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Abstract 

Evaluating music information retrieval systems is 
acknowledged to be a difficult problem. We have 
created a database and a software testbed for the 
systematic evaluation of various query-by-humming 
(QBH) search systems. As might be expected, 
different queries and different databases lead to wide 
variations in observed search precision. “Natural” 
queries from two sources led to lower performance 
than that typically reported in the QBH literature. 
These results point out the importance of careful 
measurement and objective comparisons to study 
retrieval algorithms. This study compares search 
algorithms based on note-interval matching with 
dynamic programming, fixed-frame melodic contour 
matching with dynamic time warping, and a hidden 
Markov model. An examination of scaling trends is 
encouraging: precision falls off very slowly as the 
database size increases. This trend is simple to 
compute and could be useful to predict performance 
on larger databases. 

1 Introduction 
The MUSART project is a collaboration between the University 
of Michigan and Carnegie Mellon University. Together, we 
have been exploring the design of query-by-humming systems 
(Birmingham, et al., 2001; Hu & Dannenberg, 2002; Meek & 
Birmingham, 2002; Pardo & Birmingham, 2002; Shifrin, et al., 
2002). We have developed a variety of algorithms based on 
Markov models, hidden Markov models, and contour 
matching. In addition, we have implemented several versions 
of note sequence matching algorithms using dynamic 
programming. 
As our research progressed, it became expedient for project 
members to adopt their own data and methods. As we 
developed and implemented search algorithms, we also 
created new signal-analysis software, collected new queries, 

added files to our databases, and improved our theme-
extraction software. With so many variables, it was simplest to 
hold constant a collection of data and programs in order to 
focus on one or two experimental variables. 
After following these procedures for a year or two, we found it 
increasingly difficult to compare systems. They had simply 
become incompatible. We feel that this state of affairs in our 
microcosm mirrors the state of the field in general. (Downie, 
2002; Futrelle & Downie, 2002)  Many results are published 
(Ghias, et al., 1995; McNab, et al., 1996; Pauws, 2002), but 
evaluation is difficult, and results are not comparable. 
To remedy this situation, at least in our own research project, 
we created a general testbed that is capable of hosting all our 
work on content-based retrieval. The testbed includes 
collections of queries, target data, analysis software, and 
search algorithms. We have integrated several of our research 
systems into this testbed and are able to compare the systems 
objectively. Some of our data can be shared, and we can also 
evaluate algorithms for other researchers using our testbed. 
In the next section, we describe the architecture of our testbed. 
Then, in Section 3, we describe three different search systems 
we have studied. In Section 4 we present some results of our 
algorithm comparisons. Section 5 discusses the general 
sources of error we observed. In Section 6, we discuss the 
issue of search performance as we scale to larger databases. 
Section 7 presents some discussion and conclusions. 

2 The Testbed Architecture 
The MUSART testbed is hosted on a Linux server and relies on 
scripts written in Python to conduct experiments. The use of 
Python makes it easily portable to other operating systems. 
Our goal is that complete tests should run from start to finish 
without manual intervention. A typical test starts with a 
collection of audio queries, a database of target MIDI files, 
and a variety of programs to process audio, process MIDI, and 
search the database. The output of a test includes statistical 
information about the search results in text and graphical plot 
formats. All input and output data can be viewed using a web 
browser so that researchers (currently in Pennsylvania, 
Michigan, and Washington) can have convenient access to all 
results from all tests. 
In order to support different systems, including various 
preprocessing stages, we adopted the model shown in Figure 1. 
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In this model, the input to the system consists of “queries” 
(generally an audio recording of someone singing a melody) 
and “targets” (generally MIDI files to be searched). We have a 
number of collections of queries and targets, which we store in 
a hierarchical directory structure. For any given test run, we 
describe the queries and targets of interest as lists of filenames. 
This allows us to reproduce our results even if new files are 
added to the database. 
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Figure 1: Architecture of the Musart Testbed. 

