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ABSTRACT

Optical music recognition (OMR) is the recognition of im-
ages of musical scores. Recent research has suggested
aligning the results of OMR from multiple scores of the
same work (multi-score OMR, MS-OMR) to improve ac-
curacy. As a simpler alternative, we have developed fea-
tures which predict the quality of a given score, allowing
us to select the highest-quality score to use for OMR. Fur-
thermore, quality may be used to weight each score in an
alignment, which should improve existing systems’ robust-
ness. Using commercial OMR software on a test set of
MIDI recordings and multiple corresponding scores, our
predicted OMR accuracy is weakly but significantly corre-
lated with the true accuracy. Improved features should be
able to produce highly consistent results.

1. INTRODUCTION

Optical music recognition (OMR) is the problem of con-
verting scanned music scores into a symbolic format such
as MIDI. The advantages of OMR for computer music ap-
plications are clear, but it has yet to be widely used in many
applications which use MIDI or MusicXML scores. Al-
though OMR has been studied extensively since the 1960s,
no OMR system has near-perfect accuracy. Commonly, the
output of an OMR system must be checked by hand and at
least a few corrections must be made, making the process
extremely time-consuming [2]. This limits the amount of
music which may be digitized, and in fact, much music is
still digitized completely by hand in sources such as the
Mutopia Project [1]. Recent research has focused on using
contextual information beyond what is present on a single
page to improve OMR results.

Recently, the Petrucci Music Library (or International
Music Score Library Project, IMSLP) [17] has become a
high-quality source of public domain music scores. The
site allows users to scan and upload scores. Therefore,
there may be several scores of the same work, which may
be musically identical, or different editions, arrangements,
or parts. There is a large discrepancy between the scan-
ning equipment each user has, along with their relative care
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in scanning, so image quality varies widely. At the time
of writing, IMSLP contains over 90,000 works, for which
there are over 300,000 uploaded scores.

Although many OMR errors are due to notational com-
plexity [2], we expect at least some mistakes to be due to
random deformation in the score, independent of the con-
tent. Then if multiple scores are available corresponding
to one piece, a consensus built from OMR applied to each
score should be more accurate than any one score. The
possibility of aligning multiple scores of the same work to
build a single result (multi-score OMR, MS-OMR) is al-
ready being explored [21].

However, scores available from IMSLP and other
sources vary widely in noise introduced in the scanning
process. Previous work on multi-recognizer OMR (MR-
OMR), where the results are aligned from several OMR
systems on the same score, has noted that a consensus re-
sult using simple voting may be worse than the result of
the best recognizer [4]. Similarly, if there are several poor
scores for a work and one good score, a MS-OMR result
may be worse than the result on the highest-quality score
alone. An MS-OMR system that correctly estimates the
quality of each score and acts accordingly should over-
come this limitation.

Formally, we want to predict some accuracy measure of
OMR, given features extracted from an image. We define
the quality of an image to be the predicted accuracy given
by our resulting model. Quality should depend on factors
such as random noise, deformation of the page, and resolu-
tion, and is expected to be correlated with OMR accuracy.
Our predicted value is mostly useful in comparisons be-
tween scores; even if the actual accuracy is on a 0 to 1
scale, a quality value learned using linear regression may
be outside this range for some scores, and so it may not
be interpretable as an accuracy value. However, even if we
evaluate multiple recognizers using the same methodology,
then we can learn a separate quality value for each recog-
nizer, and predict the best-performing recognizer for a new
score.

Clearly, the quality value gives useful information to a
MS-OMR system. We may want to throw out some scores
altogether if their quality is too low, as they may not con-
tribute much of a benefit in addition to the higher-quality
scores. As a simplification, we may only take the highest-
quality score, and perform normal OMR. If our quality
value is accurate, then this is the safest approach, because
by introducing other scores, we risk lowering the accuracy.
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This is clearly less computationally expensive than obtain-
ing and aligning multiple OMR results, but should result in
much higher accuracy than randomly choosing any avail-
able score. We consider this approach to MS-OMR in this
paper.

