
The MUSART Testbed for Query-By-Humming Evaluation

Roger B. Dannenberg, William P. Birmingham, George Tzanetakis, Colin Meek, Ning Hu, Bryan Pardo
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1-412-268-3827
rbd@cs.cmu.edu

Department of Electrical Engineering and
Computer Science

University of Michigan
Ann Arbor, MI 48109-2110

+1-734-936-1590
wpb@eecs.umich.edu

Abstract

Evaluating music information retrieval systems is
acknowledged to be a difficult problem. We have
created a database and a software testbed for the
systematic evaluation of various query-by-humming
(QBH) search systems. As might be expected,
different queries and different databases lead to wide
variations in observed search precision. “Natural”
queries from two sources led to lower performance
than that typically reported in the QBH literature.
These results point out the importance of careful
measurement and objective comparisons to study
retrieval algorithms. This study compares search
algorithms based on note-interval matching with
dynamic programming, fixed-frame melodic contour
matching with dynamic time warping, and a hidden
Markov model. An examination of scaling trends is
encouraging: precision falls off very slowly as the
database size increases. This trend is simple to
compute and could be useful to predict performance
on larger databases.

1 Introduction
The MUSART project is a collaboration between the University
of Michigan and Carnegie Mellon University. Together, we
have been exploring the design of query-by-humming systems
(Birmingham, et al., 2001; Hu & Dannenberg, 2002; Meek &
Birmingham, 2002; Pardo & Birmingham, 2002; Shifrin, et al.,
2002). We have developed a variety of algorithms based on
Markov models, hidden Markov models, and contour
matching. In addition, we have implemented several versions
of note sequence matching algorithms using dynamic
programming.
As our research progressed, it became expedient for project
members to adopt their own data and methods. As we
developed and implemented search algorithms, we also
created new signal-analysis software, collected new queries,

added files to our databases, and improved our theme-
extraction software. With so many variables, it was simplest to
hold constant a collection of data and programs in order to
focus on one or two experimental variables.
After following these procedures for a year or two, we found it
increasingly difficult to compare systems. They had simply
become incompatible. We feel that this state of affairs in our
microcosm mirrors the state of the field in general. (Downie,
2002; Futrelle & Downie, 2002) Many results are published
(Ghias, et al., 1995; McNab, et al., 1996; Pauws, 2002), but
evaluation is difficult, and results are not comparable.
To remedy this situation, at least in our own research project,
we created a general testbed that is capable of hosting all our
work on content-based retrieval. The testbed includes
collections of queries, target data, analysis software, and
search algorithms. We have integrated several of our research
systems into this testbed and are able to compare the systems
objectively. Some of our data can be shared, and we can also
evaluate algorithms for other researchers using our testbed.
In the next section, we describe the architecture of our testbed.
Then, in Section 3, we describe three different search systems
we have studied. In Section 4 we present some results of our
algorithm comparisons. Section 5 discusses the general
sources of error we observed. In Section 6, we discuss the
issue of search performance as we scale to larger databases.
Section 7 presents some discussion and conclusions.

2 The Testbed Architecture
The MUSART testbed is hosted on a Linux server and relies on
scripts written in Python to conduct experiments. The use of
Python makes it easily portable to other operating systems.
Our goal is that complete tests should run from start to finish
without manual intervention. A typical test starts with a
collection of audio queries, a database of target MIDI files,
and a variety of programs to process audio, process MIDI, and
search the database. The output of a test includes statistical
information about the search results in text and graphical plot
formats. All input and output data can be viewed using a web
browser so that researchers (currently in Pennsylvania,
Michigan, and Washington) can have convenient access to all
results from all tests.
In order to support different systems, including various
preprocessing stages, we adopted the model shown in Figure 1.

Permission to make digital or hard copies of all or part of this work for
personal of classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. 2003 The Johns Hopkins
University.

*Published in: Baltimore, Maryland, USA, October 2003.
Baltimore: Johns Hopkins Univeristy, 2003. pp. 41-50.