In addition to queries and targets, we have intermediate 
representations. For example, most search systems convert 
queries to transcriptions stored as MIDI files or to pitch 
contours stored as data in text files. We usually use the 
“Thematic Extractor” to obtain themes from target MIDI files 
and search the themes rather than the full MIDI target file. Our 
scripts will automatically generate these intermediate 
representations if possible. It is also possible to import 
intermediate representations as files when their construction is 
not fully automated. 
Our system needs the correct target(s) for each query to 
evaluate search performance. We keep a file for each query 
that lists all the correct targets, since there may be several 
versions of a song in the database, appearing as several 
different targets. When reporting rank order, we report the 
lowest ranking correct target. 
Tests of search systems are saved in a “results” directory. 
Search programs take one query and a list of targets, and 
generate “match scores” indicating how well the query 
matches the target. The test script collects the results and sorts 
them to calculate the rank order of the correct target. The 
script produces an easy-to-parse text output summary for 
further analysis. The output includes: 
• The name of the queries collection file 
• The name of the targets collection file 
• The search algorithm and any command line options used 
• The query preprocessor and any command line options 

used 
• For each query: the match score for each target and the 

rank order of the correct target. 
• Statistics: mean rank, average deviation, standard 

deviation, and a histogram of ranks. 

The output format assumes full searches in which the query is 
compared to every target in the database, but it would be 
relatively simple to change this assumption and return less 
information. 

3 Description of search systems 
The primary goal of our testbed is to enable objective 
comparisons between different search methods. We have 
focused on our three best-performing algorithms. The first 
applies dynamic programming string-matching algorithms to 
match sequences of pitch intervals and IOI ratios. The second 
applies dynamic time warping algorithms to compare melodic 
contours. The third uses a hidden Markov model to account 
for differences between queries and targets. We report results 
from the best configurations of our algorithms. With two 
query transcription systems, two theme finders, and many 
variations in the search algorithms, the space of possibilities is 
quite large. 

3.1 Note-Interval, Dynamic Programming Search 

The Note-Interval system relies on a query transcriber to 
estimate note onset times and pitches in audio queries. Both 
targets and queries are then transformed into sequences of 
note-intervals, each of which consists of a pitch interval and a 
rhythmic interval. Pitch intervals are quantized to the half-step 
and range from –12 to +12 half steps. Rhythmic intervals are 
represented as one of five log-spaced Inter Onset Interval 
Ratio (IOIr) values (Pardo & Birmingham, 2002). This 
encoding is both tempo-invariant and transposition-invariant. 
Once encoded, targets are ranked by similarity to the query. 
Similarity is given by the minimum cost of transforming a 
target into the query using three editing operations: insert a 
note-interval, delete a note-interval, and substitute a note-
interval in the query for a corresponding one in the target. 
(Pardo & Birmingham, 2002; Pardo, Birmingham, & Shifrin, 
2003) Both insertion and deletion are fixed-cost operations. 
The reward (or cost) of substituting a query note-interval for a 
target note-interval is based on the similarity of the note 
intervals. Reward decreases exponentially with distance in 
either IOIr or pitch-interval. 

3.2 Melodic-Contour, Dynamic Time Warping Search 

The melodic-contour matcher is based on the idea that while 
pitch estimation is not too difficult, segmentation into notes is 
very difficult and error prone. A segmentation error 
corresponds to a note insertion or deletion in note-based 
approaches, and at least in some cases this seems to be a major 
source of errors. In the melodic-contour approach (Mazzoni & 
Dannenberg, 2001), time is divided into equal-length frames 
and the fundamental frequency of the query is estimated in 
each frame. Similarly, the target melody is split into equal-
length frames, ignoring note boundaries. Dynamic time-
warping is used to find a good alignment of the query to the 
target. Transposition is handled by folding all pitches into one 
octave and running each search with 24 different quarter-step 
transpositions. The primary difference between this matcher 
and the Note-Interval matcher is that this one aligns equal-
duration frames rather than notes. Furthermore, the contour 
representation is not invariant to transposition or tempo 
change. 