2. RELATED WORK

2.1 Multi-Recognizer and Multi-Image OMR

Recent research has focused on improving OMR accuracy
by aligning several OMR results and building a consensus
score. Byrd and Schindele [5] designed a multi-recognizer
OMR system which applies multiple OMR systems to the
same score, and resolves conflicts between results using
pre-defined rules. This is built on the assumption that each
OMR system will have particular situations in which it
outperforms the other systems. As OMR systems are un-
der development and their strengths and weaknesses may
change, a system is proposed which automatically learns
the performance of each system in different possible situa-
tions.

More recently, Bugge et al. [4] proposed another multi-
recognizer OMR system that resolves conflicts between
each recognizer by a simple majority vote. Scores are ex-
ported as MusicXML from each recognizer, and converted
to a custom subset of MusicXML, “MusicXiMpLe,” which
only stores the information necessary to decode note pitch
and duration.

Padilla et al. have suggested extending multiple-
recognizer OMR to align the results from multiple images
of the same score [21]. A method is proposed to profile the
response of each OMR tool to score quality, by adding ad-
ditional noise to existing scores with available ground truth
and measuring OMR accuracy.

2.2 Image Quality

Existing measures have been designed to estimate the level
of degradation present in an image due to the scanning pro-
cess. Kanungo et al. developed a local distortion model
(referred to as Kanungo noise) for binary images which is
an extension of simple salt-and-pepper noise, and uses 6
parameters [15]. The additional parameters capture the in-
creased noise near the boundary between black and white
pixels, and correlation in noise between nearby pixels.

Kanungo et al. previously estimated the Kanungo noise
parameters of a binary image of a text document [16]. The
estimation requires an ideal set of synthetic text documents
with similar font face and size to the scanned image. Given
an estimated set of parameters, each ideal image is de-
graded using the parameters. All 3x3 square patterns are
found in each degraded ideal image and the input image,
and a histogram for the count of each of 23∗3 = 512 pat-
terns is made for the degraded ideal images and the input.
A Kolmogorov-Smirnov test statistic is measured between
the cumulative distribution functions of both histograms.
This statistic is minimized using the Nelder-Mead simplex
method [19].

Additionally, prior work in OMR has focused on un-
doing global distortions present in the input image. The
level of distortion detected by these methods is another fea-
ture which should be negatively correlated with OMR ac-
curacy. For example, Fujinaga’s staff detection algorithm
[12] tries to correct bending of the staves due to page curl.
This deskewing process translates each column of the im-
age to make the staff lines more horizontal. We use the
mean vertical translation performed by deskewing as one
feature.

We may also robustly estimate the resolution of an im-
age using the distance between staff lines. Unlike the ac-
tual size of the image, this does not depend on the size
of the original page, and all symbols such as notes will
be directly proportional to the staffline distance. We use
Cardoso et al.’s robust estimated staffline distance [7] as
another feature.

3. METHODS

3.1 Data Acquisition

All available scores of Ludwig van Beethoven’s piano
sonatas were obtained from IMSLP. In total, there were
32 sonatas, with 285 different scores.

MIDI versions of several movements from the
Beethoven piano sonatas were obtained from the Mutopia
Project [1], and served as ground truth to compare with the
OMR results. The MIDI version was automatically gen-
erated from a manually transcribed LilyPond [20] source
file.

As the MIDI files are separated by movement, the
scores were also split into each movement. Therefore, each
work is defined to be a single movement of a sonata.

3.2 Score Preprocessing

The scores were preprocessed by a custom system before
extracting image quality features and performing OMR.
Our methods for rotation correction and staff and staff sys-
tem detection are described in [25].

Many scores had movements which started in the mid-
dle of the page. Therefore, the staff systems which formed
the start of each movement were labeled by hand. Our sys-
tem was used to automatically segment pages as necessary
to split the score into movements.

We kept 67 original scores from IMSLP which con-
tained an entire sonata and were not an arrangement or
other version, and had ground truth for at least one move-
ment available from the Mutopia Project. We success-
fully generated and processed 95 single-movement scores
for 16 works (single movements), belonging to 8 different
sonatas.