Proceedings of the Fourth International Conference on Music Information Retrieval,

*

In this model, the input to the system consists of “queries”
(generally an audio recording of someone singing a melody)
and “targets” (generally MIDI files to be searched). We have a
number of collections of queries and targets, which we store in
a hierarchical directory structure. For any given test run, we
describe the queries and targets of interest as lists of filenames.
This allows us to reproduce our results even if new files are
added to the database.

Queries Targets

Query
Repr.

Target
Repr.

Search
Results

preprocess preprocess

Compare

Query
Collections

(lists)

Target
Collections

(lists)

Search
Algorithms

Query-To-Target
Answer Key

Figure 1: Architecture of the Musart Testbed.

In addition to queries and targets, we have intermediate
representations. For example, most search systems convert
queries to transcriptions stored as MIDI files or to pitch
contours stored as data in text files. We usually use the
“Thematic Extractor” to obtain themes from target MIDI files
and search the themes rather than the full MIDI target file. Our
scripts will automatically generate these intermediate
representations if possible. It is also possible to import
intermediate representations as files when their construction is
not fully automated.
Our system needs the correct target(s) for each query to
evaluate search performance. We keep a file for each query
that lists all the correct targets, since there may be several
versions of a song in the database, appearing as several
different targets. When reporting rank order, we report the
lowest ranking correct target.
Tests of search systems are saved in a “results” directory.
Search programs take one query and a list of targets, and
generate “match scores” indicating how well the query
matches the target. The test script collects the results and sorts
them to calculate the rank order of the correct target. The
script produces an easy-to-parse text output summary for
further analysis. The output includes:
• The name of the queries collection file
• The name of the targets collection file
• The search algorithm and any command line options used
• The query preprocessor and any command line options

used
• For each query: the match score for each target and the

rank order of the correct target.
• Statistics: mean rank, average deviation, standard

deviation, and a histogram of ranks.

The output format assumes full searches in which the query is
compared to every target in the database, but it would be
relatively simple to change this assumption and return less
information.

3 Description of search systems
The primary goal of our testbed is to enable objective
comparisons between different search methods. We have
focused on our three best-performing algorithms. The first
applies dynamic programming string-matching algorithms to
match sequences of pitch intervals and IOI ratios. The second
applies dynamic time warping algorithms to compare melodic
contours. The third uses a hidden Markov model to account
for differences between queries and targets. We report results
from the best configurations of our algorithms. With two
query transcription systems, two theme finders, and many
variations in the search algorithms, the space of possibilities is
quite large.

3.1 Note-Interval, Dynamic Programming Search

The Note-Interval system relies on a query transcriber to
estimate note onset times and pitches in audio queries. Both
targets and queries are then transformed into sequences of
note-intervals, each of which consists of a pitch interval and a
rhythmic interval. Pitch intervals are quantized to the half-step
and range from –12 to +12 half steps. Rhythmic intervals are
represented as one of five log-spaced Inter Onset Interval
Ratio (IOIr) values (Pardo & Birmingham, 2002). This
encoding is both tempo-invariant and transposition-invariant.
Once encoded, targets are ranked by similarity to the query.
Similarity is given by the minimum cost of transforming a
target into the query using three editing operations: insert a
note-interval, delete a note-interval, and substitute a note-
interval in the query for a corresponding one in the target.
(Pardo & Birmingham, 2002; Pardo, Birmingham, & Shifrin,
2003) Both insertion and deletion are fixed-cost operations.
The reward (or cost) of substituting a query note-interval for a
target note-interval is based on the similarity of the note
intervals. Reward decreases exponentially with distance in
either IOIr or pitch-interval.

3.2 Melodic-Contour, Dynamic Time Warping Search

The melodic-contour matcher is based on the idea that while
pitch estimation is not too difficult, segmentation into notes is
very difficult and error prone. A segmentation error
corresponds to a note insertion or deletion in note-based
approaches, and at least in some cases this seems to be a major
source of errors. In the melodic-contour approach (Mazzoni &
Dannenberg, 2001), time is divided into equal-length frames
and the fundamental frequency of the query is estimated in
each frame. Similarly, the target melody is split into equal-
length frames, ignoring note boundaries. Dynamic time-
warping is used to find a good alignment of the query to the
target. Transposition is handled by folding all pitches into one
octave and running each search with 24 different quarter-step
transpositions. The primary difference between this matcher
and the Note-Interval matcher is that this one aligns equal-
duration frames rather than notes. Furthermore, the contour
representation is not invariant to transposition or tempo
change.