3.3 Hidden Markov Model Matching 

Johnny Can’t Sing (JCS) (Meek & Birmingham, 2002a; Meek 
& Birmingham, 2002b) is a hidden Markov model matcher 
that uses a distributed state representation to model both 
“cumulative” and “local” error. This means that, like the note-
interval approach, JCS explicitly models changes in tempo 
and pitch-center, and like the melodic-contour approach, 
models errors that have a purely local effect on the pitch and 
rhythm of the query. A note-based approach, we incorporate 
the notion of fragmentation and consolidation (Mongeau & 
Sankoff, 1990), but the state model also supports arbitrary 
gaps in the query and target with low probability. 

4 Results of Comparisons 
We have conducted tests with different sets of queries and 
databases. In all of the work reported here, there were no 
special instructions for singers (such as singing “ta ta ta”) and 
all targets are fully polyphonic MIDI files which are 
automatically processed to extract themes. The first set of 
queries is relatively high in quality, meaning that the queries 
follow the melody and rhythm of the target song, and the 
recordings are of good quality (i.e., no drop outs or extraneous 
noise). We have found in previous studies that our algorithms 
perform quite well when the queries are high quality. We also 
collected new, larger sets of queries of lower quality, and 
found that, with these, the search performance of all 
algorithms was much worse. Below, we compare these sets of 
queries. We then compare our three algorithms. 
All of our algorithms return an ordered list of targets, from 
best match to worst. The rank of the correct answer within the 
list is also computed. To summarize performance, we count 
the percentage of answers at rank = 1, rank ≤≤≤≤ 2, or rank ≤ 3. 
We also compute the MRR (mean reciprocal rank). The MRR 
is the average value of 1/rank, a value in the range 0 to 1, with 
higher numbers indicating better performance. To simplify 
reporting, we scale the MRR to the range 0 to 100. 

4.1 The “High-Quality” Queries 

Five queriers, two musically trained, sang controlled excerpts 
from ten well-known folk songs, yielding a database of 160 
queries. The HMM search system was tested against a massive 
database of 10,000 synthetically generated targets with a mean 
length of 40 notes (plus the ten folk-song targets used in the 
queries) in order to test scalability, given queries collected in 
ideal circumstances. The singers were – for the most part – 
familiar with the folk songs, and sang only contiguous 
portions of those songs. Using the full HMM model, 59 out of 
80 queries (the other 80 were used for training) returned 
correct targets ranked first, with an MRR value of 76. The 
distribution of ranks is shown in Figure 2. For the remaining 
data sets, JCS is used with default parameters, with no training. 
The point of this test is to establish that good performance can 
be obtained under reasonable conditions, namely that queries 
are fairly in-tune sub-sequences of the targets. In the next 
section, we will see that performance is highly dependent 
upon queries and databases. This is one of the reasons that our 
testbed is so important for our research. 
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Figure 2: Distribution of ranks for the HMM search algorithm 

on "high quality queries”. 

4.2 The “Ordinary” Queries 

We have two more collections of queries that turn out to be 
more difficult than the folk song queries. Query Set 1 was 
collected from 10 subjects with no vocal training who were 
presented 10 Beatles songs. After hearing a song once, each 
singer was asked to sing the “most memorable” portion of the 
piece. No instructions were given as to whether they should 
sing lyrics, and subjects varied in this respect. Subjects were 
free to try again, if they felt their first attempt was bad for 
some reason. In many cases, subjects made more than one 
attempt, so there are 131 queries in all. While most of the 
queries are recognizable, many of them do not correspond 
very well to the actual songs (as judged by the authors 
listening to the queries). Subjects often skipped from one 
section to another, creating melodic sequences that do not 
exist in the actual song. It is interesting to note that these 
fabricated sequences are often completely convincing and do 
not seem to confuse human listeners. Many singers have mild 
to severe intonation problems and many added expressive 
pitch bends to their singing, which complicates note 
identification. Some queries contain noise caused by touching 
the microphone, and some contain bits of self-conscious 
laughter and other sounds. 
Query Set 2 was collected from a larger number of subjects. 
As a class project, students were recruited to record 10 queries 
each from volunteers, resulting in a collection of 165 usable 
queries. These are all sung from memory and suffer from 
many of the same problems as Query Set 1. 
A preprocessing step (Meek & Birmingham, 2001) extracts 
approximately 11 short “themes” from each target song in the 
database. In all of our systems, search is performed by 
comparing the query to each theme from a song. The 
similarity rating of the best match is reported as the similarity 
rating of the song. These ratings are then sorted to compute 
the rank order of the correct song.  
Table 1 shows the results of running Query Set 1 against a 
collection of 258 Beatles songs, for which there are a total of 
2844 themes. It can be seen that the matchers are significantly 
different in terms of search quality. At least with these queries, 
it seems that better melodic similarity and error models give 
better search performance.  
Table 2 shows the results of running Query Set 2 against a 
collection of 868 popular songs. The total number of themes 
in this database is 8926. All three algorithms performed better 
on this data than with Query Set 1, even though there are 