3.3 Image Quality Features

Kanungo parameter estimation was performed on each pre-
processed page. A page from a LilyPond-engraved score
obtained from the Mutopia Project was used as the ideal
image. Each image was scaled to a normalized staffline
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The interesting levels of describing CWMN begin with what Bellini et al (2007) call basic symbols 
(graphic elements: noteheads, flags, the letter “p”, etc.; these have no meaning by themselves) and 
composite or complete symbols (things with semantics: eighth notes with flags, beamed eighth notes, 
chords, dynamic marks like “pp” and “mp”, etc.). There is only a relative handful of basic symbols, but 
a huge number of composite symbols. Droettboom & Fujinaga comment: 

In many classification problems the evaluation metric is fairly straightforward. For 
example at the character level of OCR, it is simply a matter of finding the ratio between 
correctly identified characters and the total number of characters. In other classification 
domains, this is not so simple, for example document segmentation, recognition of maps, 
mathematical equations, graphical drawings, and music scores. In these domains, there are 
often multiple correct output representations, which makes the problem of comparing a 
given output to high-level ground truth very difficult. In fact, it could be argued that a 
complete and robust system to evaluate OMR output would be almost as complex and 
error-prone as an OMR system itself. Symbol-level analysis may not be directly suitable for 
comparing commercial OMR products, because such systems are usually “black boxes” 
that take an image as input and produce a score-level representation as output. 

Note particularly the last statement; their “symbols” are likely identical to the Bellini et al’s “basic 
symbols”, but their “score-level representation” is clearly a level above Bellini et al’s “composite-
symbol-level representation”. In fact, these problems of OMR directly reflect the intricate semantics of 
music notation. The last marked note in Figure 2(c) is a composite symbol consisting of notehead, 
stem, and flags. Its duration of a 16th note is clear just from the composite symbol. However, seeing 
that its pitch is (in ISO notation) E3 requires taking into account the four factors described under 
“Context and pitch notation” in Section 4 above. 
Instead of “basic” and “composite” symbols, many authors have spoken of low-level symbols and high-
level symbols, and we prefer the latter terminology. Table 1 lists the levels of description of CWMN 
that we have mentioned.  

Level Bellini et al. term Examples Has semantics? 
pixel --  no 
low-level symbol basic symbol noteheads, flags, the letter “p” no 
high-level symbol composite symbol 8th notes with flags, chords, 

dynamic marks “p” and “pp” 
yes 

score -- Schumann: Fantasiestücke, 
Henle ed. 

yes 

 
Table 1. Levels of description of CWMN 

5.1.2 Levels of Description and Error Rates 
Now consider Figure 12 (from Reed, 1995, p. 73). 

 
Figure 12. A minor problem at low level, but a serious problem at high level 

In this case, the high-level symbols, i.e., symbols with semantics, are the clef, time signature, notes—
64ths in Figure 12(a), 32nds in 12(b)—and slur. Each of the clef and the slur is a single low-level 
symbol. But the time signature and notes are comprised of multiple low-level symbols: for the former, 
digits; for the latter, noteheads and beams (and, in other cases, flags, accidentals, augmentation dots, 
etc.). 
Reed points out that in this example (ignoring the clef and time signature), the only problem in the 
reconstructed score is a single missing beam, and if low-level symbols are counted, 19 of 20 (95%) are 

Figure 1. This error only counts as one error under low-
level evaluation, but several under high-level evaluation, as
the length of each note is incorrect. Source: [24]

distance value of 8. Kanungo noise parameters were es-
timated using the SciPy [13] implementation of Nelder-
Mead optimization [19], as described in Section 2.2.
Nelder-Mead was run 10 times starting from a uniformly
random parameter distribution, and was stopped after 50
function evaluations each time. The resulting Kanungo pa-
rameters (ν, α0, α, β0, β, k) were used as features to pre-
dict OMR performance.