3.3 Hidden Markov Model Matching

Johnny Can’t Sing (JCS) (Meek & Birmingham, 2002a; Meek
& Birmingham, 2002b) is a hidden Markov model matcher
that uses a distributed state representation to model both
“cumulative” and “local” error. This means that, like the note-
interval approach, JCS explicitly models changes in tempo
and pitch-center, and like the melodic-contour approach,
models errors that have a purely local effect on the pitch and
rhythm of the query. A note-based approach, we incorporate
the notion of fragmentation and consolidation (Mongeau &
Sankoff, 1990), but the state model also supports arbitrary
gaps in the query and target with low probability.

4 Results of Comparisons
We have conducted tests with different sets of queries and
databases. In all of the work reported here, there were no
special instructions for singers (such as singing “ta ta ta”) and
all targets are fully polyphonic MIDI files which are
automatically processed to extract themes. The first set of
queries is relatively high in quality, meaning that the queries
follow the melody and rhythm of the target song, and the
recordings are of good quality (i.e., no drop outs or extraneous
noise). We have found in previous studies that our algorithms
perform quite well when the queries are high quality. We also
collected new, larger sets of queries of lower quality, and
found that, with these, the search performance of all
algorithms was much worse. Below, we compare these sets of
queries. We then compare our three algorithms.
All of our algorithms return an ordered list of targets, from
best match to worst. The rank of the correct answer within the
list is also computed. To summarize performance, we count
the percentage of answers at rank = 1, rank ≤≤≤≤ 2, or rank ≤ 3.
We also compute the MRR (mean reciprocal rank). The MRR
is the average value of 1/rank, a value in the range 0 to 1, with
higher numbers indicating better performance. To simplify
reporting, we scale the MRR to the range 0 to 100.

4.1 The “High-Quality” Queries

Five queriers, two musically trained, sang controlled excerpts
from ten well-known folk songs, yielding a database of 160
queries. The HMM search system was tested against a massive
database of 10,000 synthetically generated targets with a mean
length of 40 notes (plus the ten folk-song targets used in the
queries) in order to test scalability, given queries collected in
ideal circumstances. The singers were – for the most part –
familiar with the folk songs, and sang only contiguous
portions of those songs. Using the full HMM model, 59 out of
80 queries (the other 80 were used for training) returned
correct targets ranked first, with an MRR value of 76. The
distribution of ranks is shown in Figure 2. For the remaining
data sets, JCS is used with default parameters, with no training.
The point of this test is to establish that good performance can
be obtained under reasonable conditions, namely that queries
are fairly in-tune sub-sequences of the targets. In the next
section, we will see that performance is highly dependent
upon queries and databases. This is one of the reasons that our
testbed is so important for our research.

5%

9%

5%
8%

74%

1

2-10

11-100

101-1000

1001-10000

Figure 2: Distribution of ranks for the HMM search algorithm

on "high quality queries”.

