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Abstract. Digital music editing is a standard process in music production for 
correcting mistakes and enhancing quality, but this is tedious and time-
consuming. The Intelligent Music Editor, or IMED, automates routine music 
editing tasks using advanced techniques for music transcription (especially 
score alignment), and signal processing. The IMED starts with multiple  
recorded tracks and a detailed score that specifies all of the notes to be played. 
A transcription algorithm locates notes in the recording and identifies their 
pitch. A scheduling model tracks instantaneous tempo of the recorded perform-
ance and determines adjusted timings for output tracks. A time-domain pitch 
modification/time stretching algorithm performs pitch correction and time  
adjustment. An empirical evaluation on a multi-track recording illustrates the 
proposed algorithms achieve an onset detection accuracy of 87% and a detailed 
subjective evaluation shows that the IMED improves pitch and timing accuracy 
while retaining the expressive nuance of the original recording. 
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1   Introduction 

Editing allows recording engineers and producers to make incremental changes to 
audio rather than discarding a mostly-good recording and starting over. Ultimately, 
the biggest limitation of editing is the human time it takes to perform the edits. Since 
most edits simply adjust notes to achieve better rhythmic and tuning accuracy, it 
seems quite possible to automate a large fraction of the most desirable edits. This 
could lower recording costs and enable many more creative musicians to produce 
recordings with a professional sound. 

In this paper, we describe an Intelligent Music Editor (IMED) and discuss prob-
lems that arise in practice. As a highly automated and easy to use system for music 
analysis and editing, IMED is able to analyze music content by linking signal and 
symbolic representations of music. The overall strategy is to use symbolic music 
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descriptions (MIDI, for example) as a specification for the music. This specification is 
compared automatically to a multi-track recording on an instrument-by-instrument 
basis to determine deviations in the performance. As for editing automation, IMED 
can automatically manipulate music recordings, according to an automatically gener-
ated plan or user instructions, by moving notes, stretching time, correcting pitch, and 
mixing tracks. The output of the system is an edited version of the original with ad-
justments to timing, tempo, pitch, and loudness. 

On one hand, IMED offers great flexibility to musicians and editors by allowing 
recordings to be automatically refined in term of pitch, timing and dynamic level. On 
the other hand, content-based music analysis is useful for music understanding and 
retrieval. Currently, music structure labeling is performed manually. Hence, IMED’s 
analysis techniques can effectively reduce the workload of human annotators and 
would be an indispensable component of a music information retrieval system. 

2   Related Work 

An early work describing the need of intelligent audio editor was presented by Chafe 
[1]. Although the concept that an audio editor should be able to make use of music 
content was promising, the actual system was not very practical due to technical lim-
its of that time. 

Tzanetakis [2] implemented a working prototype of an intelligent editor for Jazz 
music, which provided an interactive experimentation environment for combining and 
testing content-based analysis components in the domain of Music Information Re-
trieval (MIR). 

A number of studies on score-audio alignment [3-5], structural analysis [6,7] and 
analysis-resynthesis of signals [8] have been performed. However, there has been 
little work on integrating these techniques into a platform except the former prototype 
of IMED [9]. This early work was in essence a proof-of-concept and not intended as 
for production work. The present study is the first attempt to use large-scale automatic 
editing techniques on an actual studio recording. This study raises many practical 
problems that did not arise in earlier work, which often looked at carefully selected 
data. 

3   Analysis: Score-Assisted Music Transcription 

The major task of the analysis stage is to transcribe performed music into a corre-
sponding score. In another words, the program identify notes in an audio track and 
associate them with notes in the reference score. A large number of automatic tech-
niques for music transcription have been proposed� the majority of which extract 
notes directly from music signals and seldom involve reference scores. In our case, 
the full transcription is not necessary because we have a reference score and we ex-
pect the performers to adhere closely to the score. While music transcription is still a 
largely unsolved problem, audio-score alignment is relatively easy. In IMED, this is 
accomplished in the two steps: score-assisted high-resolution onset detection and 
pitch estimation. 
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3.1   Accurate Onset Detection  

Our problem of onset detection can be summarized by the following expression:  

) MR, |T P(argmax  

We want to find the best (most likely) correspondence T between a given audio re-
cording, R, and score, M. The recording comes from a real-time performance, so it 
will naturally contain deviations from a precise rendering of the score. On the other 
hand, the score is an abstract, discrete representation of a continuous phenomenon, 
and composers expect and rely upon musicians to interpret the score with expression 
and feeling, so there will always be deviations. 

To form a correspondence between R and M, we first apply an overall global 
alignment to stay on track and then use some more refined methods at the note-by-
note level in order to achieve a high temporal accuracy. 

