistances[i]

meanValue
where

sorted[k] = flippedDistances[i]
8: end for
9: for i = 1 to |weights| do

10: weights’[i]← weights[i]
∑
j weights[j]

11: end for
12: return weights’

5.1.2 The Markov Dancer Model
Suppose there is a dancer who dances with a piece of mu-

sic. At each time point, the dancer strives both to reflect
the emotion in the music and to achieve continuity of mo-
tions. We want to generate a schedule of motion primitives
by mimicking this process. To be specific, this problem is
modeled as a Markov chain, which is a generative stochastic
motion model. A separate model (Figure 9) is used for for
each category, e.g., Head. A Markov chain is used to se-
lect the motion primitives Mc,i for each schedule Sc (SHead,
. . . , SLegs). We want to generate Mc,i with the probability

Algorithm 3 Estimate AV value of Mc,n

GetActivationValence(Mc,n)

1: for emID = 1 to 6 do
2: emDiff[emID]← GetLeastDiffEm(Mc,n, emID)
3: end for
4: weights← GetWeightsBasedRank(emDiff)
5: act← 0
6: val← 0
7: for emID = 1 to 6 do
8: act← act + weights[emID] ∗ em[emID].activation
9: val← val + weights[emID] ∗ em[emID].valence

10: end for
11: act ← bound(act, -1, 1)
12: val ← bound(val, -1, 1)

Happy

Sad Angry

Surprised

Fear

Disgust

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1

Activation

 Valence
Head
Arms
Legs

Figure 8: Labeled motion primitives (AV values)

P (Mc,i|Mc,i−1, e), where e is the emotion detected at the
end of Mc,i−1. As a special case, when i = 1, we select Mc,1

according to P (Mc,1|e).
The motion primitive sequence generated by this model

should (i) be continuous, (ii) reflect the musical emotion,
and (iii) be interestingly non-deterministic. We set the prob-
ability function according to Equation 2.

P (Mc,i|Mc,i−1, e) = C · E ·N (2)

Here, we call C and E the continuity factor and emotion
factor, respectively. They are based on the transition be-
tween different motion primitives and the emotion-motion
primitive relationships. N is a constant normalizing factor.

Continuity factor : The continuity factor is designed to
encourage continuity from each motion primitive to the next.
Specifically, we want a quick and smooth interpolation from
the last key frame of the current motion primitive to the
first key frame of the next motion primitive. We denote the
minimum required time interval computed from Algorithm 4
of this interpolation by distM (Mc,i+1,Mc,i) in Equation 3.

C =
1√

2πσ2
M

exp

(
−dist2M (Mc,i+1,Mc,i)

2σ2
M

)
(3)

Here, σ2
M is a constant. The continuity factor is big when

the minimum transition time is short.
Emotion factor : The emotion foctor is designed to se-

209

Figure 9: An example of the Markov dancer model
shown with only 3 motion primitives for simplicity

lect motion primitives whose emotions are similar to the
musical emotion. We denote the (a, v) coordinate of Mc,i by
E(Mc,i), and denote the Cartesian distance between E(Mc,i)
and e on the AV plane by diste(E(Mc,i), e) in Equation 4.

E =
1√

2πσ2
e

exp

(
−dist2e(E(Mc,i), e)

2σ2
e

)
(4)

Here, σ2
e is a constant. The emotion factor is big when the

emotional difference is small. Again, e refers to the detected
emotion at the end of Mc,i−1.

5.2 Determine Interpolation Times and Tim-
ing Parameters β in Schedule of Motion
Primitives

After describing the process to select the sequence of mo-
tion primitives, we provide an algorithm to synchronize the
schedule of motion primitives with the detected beat times,
where each motion primitive in the schedule should end on
a beat time. When a motion primitive ends, we begin inter-
polating to the first keyframe of the next motion primitive.

5.2.1 Calculate Time to Interpolate Between Motion
Primitives

Algorithm 4 calculates the time needed to interpolate from
the last keyframe, Kj , of the previous motion primitive
Mc,m−1, to the first keyframe, Kl, of Mc,m, using the joint
angles Vj of Kj and Vl of Kl. Although we can interpolate
between two keyframes with maximum joint angular speeds
given the joint angles, we want the robot to dance stably. As
we do not implement the controller for the actuators of the
robot to account for dynamics, we weight the minimum du-
ration for the interpolation with a multiplier in Algorithm 4.
We define λ as the maximum time multiplier, where λ = 0.4
(e0.4 ≈ 1.5) so that the maximum time multiplier ≤ 1.5γ.
We define γ for each category (Table 2). E.g., we assign
a higher γ of 3 for the legs and 1.5 for the head, so that
the robot’s legs move slower than the head and the robot is
more stable at the bottom. We weighted the time multiplier
more heavily when the avgtime ≈ maxtime which implies
that all the joints move almost equally fast.