4.2 The “Ordinary” Queries

We have two more collections of queries that turn out to be
more difficult than the folk song queries. Query Set 1 was
collected from 10 subjects with no vocal training who were
presented 10 Beatles songs. After hearing a song once, each
singer was asked to sing the “most memorable” portion of the
piece. No instructions were given as to whether they should
sing lyrics, and subjects varied in this respect. Subjects were
free to try again, if they felt their first attempt was bad for
some reason. In many cases, subjects made more than one
attempt, so there are 131 queries in all. While most of the
queries are recognizable, many of them do not correspond
very well to the actual songs (as judged by the authors
listening to the queries). Subjects often skipped from one
section to another, creating melodic sequences that do not
exist in the actual song. It is interesting to note that these
fabricated sequences are often completely convincing and do
not seem to confuse human listeners. Many singers have mild
to severe intonation problems and many added expressive
pitch bends to their singing, which complicates note
identification. Some queries contain noise caused by touching
the microphone, and some contain bits of self-conscious
laughter and other sounds.
Query Set 2 was collected from a larger number of subjects.
As a class project, students were recruited to record 10 queries
each from volunteers, resulting in a collection of 165 usable
queries. These are all sung from memory and suffer from
many of the same problems as Query Set 1.
A preprocessing step (Meek & Birmingham, 2001) extracts
approximately 11 short “themes” from each target song in the
database. In all of our systems, search is performed by
comparing the query to each theme from a song. The
similarity rating of the best match is reported as the similarity
rating of the song. These ratings are then sorted to compute
the rank order of the correct song.
Table 1 shows the results of running Query Set 1 against a
collection of 258 Beatles songs, for which there are a total of
2844 themes. It can be seen that the matchers are significantly
different in terms of search quality. At least with these queries,
it seems that better melodic similarity and error models give
better search performance.
Table 2 shows the results of running Query Set 2 against a
collection of 868 popular songs. The total number of themes
in this database is 8926. All three algorithms performed better
on this data than with Query Set 1, even though there are

many more themes. Unlike in Table 1, where the algorithms
seem to be significantly different, all three algorithms in this
test have similar performance, with an MRR of about 30. The
Note-Interval algorithm is about 100 times faster than the
other two, so at least in this test, it seems to be the best, even if
its MRR is slightly lower.

Search Algorithm = 1 ≤≤≤≤ 2 ≤≤≤≤ 3 MRR

Note-Interval 8.4% 12.2 13.0 13.4

Melodic-Contour 15.3 19.1 21.4 21.0

Hidden Markov Model 20.6 26.7 29.0 27.0

Table 1: Percentage of correct targets returned at or below
ranks 1, 2 and 3, and Mean Reciprocal Rank (MRR) for Query

Set 1. MRR is reported on a scale from 0 to 100.

Search Algorithm = 1 ≤≤≤≤ 2 ≤≤≤≤ 3 MRR

Note-Interval 21.3% 27.1 31.6 28.2

Melodic-Contour 27.7 32.3 32.9 32.9

Hidden Markov Model 25.8 30.3 32.9 31.0

Table 2: Percentage of correct targets returned at or below
ranks 1, 2, and 3, and Mean Reciprocal Rank (MRR) for

Query Set 2.

The fact that the Note-Interval algorithm works well in this
test deserves some comment. In previous work, we compared
note-by-note matchers to contour- or frame-based matchers
and concluded that the melodic-contour approach was
significantly better in terms of precision and recall (Mazzoni
& Dannenberg, 2001). For that work, we experimented with
various note-matching algorithms, but we did not find one that
performs as well as the contour matcher. Apparently, the note-
matching approach is sensitive to the relative weights given to
duration versus pitch, and matching scores are also sensitive to
the assigned edit penalties. Perhaps also this set of queries
favors matchers that use local information (intervals and ratios)
over those that use more global information (entire contours).

5 Sources of error
We have studied where errors arise in these search algorithms.
As mentioned, the major problem is that many melodies
presented in the queries are simply not present in the original
songs. In Set 1, only about half were judged to match the
correct target in the database in the sense that the notes of the
melody and the notes of the target were in correspondence.
(See Figure 3.) About a fifth of the queries partially matched a
target, and a few did not match at all. Interestingly, about one
fourth of the queries matched material in the correct target, but
the query contained extra repetitions or out-of-order phrases.
An example is where subjects alternately hum a melody and a
countermelody, even when these do not appear as any single
voice in the original song. Another example is where subjects
sing two phrases in succession that did not occur that way in
the original song. Sometimes subjects repeat phrases that were
not repeated in the original. Ultimately, query-by-humming

assumes reasonably good queries, and more work is needed to
help the average user create better queries.

Good Match

Partial Match

Out-of-order or
repetition
No Match

Figure 3: Distribution of query problems. We judged only
about half the queries to have a direct correspondence to the

correct target.