Score Alignment 
The essence of audio-score alignment is as follows: Audio signals are divided into 
50ms long, half-overlapping frames. Both score and audio frames are converted into 
sequences of chroma vectors [10]. A distance metric is used to measure dissimilarity 
between these chroma vectors. Finally, we employ Dynamic Time Warping (DTW) to 
find the optimal match between the two time series. Please refer to our previous work 
[4] for more detail. Each track of the multi-track recording is separately aligned to the 
corresponding part (a MIDI track or channel) in a reference score.  

 

Fig. 1. Audio-Score Alignment 

In an ensemble, not all musicians play all the time. Therefore, we need a silence 
detection process to determine segments where the musician is actually playing. Usu-
ally, this can be achieved by tracking energy of sounds and using an empirical thresh-
old to distinguish segments with low energy. Unfortunately, in most cases, especially 
for a live concert, musicians cannot be separated perfectly from each other and the 
interference among instruments is inevitable. Hence even when a musician does not 
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play anything, other sounds appear on the track and it is hard to estimate a universal 
energy threshold. To avoid this difficulty, we apply a silence alignment procedure to 
estimate dynamic level of noise. Our silence alignment procedure is basically the 
same with score alignment, but we replace the chroma vector with Short Time Energy 
(STE) and redefine the distance measure as below: 

|)()(|)1(|| audiomidaudiomid STEdSTEdwSTESTEw −×−+−×  

where the first term is difference of STE between a midi frame and an audio frame. 
The second term is difference of the first derivative of STE, which reflects dynamic 
difference between midi and audio. This definition is motivated by the phenomenon 
that for any individual note generated by a musical instrument, there is an attack part. 
An attack is extremely salient when it occurs right after a silent segment and makes a 
rapid amplitude rise in the waveform. We believe involving dynamic difference of 
STE is useful for detecting silence boundaries. 

A pitch change will definitely result in a sudden spectral change. Inspired by this 
observation, when computing dissimilarity between midi and audio frames, we take 
spectral changes between successive frames into account so as to improve temporal 
accuracy at note boundaries. In our implementation, the overall distance is defined as: 

|),(),(|)1(),( 11 −− −×−+× jjiiji RRDistMMDistwRMDistw  

where Mi stands for the chroma vector of the ith frame in a Midi, and Rj is the chroma 
vector of the jth frame in a audio recording. Dist(a,b) is Euclidean Distance between 
vector a and b. The first term corresponds to the spectral difference between midi 
frame and audio frame, while the second term can be considered as the difference of 
their first derivative. 

Once the distance measure is specified, the rest of the process is essentially a mat-
ter of searching for a shortest path through the dissimilarity matrix using dynamic 
programming. 

Bootstrap Learning for Accurate Onset Detection 
Due to the limitation of chrome feature extraction, the analysis windows size cannot 
be shorter. Hence the temporal resolution of score alignment is 25ms in our imple-
mentation. In our experience, even highly overlapped windows with a smaller hop 
size do not improve the temporal resolution of alignment results. However, 25ms is 
not precise enough for editing, so additional refinement is needed. To this end, we use 
alignment data to train an onset classifier. 

The features used for onset classification are energy, fundamental frequency, the 
relative strengths and frequency deviations of the first three harmonics, and the zero-
crossing rate. We use overlapping analysis windows of size 23.2ms (1024 samples at 
a sample rate of 44.1 kHz). The hop size is 5.8ms (256 samples), providing a high 
temporal resolution. 

Typically, onset detection systems are intended to work with a wide variety of in-
puts, and for detectors based on machine learning, one would expect to require a large 
set of hand-labeled training examples. In our system, however, it is an advantage to fit 
the detector to a particular instrument or even a particular performer. Furthermore, we 
can use alignment data rather than hand-labeled data as training data. In our previous 
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work [11], we describe a semi-supervised, or bootstrap learning approach where we 
train a classifier using alignment data. Then the classifier is used to re-label onsets, 
improving the alignment. This process is iterated until it converges, giving an accu-
rate set of onset labels as a side-effect of training the classifier. Due to space limita-
tions, we refer the reader to a previous publication [11] for details. 

3.2   Pitch Estimation 

Once musical signals are segmented into notes, the YIN algorithm [12] is used to 
estimate a pitch for each note. In YIN, an average magnitude difference function 
(AMDF) between a segment of the signal and the same segment lagged by a trial 
period is calculated. (Shown in Fig. 2(a)) The algorithm searches for a minimum 
(Point P2 in Fig. 2(a)) throughout the AMDF curve, which varies as a function of lag. 

Although this approach works well, like most pitch estimation algorithms, it suf-
fers from too low/high errors, where a longer period (P3 in Fig. 3a) or a shorter period 
(P1 in Fig. 2(a)) valley is chosen incorrectly. These valleys often occur an octave 
higher or lower than actual pitch.  