many more themes. Unlike in Table 1, where the algorithms 
seem to be significantly different, all three algorithms in this 
test have similar performance, with an MRR of about 30. The 
Note-Interval algorithm is about 100 times faster than the 
other two, so at least in this test, it seems to be the best, even if 
its MRR is slightly lower. 
 

Search Algorithm = 1 ≤≤≤≤ 2 ≤≤≤≤ 3 MRR 

Note-Interval 8.4% 12.2 13.0 13.4 

Melodic-Contour  15.3 19.1 21.4 21.0 

Hidden Markov Model 20.6 26.7 29.0 27.0 

Table 1: Percentage of correct targets returned at or below 
ranks 1, 2 and 3, and Mean Reciprocal Rank (MRR) for Query 

Set 1. MRR is reported on a scale from 0 to 100. 

 

Search Algorithm = 1 ≤≤≤≤ 2 ≤≤≤≤ 3 MRR 

Note-Interval 21.3% 27.1 31.6 28.2 

Melodic-Contour  27.7 32.3 32.9 32.9 

Hidden Markov Model 25.8 30.3 32.9 31.0 

Table 2: Percentage of correct targets returned at or below 
ranks 1, 2, and 3, and Mean Reciprocal Rank (MRR) for 

Query Set 2. 

The fact that the Note-Interval algorithm works well in this 
test deserves some comment. In previous work, we compared 
note-by-note matchers to contour- or frame-based matchers 
and concluded that the melodic-contour approach was 
significantly better in terms of precision and recall (Mazzoni 
& Dannenberg, 2001). For that work, we experimented with 
various note-matching algorithms, but we did not find one that 
performs as well as the contour matcher. Apparently, the note-
matching approach is sensitive to the relative weights given to 
duration versus pitch, and matching scores are also sensitive to 
the assigned edit penalties. Perhaps also this set of queries 
favors matchers that use local information (intervals and ratios) 
over those that use more global information (entire contours). 

5 Sources of error 
We have studied where errors arise in these search algorithms. 
As mentioned, the major problem is that many melodies 
presented in the queries are simply not present in the original 
songs. In Set 1, only about half were judged to match the 
correct target in the database in the sense that the notes of the 
melody and the notes of the target were in correspondence. 
(See Figure 3.) About a fifth of the queries partially matched a 
target, and a few did not match at all. Interestingly, about one 
fourth of the queries matched material in the correct target, but 
the query contained extra repetitions or out-of-order phrases. 
An example is where subjects alternately hum a melody and a 
countermelody, even when these do not appear as any single 
voice in the original song. Another example is where subjects 
sing two phrases in succession that did not occur that way in 
the original song. Sometimes subjects repeat phrases that were 
not repeated in the original. Ultimately, query-by-humming 

assumes reasonably good queries, and more work is needed to 
help the average user create better queries. 

Good Match

Partial Match

Out-of-order or
repetition
No Match

Figure 3: Distribution of query problems. We judged only 
about half the queries to have a direct correspondence to the 

correct target. 