6 Scaling to larger databases
Our experimental algorithms are computationally demanding,
so we have limited our studies to medium-sized databases.
The Beatles database used with Query Set 1 has 2844 themes
extracted from 258 songs. The database used with Query Set 2
has 8926 themes extracted from 868 songs. Themes have an
average of about 41 notes.
Regardless of the algorithm, an interesting question is always:
How do the results scale as the database grows larger? One
way to explore this question is to use the similarity scores to
simulate databases of different sizes without actually re-
running the search.
Let us assume we have a table of melodic distance scores for
Q queries and T targets: S(q,t) (where 0 ≤ q < Q, and 0 ≤ t <
T) is the distance of the best match of query q to target t. We
also have a list of correct targets C(q) for each query. Now,
suppose we want to simulate a database of size N < T for
some query q. We construct a “random” database by inserting
the correct target C(q) and N−1 random choices from the set
{0…T−1}−{C(q)}. We can compute the rank of the correct
target in such a random database R by counting how many
entries in the database have a lower score than the score for
the correct target:

rank = 1 + |{x: x ∈ R and S(q,x) < S(q,C(q))}|
This gives us the rank for a particular random database R, and
we would need to run this simulation many times to estimate
the expected rank.
In practice, we want to consider all queries (not just the single
query q) and we want results for all sizes of databases in order
to study the trend. To accomplish this, we “grow” the random
database for each query. Initially, each query’s database has
only the correct target. Then we grow each database by one
target selected randomly from the targets not yet included.
Each time we grow the database, we compute the number of
correct targets at rank 1, rank 2, etc. These numbers can then
be plotted as a function of database size as in Figure 4, which
is based on Query Set 1 and the Melodic-Contour search.

Retrieval Rates vs. Database Size

Rank<=1

Rank<=3

0

20

40

60

80

100

0 50 100 150 200 250 300

Database Size

Re
tri

ev
al

 R
at

e

Rank<=1
Rank<=2
Rank<=3
MRR

Figure 4: Number of targets ranked 1 (bottom curve), 2 or less,
3 or less (top curve), and MRR (triangles) as a function of

database size.

Note that the function becomes flat, indicating that the number
of correct answers does not fall off rapidly as the database size
increases. Various functions could be used to approximate and
extrapolate the observed data. Figure 5 shows the Rank 1
curve together with various candidate models of search
performance as a function of database size.
The simplest model is that the search procedure simply returns
a random guess. The expected number of correct results at
rank 1 is y = Q/N, where y is the number of correct targets
returned with rank 1, Q is the number of queries, and N is the
database size. This rapidly converges to zero and is a poor fit
to the data (as one would hope!). A slight modification to this
has a set of queries where the search is perfect, regardless of
database size, combined with another set of queries where the
search is ineffective and returns a random guess. The
corresponding equation is y = c+(Q−c)/N, for some constant c.
Note that in this model, the searches that really “work” are
independent of the database size. This model, labeled
“Constant+Random” in Figure 5 converges more rapidly to
the constant c than does the observed data. Another possible
model is a power-law model: y = N−p. The corresponding
curve (labeled “Power Law”) is not as “flat” as the observed
data. A function that flattens quickly is the logarithm, so we
tried two forms based on the log(N). The equation y =
Q(1−c⋅log(N)) does not conform to the observations (see the
“1−Log” curve), but the equation y = c1/log(c2⋅N) fits the data
reasonably well, albeit with two parameters (see the “1/Log”
curve). Of course, there is no proof that we can extrapolate
this function to predict behavior with larger databases, but it is
encouraging that the function decreases slowly. For example,
to reduce the number of correct results at rank 1 in this model
by half, the database size must be squared.

Scaling Models

0

20

40

60

80

100

0 200 400 600 800 1000
Database Size

Ra
nk

 1
 R

et
rie

va
l R

at
e

1-Log
Power Law
1/Log
Rank 1
Constant+Random
Random Guess

1-Log

Power Law

1 / Log
Constant+Random

Random Guess

Figure 5: Various models of database scaling with observed

data for Rank 1.