We also performed Fujinaga’s staff detection algorithm,
which skews the image to correct page curl. This gives us
the amount of page curl in the original image. We use the
mean vertical translation performed by this deskewing as
one feature, which represents the degree of distortion in the
page.

Finally, we used Cardoso et al.’s robust staffline distance
estimation method [7]. We used the staffline distance, and
the ratio of staffline thickness to distance, as two more fea-
tures. The staffline distance represents the resolution of the
image, while the thickness-to-distance ratio represents the
relative thickness of lines on the page.

3.4 OMR

The preprocessed movements were processed by the
SharpEye 2 OMR system, version 2.68. The result was
exported to MIDI.

4. EVALUATION

4.1 OMR Evaluation Methods

OMR researchers have yet to adopt any evaluation met-
ric as a common standard [6], and specialized evaluation
methods will likely be needed for most systems. We chose
as basic of an evaluation method as possible: simply com-
paring the start time of each note to the ground truth. This
still requires rests, accidentals, and other basic symbols to
be detected correctly in the usual case; it cannot detect a
too-short note followed by a too-long rest, but this partic-
ular error should be extremely rare. Although it does not
test other information like dynamic markings, we consider
these to be of secondary importance compared to the actual
notes. As we only consider the start position of each note,
and not the duration of notes and rests, our evaluation is a
further simplification of previous evaluations, which con-
sider both the start and end of notes [4, 14].

SharpEye 2 outputs a proprietary .mro format which
contains information such as the position of some individ-

ual symbols. Therefore, it is possible to conduct a low-
level evaluation if the score is labeled with the position of
each symbol. Although both values should be highly cor-
related, high-level accuracy may decrease drastically with
only a small decrease in low-level accuracy, as illustrated
in Figure 1.

Our evaluation method is considered high-level. This
allows us to use MIDI recordings from the Mutopia
Project, which only contain the actual notes, as our labeled
data. One potential issue with MIDI is that to simulate a
realistic performance, staccato notes may have a shortened
length followed by a rest for their remaining time. Our
evaluation, which only tests the start of each note, accounts
for this.

4.2 Accuracy Value

Given two aligned scores, we need to derive a single value
for the accuracy. Here, each note is represented as the time
in the score, and a pitch, and a note is correctly detected
if there is a note with the exact same values in the original
score. The OMR output may contain both false positives,
where a note is accidentally detected, and false negatives,
where a note is missing. We may calculate the precision
p, which is the proportion of true positives to all detected
notes, and the recall r, which is the proportion of true posi-
tives to all notes in the original score. The standard method
of combining these values, which we use as our accuracy
value, is the F1 score:

F1 =
2pr

p+ r

4.3 MIDI-MIDI Alignment

All MIDI files were imported into Python using
music21[8]. Next, we aligned each OMR output to the
ground truth, to correct for missing or extra measures due
to OMR errors. We noticed that LilyPond’s MIDI output
(used by Mutopia) pads a pickup measure to the length of
a full measure, while SharpEye 2’s does not. Therefore,
we align each beat rather than each measure, so that the
pickup will also be correctly aligned.

The standard alignment algorithm, used in both bioin-
formatics and computer music applications, is Needleman-
Wunsch [18, 3]. It minimizes the sum of the distance
between each aligned element of two sequences, plus a
penalty for each inserted gap. In our case, our distance
matrix has one row for each beat in the real score, and one
column for each beat in the OMR score. The distance entry
for each pair is 1 − F1 for the pair of beats, multiplied by
the maximum of the number of notes in both beats. (This is
implicitly 0 when both beats only contain rests, and the F1

score would normally be undefined.) We use a gap penalty
of 10.

After Needleman-Wunsch, we simply calculate the F1

score for the entire aligned scores, with new positions for
the notes accounting for inserted gaps. This is our OMR
accuracy value.
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Figure 2. The OMR F1 score for each movement com-
pared with the predicted accuracy, with the best-fit line.