6 Scaling to larger databases 
Our experimental algorithms are computationally demanding, 
so we have limited our studies to medium-sized databases. 
The Beatles database used with Query Set 1 has 2844 themes 
extracted from 258 songs. The database used with Query Set 2 
has 8926 themes extracted from 868 songs. Themes have an 
average of about 41 notes. 
Regardless of the algorithm, an interesting question is always: 
How do the results scale as the database grows larger? One 
way to explore this question is to use the similarity scores to 
simulate databases of different sizes without actually re-
running the search.  
Let us assume we have a table of melodic distance scores for 
Q queries and T targets: S(q,t) (where 0 ≤ q < Q, and  0 ≤ t < 
T) is the distance of the best match of query q to target t. We 
also have a list of correct targets C(q) for each query. Now, 
suppose we want to simulate a database of size N < T for 
some query q. We construct a “random” database by inserting 
the correct target C(q) and N−1 random choices from the set 
{0…T−1}−{C(q)}.  We can compute the rank of the correct 
target in such a random database R by counting how many 
entries in the database have a lower score than the score for 
the correct target: 

rank = 1 + |{x: x ∈ R and S(q,x) < S(q,C(q))}| 
This gives us the rank for a particular random database R, and 
we would need to run this simulation many times to estimate 
the expected rank. 
In practice, we want to consider all queries (not just the single 
query q) and we want results for all sizes of databases in order 
to study the trend. To accomplish this, we “grow” the random 
database for each query. Initially, each query’s database has 
only the correct target. Then we grow each database by one 
target selected randomly from the targets not yet included. 
Each time we grow the database, we compute the number of 
correct targets at rank 1, rank 2, etc. These numbers can then 
be plotted as a function of database size as in Figure 4, which 
is based on Query Set 1 and the Melodic-Contour search. 
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Figure 4: Number of targets ranked 1 (bottom curve), 2 or less, 
3 or less (top curve), and MRR (triangles) as a function of 

database size. 

Note that the function becomes flat, indicating that the number 
of correct answers does not fall off rapidly as the database size 
increases. Various functions could be used to approximate and 
extrapolate the observed data. Figure 5 shows the Rank 1 
curve together with various candidate models of search 
performance as a function of database size. 
The simplest model is that the search procedure simply returns 
a random guess. The expected number of correct results at 
rank 1 is y = Q/N, where y is the number of correct targets 
returned with rank 1, Q is the number of queries, and N is the 
database size. This rapidly converges to zero and is a poor fit 
to the data (as one would hope!). A slight modification to this 
has a set of queries where the search is perfect, regardless of 
database size, combined with another set of queries where the 
search is ineffective and returns a random guess. The 
corresponding equation is y = c+(Q−c)/N, for some constant c. 
Note that in this model, the searches that really “work” are 
independent of the database size. This model, labeled 
“Constant+Random” in Figure 5 converges more rapidly to 
the constant c than does the observed data. Another possible 
model is a power-law model: y = N−p. The corresponding 
curve (labeled “Power Law”) is not as “flat” as the observed 
data. A function that flattens quickly is the logarithm, so we 
tried two forms based on the log(N). The equation y = 
Q(1−c⋅log(N)) does not conform to the observations (see the 
“1−Log” curve), but the equation y = c1/log(c2⋅N) fits the data 
reasonably well, albeit with two parameters (see the “1/Log” 
curve). Of course, there is no proof that we can extrapolate 
this function to predict behavior with larger databases, but it is 
encouraging that the function decreases slowly. For example, 
to reduce the number of correct results at rank 1 in this model 
by half, the database size must be squared. 

 

Scaling Models

0

20

40

60

80

100

0 200 400 600 800 1000
Database Size

Ra
nk

 1
 R

et
rie

va
l R

at
e

1-Log
Power Law
1/Log
Rank 1
Constant+Random
Random Guess

1-Log 

Power Law 

1 / Log 
Constant+Random 

Random Guess 

 
Figure 5: Various models of database scaling with observed 

data for Rank 1. 
 