5.2.2 Calculate Timing Parameter β
The time required for each motion primitive includes the

interpolation time between two primitives computed from
Algorithm 4 and the times between the keyframes in the
motion primitive. If only one beat-time interval is insuf-
ficient to execute the motion primitive, we add subsequent
beat-time intervals until the total time offered is long enough

Algorithm 4 Calculate duration required to interpolate
from Kj to Kl

GetDuration(Kj ,Kl)

1: for JI = 1 to |Kj | do
2: time[JI]← |Vl,JI − Vj,JI| ÷MaxAngularSpeed[JI]
3: end for
4: maxTime← max(time)
5: avgTime← average(time)
6: if maxTime = 0 then
7: return 0
8: end if
9: timeMultiplier← eavgTime/maxTime∗λ ∗ γ

10: return maxTime ∗ timeMultiplier

Table 2: γ values for joint categories
Category Head Arm Leg

γ 1.5 2 3

for execution (Figure 10). To make each motion primitive
end at a beat time, we stretch the duration by increasing
the parameter, β, in each motion primitive to fill the time
interval from its starting beat time to the next beat time.
In practice, the schedule of motion primitives for each body
part is planned independently and executed simultaneously.

Figure 10: Synchronizing motion primitive with
beat times

5.2.3 Emotion For Next Motion Primitive
Motion primitives are selected sequentially and stretched

to fill a whole number of beat times. To choose the next
motion primitive, we need the emotion at the end of the
previous motion primitive. We simply estimate the emotion
at each beat time by linearly interpolating the (a, v) values,
which are computed at 15-second intervals.

6. EXECUTION
The schedule of motion primitives computed in Section 5.1

needs to be synchronized to the music based on beat times
during execution. Since there are always latency and other
differences between desired timing and real timing in robot
motion, the starting and ending times of planned motion
primitives will diverge from the plan and therefore become
totally out of phase with respect to the music. To correct
this drift, we use an adaptive real-time synchronizing algo-
rithm (Algorithm 5), which is inspired by work on real-time

210

automatic music accompaniment [12]. Here, start and end
are the two variables keeping track of ideal starting and end-
ing times of each motion primitive Mc,m. Due to the exe-
cution error, the motion Mc,m−1 will not precisely end at
its ideal ending time. Therefore, Mc,m will start whenever
Mc,m−1 ends and we recalculate the duration from the actual
real time returned by the function, getTime. The duration
is calculated so that Mc,m will end at the ideal end time.
Again, Mc,m will not actually finish at exactly this ideal end-
ing time. Therefore, Mc,m+1 will again calculate a duration
and move on. This algorithm adjusts the execution duration
of every motion primitive by updating the parameter, β, in
the motion primitive using the function updateBeta to avoid
the accumulated timing errors. updateBeta adjusts the total
time that it originally takes to execute the motion primitive
to be the same as the updated duration by changing β of the
motion primitive.

Algorithm 5 Adaptive Real-time Synchronizer

Synchronizer(Sc)

1: start← getTime()
2: for all Mc,m in Sc do
3: end← start +Mc,m.duration
4: duration← end− getTime()
5: updateBeta(Mc,m, duration)
6: execute(Mc,m)
7: start← end
8: end for

7. RESULTS
Table 3 is a contrast experiment to show how the continu-

ity and emotion factors affect the plan for a Pleased piece of
music and right arm motion primitives as an example. The
first column is the average minimum duration for the inter-
polation from one motion primitive to the next one. Smaller
numbers indicate greater continuity. The second column is
the average Euclidean distance between the emotion of the
motion primitives and the emotion of the music on the AV
plane. Smaller numbers indicate greater correspondence be-
tween the dance emotion and the music emotion. The first
row is the experimental trial, which takes both the continu-
ity and emotion factors into account, while the second and
the third row are control trials, which eliminate the continu-
ity factor and emotion factor, respectively. The fourth row
is also a control trial, which eliminates both factors and gen-
erates a random dancing plan. The results show that both
emotion and continuity factors are beneficial.

Table 3: A contrast experiment to show how conti-
nuity and emotion affect dancing plan

Trial Behavior distance Emotion distance
E and C 0.55 0.61

E 0.94 0.49
C 0.4 0.63
R 0.79 0.68

Figure 11 shows a planned schedule of motion primitives
for the RArm for a short snippet of Peaceful music whereas
Figure 12 shows a planned schedule of motion primitives the
RArm for Angry music. Figure 11 and Figure 12 plot the
music signals and beat times and we show that the planned
schedule of motion primitives corresponds to the beats.