In a music performance, it is rare that a performer plays a note that is an octave 
away from a reference note in a score. This encourages us to restrict the search range 
in a small neighborhood around the reference pitch (Fig. 2(b)). Our experiments show 
that this simple method works extremely well for eliminating octave errors. 

 

Fig. 2. Pitch Estimation Algorithm 

4   Automatic Editing 

Usually, performed tracks differ from both the reference scores and each other in 
terms of note timing, durations, and tuning. This is due to differences in music inter-
pretation, limitations to human accuracy, and simply performance errors. In order to 
make tracks sound more natural and coherent, the IMED first constructs plans to alter 
the labeled notes in terms of starting time, duration, and pitch. 

4.1   Reschedule Timing and Determine Pitch 

At first, it might appear obvious how to modify note timing – simply adjust the time 
to match the time in the score. This simple approach might be useful, but in general it 
will take out the “life” of the music, making it sound mechanical or “robotic.” What 
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we want is to capture the subtle and expressive timing variation of the human per-
formers while at the same time reducing the timing differences that simply reflect 
unintentional early or late entrances and other technical difficulties.  

IMED must therefore track the overall tempo of the whole ensemble and then ad-
just each individual instrument track to match the group. We assume that tempo is 
relatively stable and drastic tempo changes do not happen. Accordingly, we can esti-
mate instantaneous tempo at a reference score position by linear regression from ac-
tual performed onset times nearby. 

To calculate the instantaneous tempo at time x in a midi track, we pick up notes, 
whose onset (based on midi time) is in the sliding window [x-T/2, x+T/2], from all 
tracks. The sliding window size T is set to 20 seconds empirically, which allows the 
linear regression procedure to span about forty beats. A linear regression procedure is 
then applied to find the least squares fit of a linear function that maps beat to time. The 
predicted onset time for beat x is simply the value of the fitted function evaluated at x  

Compared to timing, pitch determination is rather simple. A number of 
performance practices will be used by musicians for expression, such vibrato, 
glissando and portamento, during a performance. A good editor is required to retain 
these expressive effects. Therefore, instead flattening performed pitch to the pitch 
corresponding to the MIDI number in the score, we shift the whole pitch curve by an 
interval between the weighted average of the estimated pitch curve and the pitch 
derived from MIDI key number. 

4.2   Time Adjustment and Pitch Shifting 

Time stretching and pitch shifting are carried out simultaneously by a high quality 
timescale-pitch modification algorithm based on Pitch Synchronous Overlap and Add 
(PSOLA) [13]. Our implementation relies on the élastique SOLOIST 2.0 SDK by 
zplane.development [14].  

In order to avoid clicks at splice points, the whole track is edited in a continuous 
manner. Thus, if there is a phrase with several notes, we do not separate the notes, 
transform them, and splice them back together. Instead, we transform all of the notes 
using time-varying stretch factors and pitch shift amounts, allowing the PSOLA algo-
rithm to handle the details. 

Consider, however, that PSOLA is by definition pitch synchronous, so only whole 
periods can be inserted or deleted to change the duration of a note or segment of au-
dio. This means the length of output signals is not guaranteed to satisfy the requested 
stretch ratio exactly. Although differences are rather small respectively (not larger 
than one period each), accumulated errors could still affect quality of result tracks.  

To avoid accumulated quantization error, we update the stretch ratio for each note 
iteratively, treating the PSOLA algorithm as a “black box” whose next input comes 
from the ith sample in the source track and whose next output will be written to the jth 
sample of the destination track. Now, suppose when the program begins to process the 
kth note that the next note (at k+1) has onset times corresponding to samples i' and j' 
in the source and destination tracks, respectively. The stretch ratio for the kth note 

should then be 
ii
jj

−′
−′

, which will place the k+1th note as accurately as possible, 

independent of any previous quantization error. 
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5   Evaluation 

Although we have been working with many pieces of music, a detailed evaluation has 
been carried out on a recording of “Embraceable You”. The music lasts 3 minutes and 
45 seconds. The instrumentation consists of five “horn” tracks: alto saxophone, tenor 
saxophone, baritone saxophone, trumpet and trombone. The total number of notes in 
all five tracks is 1767. The performance was recorded in a studio, and all musicians 
played at the same time. There was a close microphone in front of each musician. 
There is obvious “cross-talk” between channels, but the multi-track source material 
was edited extensively by hand for a resulting compact disc. 

To measure the performance of the onset detection algorithms which include si-
lence alignment, note alignment, and bootstrapped onset detection, we run the detec-
tor on the acoustic recordings and then manually correct mistakes by moving wrong 
onset times to appropriate positions in the recording. Because the detector is based on 
score alignment, extra or missing note errors occur only when a performer played 
incorrectly. Other errors include inaccurate onset timing and note shifting, where 
onsets are correctly identified but assigned to the wrong note in the score. Because 
revising all the note onsets in recordings is too time consuming, we only correct obvi-
ous mistakes whose deviation is larger than 25ms. 