Figure 6 is similar to Figure 4, but it plots the MRR from all 
three search systems using Query Set 2. This data seems to 
confirm the general 1/log(N) scaling trend. At least in our 
limited examples, the scaling trend seems to be independent of 
the set of queries, the database, and the search algorithm. 
This data shows that mean rank is not a good measure of 
performance. For example, a ranker that returns the correct 
answer ranked 1st half the time and ranked 100th half the time 
is a better performer that one that returns the right answer 
randomly between 1st and 100th, even though their mean rank 
is the same. Figure 7 shows a histogram of ranks returned 
from Query Set 1. There is some significant fraction of 
“correctly matched” results with very low ranks, but the rest 
(queries for which no good match was found) are almost 
randomly distributed. The mean rank is the “center of gravity” 
of this histogram, and it will obviously grow with the database 
size. On the other hand, the number of low-ranking correct 
targets will remain nearly constant as shown in Figure 4. In 
these tests, the MRR seems to be highly correlated with the 
proportion of correct answers ranked in the top two or three. 
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Figure 6: MRR as a function of database size for three 
different search algorithms. All three follow the same general 

1/Log trend. 
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Figure 7: Histograms showing how correct targets are ranked 
for each of the three systems using Query Set 2. The upper 

histogram shows details of the first 15 ranks. The lower 
histogram includes all of the data, but with large bins of 100 

ranks each. 

7 Summary and Conclusions 
It is widely understood and agreed that better evaluation tools 
are needed in the field of Music-Information Retrieval. We 
have constructed a Query-By-Humming testbed to evaluate 
and compare different search techniques. The testbed helps us 
to organize experiments by providing explicit representations 
and standard formats for queries, targets, collections (subsets 
of queries or targets), preprocessing stages, search algorithms, 
and result reporting. A single command can run a complete 
test, including the preprocessing of data, searching for a set of 
queries, and generating reports. Most of our testbed including 
some of the databases is available to other researchers, and we 
can also collaborate with other researchers by adding new 
search systems into our testbed. Please contact the authors for 
information about formats and APIs. 
We have compared three algorithms for music search that 
have been reported previously, but never compared in a “head-
to-head” fashion. The Note-Interval algorithm treats music as 
sequences of pitch intervals and IOI ratios, and searches for an 
alignment that minimizes a distance function. The Contour-
Matching algorithm, a variation of string matching, does not 
segment the query into notes, but uses dynamic time-warping 
to find the best match to melodic contour. The HMM 
approach matches notes using a probabilistic error model 
intended to account for the kinds of errors observed in queries.   
The contour-matching and HMM algorithms are extremely 
slow, taking on the order of 2 seconds of computation time per 
entry in the database, which translates into days of runtime for 

many of our tests. While this may be impractical for many 
tasks, we believe it is important to discover the best search 
techniques possible in terms of precision and recall. Until 
quite recently, these algorithms seemed to out-perform all 
faster approaches. However, at least on Query Set 2, our 
current Note-Interval system delivers similar search quality 
with a run time of about 0.02 seconds per entry in the database, 
making it the clear winner in our comparison. Interestingly, 
the HMM and contour-matching approaches do not make the 
same mistakes, so returning the top choice of each is superior 
to returning the top two choices of either algorithm. 
Our work shows a wide range of performance according to the 
quality of queries. When queries contain a reasonably long 
sequence of well-sung pitches, search algorithms can be very 
effective. On the other hand, when we collected queries from 
general university populations (which, if anything, might be 
expected to produce better queries than the overall population), 
we found many queries that were very difficult to match. The 
wide range in performance of our systems on different query 
sets should serve as a warning to researchers: performance is 
highly dependent on queries, so no comparison is possible 
without controlling the query set. 
Finally, we propose that the issue of scaling with database size 
can be studied by simulation. Given distance or similarity 
estimates between queries and targets, we can plot the 
expected number of queries whose correct targets will be 
ranked 1 (or in general, less than some rank k). For our 
algorithms, we found that a 1/log(N) model gives a reasonable 
fit to the observed data. This is encouraging because this 
function becomes flat as the database size increases. 
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