4.4 Quality Estimation

We used a linear model to predict the OMR F1 score given
our features. We chose the Scikit-learn [22] implementa-
tion of Support Vector Regression with a linear kernel, as
it seemed to perform better than ordinary least squares lin-
ear regression. The model was validated by leave-one-out
testing on each work: for each work, a model was trained
excluding its corresponding scores, and the predicted best
score for the work was compared to the score with the
highest accuracy. Finally, we fit the model to the entire
dataset to determine the coefficients.

5. RESULTS

The OMR F1 score and predicted accuracy were weakly
but significantly correlated (R = 0.30, p = 0.0029). The
data is shown in Figure 2.

For each work, we compared the score with the high-
est OMR accuracy and the score with the highest predicted
quality using leave-one-out testing (Table 1). Six of the 16
works had a correctly predicted best score, whereas using
uniformly random guessing, the expected number of cor-
rect scores is only 2.82. The full OMR accuracy results are
presented in Table 2.

We also noted that the best few scores may all have
nearly the same high accuracy. In these cases, it is not
necessary that our top predicted score has the highest ac-
curacy, but the accuracy should be close to the highest.
For each work, we considered the mean accuracy of all
scores, which is the expected accuracy of a score selected
by random choice, the highest accuracy, and the accuracy
of the predicted best score. The mean of the expected ac-
curacy for random guessing is 0.61, and the mean of the
best accuracy (the best possible result) is 0.82, while the
mean accuracy of the best predicted scores is 0.74. The
chosen score’s accuracy was higher than expected in 14 of
16 cases. This confirms that our method reliably outper-
forms random guessing, but there is still room to improve

Work Best Pred. Best # Scores
1.1 IMSLP66390 IMSLP05524 8
1.4 IMSLP66390 IMSLP05524 7
5.1 IMSLP66394 IMSLP66394 5
5.3 IMSLP66394 IMSLP66394 5
6.3 IMSLP66395 IMSLP66395 5
19.1 IMSLP00019 IMSLP04073 6
19.2 IMSLP05545 IMSLP69581 6
20.1 IMSLP45469 IMSLP66410 7
20.2 IMSLP05546 IMSLP05546 7
23.2 IMSLP51795 IMSLP04078 3
23.3 IMSLP66412 IMSLP66412 6
25.1 IMSLP66414 IMSLP66414 6
25.2 IMSLP66414 IMSLP69588 6
25.3 IMSLP66414 IMSLP69588 6
27.1 IMSLP66416 IMSLP05553 6
27.2 IMSLP69590 IMSLP05553 6

Table 1. Accuracy predictions on the Beethoven piano
sonata test set. For each work (identified by sonata num-
ber.movement), we compare the score with the highest
OMR accuracy (Best) and the highest predicted quality
(Pred. Best).

in choosing one of the best scores.
The coefficients of our linear model (Table 3 in the ap-

pendix) are directly interpretable as the effect each pa-
rameter has on OMR accuracy. Many results were un-
expected. For example, ν represents the probability of
salt-and-pepper noise in the Kanungo model, which should
negatively affect OMR accuracy, but its coefficient is posi-
tive. However, as it is on a small scale (typically 0−0.05),
it has a smaller impact on accuracy. This result may be
due to a few outliers which had poor results for Kanungo
estimation.

The coefficient for mean skew, which is the deforma-
tion undone by Fujinaga’s deskewing, is also unexpect-
edly positive. This may indicate a flaw in our implemen-
tation, or again, outliers. We did find that staff dist is pos-
itively correlated with accuracy, as we expect that higher-
resolution scores will have better results. The coefficient is
small, but more significant as staff dist is on a larger scale
(usually at least 20).

6. CONCLUSIONS

We introduced an estimated OMR accuracy measure, and
showed that its correlation to the true accuracy is statis-
tically significant. However, the correlation is too low to
correctly predict the best-quality score a majority of the
time. On the other hand, this validates the use of features
extracted from the image to select higher-quality scores.
By refining our features and adding additional ones, we
should be able to build a practical quality estimation sys-
tem which can support multi-score OMR.