Figure 6 is similar to Figure 4, but it plots the MRR from all
three search systems using Query Set 2. This data seems to
confirm the general 1/log(N) scaling trend. At least in our
limited examples, the scaling trend seems to be independent of
the set of queries, the database, and the search algorithm.
This data shows that mean rank is not a good measure of
performance. For example, a ranker that returns the correct
answer ranked 1st half the time and ranked 100th half the time
is a better performer that one that returns the right answer
randomly between 1st and 100th, even though their mean rank
is the same. Figure 7 shows a histogram of ranks returned
from Query Set 1. There is some significant fraction of
“correctly matched” results with very low ranks, but the rest
(queries for which no good match was found) are almost
randomly distributed. The mean rank is the “center of gravity”
of this histogram, and it will obviously grow with the database
size. On the other hand, the number of low-ranking correct
targets will remain nearly constant as shown in Figure 4. In
these tests, the MRR seems to be highly correlated with the
proportion of correct answers ranked in the top two or three.

MRR

0

20

40

60

80

100

0 200 400 600 800 1000
Database Size

M
R

R
 (p

er
ce

nt
)

Melodic Contour HMM

Note-Interval

Figure 6: MRR as a function of database size for three
different search algorithms. All three follow the same general

1/Log trend.

Frequency (Rank 1 to 15)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rank

Frequency (Bin Size = 100)

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900
Rank

Note-Interval
Melodic-Contour
HMM

Figure 7: Histograms showing how correct targets are ranked
for each of the three systems using Query Set 2. The upper

histogram shows details of the first 15 ranks. The lower
histogram includes all of the data, but with large bins of 100

ranks each.

7 Summary and Conclusions
It is widely understood and agreed that better evaluation tools
are needed in the field of Music-Information Retrieval. We
have constructed a Query-By-Humming testbed to evaluate
and compare different search techniques. The testbed helps us
to organize experiments by providing explicit representations
and standard formats for queries, targets, collections (subsets
of queries or targets), preprocessing stages, search algorithms,
and result reporting. A single command can run a complete
test, including the preprocessing of data, searching for a set of
queries, and generating reports. Most of our testbed including
some of the databases is available to other researchers, and we
can also collaborate with other researchers by adding new
search systems into our testbed. Please contact the authors for
information about formats and APIs.
We have compared three algorithms for music search that
have been reported previously, but never compared in a “head-
to-head” fashion. The Note-Interval algorithm treats music as
sequences of pitch intervals and IOI ratios, and searches for an
alignment that minimizes a distance function. The Contour-
Matching algorithm, a variation of string matching, does not
segment the query into notes, but uses dynamic time-warping
to find the best match to melodic contour. The HMM
approach matches notes using a probabilistic error model
intended to account for the kinds of errors observed in queries.
The contour-matching and HMM algorithms are extremely
slow, taking on the order of 2 seconds of computation time per
entry in the database, which translates into days of runtime for

many of our tests. While this may be impractical for many
tasks, we believe it is important to discover the best search
techniques possible in terms of precision and recall. Until
quite recently, these algorithms seemed to out-perform all
faster approaches. However, at least on Query Set 2, our
current Note-Interval system delivers similar search quality
with a run time of about 0.02 seconds per entry in the database,
making it the clear winner in our comparison. Interestingly,
the HMM and contour-matching approaches do not make the
same mistakes, so returning the top choice of each is superior
to returning the top two choices of either algorithm.
Our work shows a wide range of performance according to the
quality of queries. When queries contain a reasonably long
sequence of well-sung pitches, search algorithms can be very
effective. On the other hand, when we collected queries from
general university populations (which, if anything, might be
expected to produce better queries than the overall population),
we found many queries that were very difficult to match. The
wide range in performance of our systems on different query
sets should serve as a warning to researchers: performance is
highly dependent on queries, so no comparison is possible
without controlling the query set.
Finally, we propose that the issue of scaling with database size
can be studied by simulation. Given distance or similarity
estimates between queries and targets, we can plot the
expected number of queries whose correct targets will be
ranked 1 (or in general, less than some rank k). For our
algorithms, we found that a 1/log(N) model gives a reasonable
fit to the observed data. This is encouraging because this
function becomes flat as the database size increases.