Figure 11: RArm motion primitives schedule for
Peaceful music

Figure 12: RArm motion primitives schedule for An-
gry music

We also show that different motion primitives are selected
for Pleased music and Angry music in Figure 13. Figure 14
shows how the real-time synchronizer reduces timing errors.
The dotted line shows executed time using real-time syn-
chronizer and is a good match to the ideal time. The black
line shows the executed time without a real-time synchro-
nizer, which is totally out of phase after a minute.

Figure 15 shows snapshots of the NAO humanoid robot
dancing with a piece of Angry music. Most of these snap-
shots show the NAO robot leaning forward, the head bent
forward, and putting the arms at the side of the body. These
postures are similar to the Angry static postures collected.

8. CONCLUSIONS
We show that we can automate robot dancing by forming

schedules of motion primitives that are driven by the emo-
tions and the beats of any music on a NAO humanoid robot.
The algorithms are general and can be used on any robot.
From emotion labels given for static postures, we can es-
timate the activation-valence space locations of the motion
primitives and select the appropriate motion primitives for
emotions detected in music. We also show that we can mon-
itor the execution of the schedule of motion primitives and
compensate for any timing errors found, ensuring synchro-

211

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A

V

RArm

LArm

Legs

Head

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A

V

RArm

LArm

Legs

Head

(b)

Figure 13: Activation-Valence coordinates of motion
primitives chosen for (a) Pleased music, and (b) An-
gry music. Motion primitives visited multiple times
are drawn with slight offsets to convey their number.

nization between robot dance motions and the music.

Acknowledgments
This work is supported by a generous gift awarded to the
School of Computer Science, Carnegie Mellon University.
We wish to thank Byeong-jun Han for the comments on
music emotion recognition. We also wish to thank Somchaya
Liemhetcharat for his help on data collection and feedback
on the algorithms.

9. REFERENCES
[1] S. Bock and M. Schedl. Enhanced beat tracking with

context-aware neural networks. In Proc. Int. Conf.
Digital Audio Effects, 2011.

[2] C. Breazeal. Emotion and sociable humanoid robots.
Int. J. of Human-Computer Studies, 59:119–155, 2003.

[3] P. Ekman. Are there basic emotions? Psychological
Review, 99(3):550–553, 1992.

[4] D. Ellis. Beat tracking with dynamic programming.
MIREX Audio Beat Tracking Contest sys. desc., 2006.

[5] A. J. Eronen and A. P. Klapuri. Music tempo
estimation with k-nn regression. Trans. Audio, Speech
and Lang. Proc., 18(1):50–57, 2010.

30 40 50 60 70 80
30

40

50

60

70

80

90

The ideal time(s)

E
xe

cu
te

d
tim

e
(s

)

with synchronizer
without synchronizer

Figure 14: Executed time difference: with a real-
time synchronizer (RTS) vs. no RTS

Figure 15: Video keyframes of NAO humanoid robot
dancing with Angry music

[6] M. Goto. A study of real-time beat tracking for
musical audio signals. Ph.D. thesis, 1998.

[7] B. Han, S. Rho, R. Dannenberg, and E. Hwang.
SMERS: Music emotion recognition using support
vector regression. In ISMIR’09, pages 651–656, 2009.

[8] G. Kim, Y. Wang, and H. Seo. Motion control of a
dancing character with music. In IEEE/ACIS Int.
Conf. Comp. Info. Science, pages 930–936, 2007.

[9] T.-h. Kim, S. Park, and S. S. Y. Rhythmic-motion
synthesis based on motion-beat analysis. ACM
Transactions on Graphics, 2003.

[10] R. Kirby, R. Simmons, and J. Forlizzi. Modeling affect
in socially interactive robots. In Proc. Int. Symp.
Robot Human Interact. Comm., pages 558–563, 2006.

[11] H. Lee and I. Lee. Automatic synchronization of
background music and motion. Computer Graphics
Forum, 24:353–362, 2005.

[12] D. Liang, G. Xia, and R. Dannenberg. A framework
for coordination and synchronization of media. In
Proc. Int. Conf. New Interfaces Musical Expr., 2011.

[13] S. Nakaoka, S. Kajita, and K. Yokoi. Intuitive and
flexible user interface for creating whole body motions
of biped humanoid robots. In IEEE Int. Conf.
Intelligent Robots and Systems, pages 1675–1682, 2010.

[14] J. Oliveira, L. Naveda, F. Gouyon, M. Leman, and
L. Reis. Synthesis of variable dancing styles based on
a compact spatiotemporal representation of dance. In
IEEE Int. Conf. Intelligent Robots and Systems, 2010.

[15] T. Shiratori, A. Nakazawa, and K. Ikeuchi.
Dancing-to-music character animation. Computer
Graphics Forum, 25:449–458, 2006.

[16] R. E. Thayer. The Biopsychology of Mood and
Arousal. Oxford University Press, New York, 1989.

212