Since most of our current image features are parame-
ters for Kanungo noise, the success of the image quality
estimation is dependent on these parameters being accu-
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rate. The Kanungo estimation process is currently very
time-intensive, requiring around 2 minutes per page. Some
instances of Nelder-Mead will become stuck in a local op-
timum, so repeating Nelder-Mead even more times should
improve results. However, the time involved made this im-
practical in this case.

7. FUTURE DIRECTIONS

7.1 Image Quality Features

We only found a weak correlation between OMR accuracy
and predicted quality, and noted that the Kanungo parame-
ter estimates were noisy. Furthermore, the estimation pro-
cess is too slow to be practical for a large music library
such as IMSLP. Therefore, a better performing, faster Ka-
nungo estimation process is needed to make image quality
estimation practical.

We may be able to improve Kanungo estimation by us-
ing assumptions specific to music scores, which would al-
low us to test a much smaller area of the image. For ex-
ample, if we find all empty stretches of staff on the page,
we can concatenate some of these as the input to Kanungo
estimation. We may generate an ideal empty staff using
the estimated staffline distance and thickness. This uses a
much smaller image, and may even be more robust as dif-
ferences in typography between the ideal and input image
will not affect it.

Finally, our features only take into account errors in-
troduced in the scanning process. However, differences in
the original score, such as different fonts, should also af-
fect the accuracy of a particular OMR recognizer. Adap-
tive OMR systems [11, 23] improve their performance on
scores with a certain font and other particularities by learn-
ing from their corrected output. If an adaptive system is
trained using a homogenous set of scores with a particu-
lar font, then we may be able to extract information about
the font from its classification model. Features which have
been used for handwritten music writer identification [10]
may be useful.

7.2 OMR Evaluation

We mentioned that a small difference in low-level accu-
racy may make a dramatic difference in high-level accu-
racy. Therefore, low-level accuracy may be a more stable
value to use when performing regression. However, ob-
taining a real-world test set of a similar size with low-level
ground truth would be much more time-consuming.

Using scores from the Mutopia Project, it would be pos-
sible to modify LilyPond to output the position of each
symbol, giving us a low-level ground truth. Next, we could
apply deformations such as Kanungo noise to the output
before performing OMR. This is similar to Padilla et al.’s
proposal to add additional noise to real images from IM-
SLP to profile each OMR recognizer. However, if we start
from ideal computer-engraved images, then the parameters
we use to add noise to the image are exactly the same as
our image quality features. Therefore, we may design our
test set to cover the entire parameter space, and we can

directly learn our image quality function using regression
from the input parameters to the OMR accuracy for each
recognizer.

On the other hand, we may be able to improve our re-
sults while keeping high-level accuracy. We may obtain
a broader range of scores from IMSLP paired with MIDI
recordings from the Mutopia Project, which would provide
us with more training data. Using more data, we could
train a more sophisticated model than linear regression,
which would hopefully better predict accuracy. We noted
that a single error has a proportional effect in low-level ac-
curacy but a much bigger effect on high-level accuracy, so
high-level accuracy likely has a nonlinear relationship with
quality. Therefore, methods such as kernel SVR or random
forests may be able to capture this nonlinear relation.

We noticed that some MIDI scores were unable to be
opened by music21, and they were excluded from the anal-
ysis. This is believed to be because some note durations
cannot be unambiguously converted from a floating-point
time value back to the music-theoretic note values which
music21 uses. This should be possible to fix by using the
MIDI files in their original form, which would allow us to
include more data in our analysis.

7.3 Alignment-Based MS-OMR

Although we presented our method as a simpler alterna-
tive to existing MS-OMR systems, our image quality esti-
mate may be used in a larger system. An MS-OMR sys-
tem which aligns multiple results, as in [21], may be aug-
mented by weighting each score by its quality in the vote.
Furthermore, alignment-based MS-OMR systems require a
multiple sequence alignment, and finding the globally op-
timal such alignment is NP-complete [26]. Approximate
multiple alignment algorithms often use a series of pair-
wise alignments [9]. Recent research in aligning multiple
musical recordings or scores used a progressive alignment,
where pairwise alignments were performed sequentially on
the inputs [27, 4]. Ordering OMR results from highest to
lowest quality may work better than other orders.