Acknowledgements
We gratefully acknowledge the support of the National
Science Foundation under grant IIS-0085945. The opinions in
this paper are solely those of the authors and do not
necessarily reflect the opinions of the funding agencies.
Thanks to Dominic Mazzoni and Mark Bartsch for initial
implementation of some testbed components. Thanks to Chee
Kiat, Crystal Fong, and David Murray for help with data
collection and analysis.

References

Birmingham, W. P., Dannenberg, R. B., Wakefield, G. H.,
Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C.,
Mellody, M., & Rand, W. (2001). "MUSART: Music
Retrieval Via Aural Queries." International Symposium
on Music Information Retrieval. pp. 73-81.

Downie, J. S. (2002). "Panel in Music Information Retrieval
Evaluation Frameworks." ISMIR 2002 Conference
Proceedings. IRCAM, pp. 303-304.

Futrelle, J., & Downie, J. S. (2002). "Interdisciplinary
Communities and Research Issues in Music Information
Retrieval." ISMIR 2002 Conference Proceedings. IRCAM,
pp. 215-221.

Ghias, A., Logan, J., Chamberlin, D., & Smith, B. C. (1995).
"Query by humming - musical information retrieval in an
audio database." Proceedings of ACM Multimedia 95. pp.
231-236.

Hu, N., & Dannenberg, R. B. (2002). "A Comparison of
Melodic Database Retrieval Techniques Using Sung
Queries." Joint Conference on Digital Libraries.
Association for Computing Machinery.

Mazzoni, D., & Dannenberg, R. B. (2001). "Melody Matching
Directly From Audio." 2nd Annual International
Symposium on Music Information Retrieval. Bloomington:
Indiana University, pp. 17-18.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L., &
Cunningham, S. J. (1996). "Towards the digital music
library: Tune retrieval from acoustic input." Proceedings
of Digital Libraries '96. ACM.

Meek, C., & Birmingham, W. P. (2001). "Thematic
Extractor." 2nd Annual International Symposium on
Music Information Retrieval. Bloomington: Indiana
University, pp. 119-128.

Meek, C., & Birmingham, W. P. (2002a). "Johnny Can't Sing:
A Comprehensive Error Model for Sung Music Queries."
ISMIR 2002 Conference Proceedings. IRCAM, pp. 124-
132.

Meek, C., & Birmingham, W. P. (2002b). Johnny Can't Sing:
A Comprehensive Error Model for Sung Music Queries
(CSE-TR-471-02): University of Michigan.

Mongeau, M., & Sankoff, D. (1990). Comparison of Musical
Sequences. In W. Hewlett, et al. (Eds.), Melodic
Similarity Concepts, Procedures, and Applications (Vol.
11). Cambridge: MIT Press.

Pardo, B., & Birmingham, W. P. (2002, , October 13-17).
"Encoding Timing Information for Musical Query
Matching." ISMIR 2002, 3rd International Conference on
Music Information Retrieval. IRCAM, pp. 267-268.

Pardo, B., & Birmingham, W. P. (2002). "Improved Score
Following for Acoustic Performances." Proceedings of
the 2002 International Computer Music Conference. San
Francisco: International Computer Music Association.

Pardo, B., Birmingham, W. P., & Shifrin, J. (2003). "Name
that Tune: A Pilot Studying in Finding a Melody from a
Sung Query." Journal of the American Society for
Information Science and Technology, (in review).

Pauws., S. (2002). "CubyHum: A Fully Operational Query-by-
Humming System." ISMIR 2002 Conference Proceedings.
IRCAM, pp. 187-196.

Shifrin, J., Pardo, B., Meek, C., & Birmingham, W. P. (2002).
"HMM-Based Musical Query Retrieval." Joint
Conference on Digital Libraries. Association for
Computing Machinery, pp. 295-300.