Table 1. Accuracy of onset detection 

 Trumpet Alto Sax Tenor Sax Baritone sax Trombone Overall 
Correct Onset 316 355 357 238 277 1543 
Total Onset 326 371 373 326 361 1767 
Accuracy 96.93% 95.69% 95.71% 73.00% 76.73% 87.32% 
 
Tab. 1 illustrates the overall detection accuracy. As shown, the overall accuracy is 

87%. For trumpet, alto sax and tenor sax, the accuracy is much better, with all above 
95%, showing the feasibility of annotating the music in a fully automatic fashion. 
However, the performance is not so satisfactory when IMED deals with baritone sax 
and trombone tracks. The poorer performance could be due to bass characteristics of 
these two instruments. Take the baritone sax track as an example. Most notes are 
around pitch C3 (a fundament frequency of 123Hz). Such low pitches prevent the 
program from extracting spectrum and F0 of audio signals accurately. Although a 
longer window size for spectral analysis may help to gain a better spectral representa-
tion, it will result in a low temporal resolution. Balancing the trade off between spec-
tral and temporal accuracy and improving onset detection in the bass register is an 
interesting challenge for future investigation. 

To compare the edited sound with the original recording, we conducted a subjective 
evaluation. We have three versions of the recording: an original version without any 
editing, an automatic edited version without any manual intervention, and an edited 
version based on handmade corrected onset labels. For each version, all instruments 
are mixed into one track. A subject first listens to the original version picking up prob-
lems where notes are not synchronized in the recording or where a note is played out of 
tune. Then he listens to the two edited versions and finds out whether errors are fixed. 
At the same time, he should pay attention to whether the edited sounds are natural 
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enough and retain expressive musical articulations, such as glissando, legato and so 
forth. Any additional errors in the edited versions are noted. 

A total of 58 problems were found in the original recording. There were 42 timing 
problems, 15 intonation (tuning) problems, and 1 note held too long. IMED improved 
33 of 42 timing problems, 3 remained the same, and 6 became worse. In addition, 11 
new timing problems were introduced. Of the intonation problems, 8 were improved, 
5 were rated the same, and 2 became worse. The single long note problem sounded 
worse after editing. Finally, there were 3 objectionable editing artifacts detected. 

We can say that IMED reduced the original 58 problems, to only 28 problems, cut-
ting the manual editing task by more than half. With hand-corrected timing, the main 
change is that the number of timing problems that grew worse was reduced from 6 to 
3. These numbers are encouraging, but they do not tell the whole story. Overall, the 
edited recording suffers from a loss of “crispness,” probably due to the fact that the 
main pitch- and time-shifted signals are added to the “bleed through” signals originat-
ing from the same instrument but arriving through other tracks, which are processed 
differently. This creates a chorus-like effect that generally sounds muddy and at times 
creates noticeable interference sounds. There are several solutions to this, including 
better isolation of instruments in the recording process, recording instruments one-at-
a-time, automatic attenuation of “bleed through” when the main instrument on the 
track is not playing, and noise removal techniques. 

6   Conclusions and Future Work 

In this paper, an intelligent music editor, which transcribes music recordings and 
makes adjustments to note pitch and timing in an automatic fashion, is presented. We 
believe this represents the first attempt to edit a multi-track, studio recording auto-
matically. By combining score-audio alignment with a bootstrap learning approach, 
the proposed transcription model yields an overall onset detection accuracy of 87%, 
which shows the feasibility of a fully automatic music transcription system. A time 
domain algorithm based on PSOLA is proven effective at pitch shifting and time 
stretching to achieve a natural and musical result. A subjective evaluation demon-
strated that the system automatically corrects pitch errors and adjusts timing without 
destroying the musicality of the recording. In fact, the process improves the musical 
quality of the recording as if it were edited by hand. 

Nevertheless, there is plenty of room for improvement in the editor. By working 
with real studio recordings, our work has revealed a number of practical issues that 
may guide future researchers who are interested in this new problem. 

As for score alignment, our current model based on chroma features suffers when 
pitches are low. A series of time domain features should be considered, and their 
effectiveness will be explored in our future research. In addition, it is tempting to 
align all tracks simultaneity, which helps to use timing information of coincident 
notes in other track when the detector fails to identify an onset in a bass track. Cur-
rently, IMED assumes performances are correct except for small timing and pitch 
errors, so it does not detect outright mistakes such as a missing or extra note. It should 
be possible to detect mistakes automatically and even use similar notes in the re-
cording to synthesize a performance. For example, string matching algorithms can be 
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used to detect minimal edits to “repair” a note sequence, and performance error detec-
tion has already been explored in music education systems. 
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