We have demonstrated the usefulness of image quality
estimation in predicting OMR accuracy. A more robust
quality estimate should be useful for any MS-OMR sys-
tem. This should have a significant impact on OMR accu-
racy for large music libraries such as IMSLP.
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Work Score Accu. Qual. Score Accu. Qual. Score Accu. Qual. Score Accu. Qual. Score Accu. Qual.
1.1 00001 0.95 0.62 03796 0.70 0.79 05524 0.95 0.88 51707 0.57 Error 66279 0.70 0.75
1.1 66390 0.96 0.79 77993 0.61 0.50 90564 0.08 0.18 243106 0.84 0.83
1.4 00001 0.94 0.56 03796 0.79 0.66 05524 0.31 0.82 51707 0.37 Error 66279 0.78 0.85
1.4 66390 0.96 0.86 77993 0.62 0.70 243106 0.67 0.65
5.1 00005 0.92 0.82 02412 0.08 Error 03858 0.81 0.69 51714 0.85 Error 66394 0.96 0.83
5.1 68715 0.69 0.69 243114 0.91 0.75
5.3 00005 0.17 0.67 03858 0.49 0.46 51714 0.18 Error 66394 0.60 0.87 68715 0.47 0.71
5.3 243114 0.17 0.53
6.3 00006 0.41 0.79 03859 0.34 0.80 51715 0.40 Error 66395 0.43 0.85 68719 0.36 0.68
6.3 243121 0.10 0.80

19.1 00019 0.75 0.72 04073 0.15 0.89 05545 0.26 0.76 45370 0.26 0.62 51743 0.20 0.73
19.1 66408 0.28 Error 69581 0.72 0.62 345618 0.27 Error
19.2 00019 0.91 0.75 04073 0.84 0.74 05545 0.94 0.84 45370 0.94 0.78 51743 0.67 0.57
19.2 66408 0.98 Error 69581 0.93 0.93 345618 0.94 Error
20.1 00020 0.08 0.66 04075 0.85 0.75 05546 0.96 0.83 45469 0.97 0.52 51745 0.67 0.54
20.1 66410 0.07 0.82 69582 0.90 0.85
20.2 00020 0.95 0.59 04075 0.14 0.64 05546 0.98 0.88 45469 0.95 0.74 51745 0.79 0.50
20.2 66410 0.08 0.50 69582 0.94 0.70
23.2 03184 0.11 0.51 04078 0.46 0.70 51795 0.55 0.59
23.3 00023 0.57 0.67 03184 0.09 0.55 04078 0.38 0.72 05549 0.58 0.78 51795 0.41 0.53
23.3 66412 0.60 0.86
25.1 00025 0.97 0.52 03185 0.43 Error 04081 0.80 0.83 05551 0.96 0.76 51797 0.88 0.68
25.1 66414 0.98 0.88 69588 0.26 0.84
25.2 00025 0.84 0.73 04081 0.73 0.57 05551 0.95 0.85 51797 0.74 0.64 66414 0.99 0.68
25.2 69588 0.87 0.89
25.3 00025 0.92 0.56 04081 0.66 0.63 05551 0.96 0.79 51797 0.74 0.70 66414 0.96 0.74
25.3 69588 0.94 0.84
27.1 00027 0.88 0.75 04090 0.79 0.86 05553 0.90 0.83 51799 0.48 0.76 66416 0.91 0.81
27.1 69590 0.70 0.78
27.2 00027 0.27 0.69 04090 0.21 0.70 05553 0.27 0.75 51799 0.18 0.60 66416 0.29 0.74
27.2 69590 0.51 0.55

Table 2. OMR accuracy (F1) values for each score (by IMSLP ID), and predicted quality values.

Variable Coefficient Variable Coefficient
ν 4.2 mean skew 19.34
α0 1.7 staff dist 0.021
α 0.10 staff thick ratio 0.22
β0 −0.70
β −0.077
k −0.0026

Table 3. Coefficients of the linear model for image quality.
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