Following an Improvisation in Real Time

Roger B. Dannenberg Bernard Mont-Reynaud

Computer Science Department CCRMA

Carnegie Mellon University Music Department

Pittsburgh, PA 15213 Stanford University
Stanford, CA 94305

(412) 268-3827, (415) 723-4971,

arpanet: Dannenberg@C.CS.CMU.EDU BMR%CCRMA®@SAIL.STANFORD.EDU

ABSTRACT. A basic level of music understanding is required to recognize the
correspondence between jazz improvisations and their underlying chord progressions. In
this study, techniques are examined for building a computer system that can recognize
and follow a jazz solo by first deducing where beats fall in relation to the solo, and then
by using a statistical matching method to find the most likely relationship to a chord
progression.

1. Introduction

One of the most challenging aspects of advanced performance systems is the necessity to analyze
inputs from human performers, improvisers and conductors. To make intelligent decisions in a live
performance, a system must recognize abstract features of captured human gestures. On the other
hand, to be effective in a real-time situation, it must be simple enough to be amenable to some form of
incremental processing.

After briefly delineating areas in which real time programming may be compatible with music
understanding, the paper focuses on the concrete problem of following a traditional jazz improvisation
against a known chord structure.

1.1. Real-time Understanding of Music?

In humans, the formation of appropriate responses to musical stimuli draw upon a vast and complex
network of concepts, learned skills and innate behaviors that presents a formidable challenge to precise
analysis. Refined, specialized skills are required of composers, conductors, and performers, but
considerable portions of their musical competence are equally found in “naive” listeners, and even these
non-experts don't seem so naive when one looks more closely at their behavior. A full understanding of a
piece of music may require both creativity and extensive training, but it also seems fair to say that a
broadly available ability to perceive patterns at various levels of organization lies close to the heart of the
matter. At any rate, it seems that music understanding relies more heavily on pattern recognition
capabilities, and on hierarchical grouping, than it does on logical reasoning and problem-solving
techniques. It is possible that an emphasis on the latter is precisely the privilege of musical experts, who
are able to name, and to reason about, entities which naive listeners also perceive, for the most part, but
are unable to put in words.

Computers should not be expected to understand music the way humans do. But it is possible,
desirable and instructive to build systems that attempt to deal with specific aspects of musical intelligence.
By becoming more aware of both the possibilities and the limitations of such systems, one may learn how
to let people do what they do best (and/or enjoy the most) while gradually raising the level of the
computer’s involvement. Using this cooperative approach, we can foresee that even limited or imperfect
music understanding capabilities can play a role in computerized tools for musicians, and present new
opportunities for composers.

As part of the general evolution of computer systems toward intelligence, interactivity and a fuller use of
human sensory channels, the musical domain offers a fascinating array of challenges. Among these

*Published as: Roger B. Dannenberg and Bernard Mont-Reynaud, “Following an Improvisation in Real Time,” in Proceedings of
the International Computer Music Conference, Computer Music Association, (August 1987), pp. 241-248.

1987 ICMC Proceedings 241

*Published as: Roger B. Dannenberg and Bernard Mont-Reynaud, “Following an Improvisation in Real Time,” in
 Computer Music Association, (August 1987), pp. 241-248.

Proceedings of

the International Computer Music Conference,

*

figures the question of real time implementations of musical reasoning -- which may be viewed as the
construction of intelligent performer’s assistants.

Naturally, many deep, analytical aspects of music understanding are best approached by global
techniques that exclude real time implementations. However, intuitive and almost primitive aspects of the
music listening experience, such as the acquisition of a sense of tempo and beat, or the feeling for
rhythmic/metrical texture, tonal color and harmonic tension, are fundamentally time-varying “impressions”
for which it seems reasonable to seek real-time models.

1.2. The Jazz Improvization Problem

On-line pattern matching techniques can be used to follow a live performance of a given score [4, 1];
however, jazz solo improvisation calls for much variation between performances, excluding the use of
techniques based on direct score matching. Nevertheless, educated listeners seem able to perceive
enough structure in a solo to relate it to an underlying chord progression. Can a computer program
capture some essential aspects of this task?

The practical goal of this effort is to produce a program that listens to an improvised solo and joins in
the performance once the tempo and location are deduced. We assume that the player follows an
underlying chord progression which is specified in advance to the computer. To limit the scope of the
problem further, we have only considered 12-bar blues progressions. This immediately raises questions:
what styles of jazz are allowed, and what does it mean to follow a chord progression? There are no
simple answers to these questions. In general, the quality of system will be judged by how well it deals
with variations in style and by how directly the underlying chord progression must be implied by the
soloist.

1.3. Outline of Our Approach

The first author has devised a matching method that uses a set of training performances to learn some
relevant statistical patterns, and then uses a maximum likelihood technique to locate a soloist within a
given chord progression. In both the training sessions and the performance, the matcher is told when
each beat occurs.

In order to form a complete follower, the matcher needs a “foot tapper” module that deduces beat
timing. The second author had previously developed techniques which extract tempo directly from a
performance, without access to a score, by analyzing patterns of note onset times. Adapting the earlier
methods to a real-time situation, he has developed an on-line beat recognition method, based on time-
varying statistical clustering, that addresses the needs of the current problem, and presumably some
others.

These two parts of the approach are describe more fully in the next two sections, which are followed by
a discussion of our results and some concluding remarks.

2. Following the Chord Progression

Improvised solos are highly unpredictable, and thus pose a real challenge to analysis and
understanding. In trying to follow an implied chord progression, one approach is to look for a set of rules
that relate pitches or pitch sequences to underlying chords. An example, due to Peter Jansen assumes
certain intervals are never played relative to the root of a chord. The corollary is that given a pitch, we
can rule out certain chords. In many cases, after a short sequence of pitches, all but one chord is
eliminated. This is especially true in the case of 3-chord, 12-bar blues, since there are only 3 choices of
chords in the first place. This technique actually worked very well on some test data, but we found that it
breaks down when the least bit of chromaticism is allowed in the solo.

After basically positive alth'ough limited results with a rule-based approach, better rules were sought.
Some data was collected and studied for patterns in the pitches of specific intervals (e.g. a half step might

242 1987 ICMC Proceedings

imply a leading tone), pitches of agogic accents, and other features. It was hoped that a set of features
could be found that would serve to bring reliable information into focus.

Surprisingly, no reliable rules were found. Although we beleive further investigation of this approach is
warranted, we turned our attention to a more statistical approach. Rather than looking for a few pitches in
which information is concentrated, we attempt to gather a small amount of information from each and
every pitch of the solo.

2.1. The “Correlation” Technique

The statistical method assumes that at different beats within a 12-bar blues progression, different
pitches will predominate. In other words, at beat 1 we expect to see a certain probability distribution of
pitches which may be entirely different from the probability distribution at beat 20. For our experiments
with blues progressions, we wrote software to collect data from actual solos to tell us, for each eighth note
in the 12 bar progression, what is the probability of each pitch-class. The data is stored in a 96 (eighth
notes) by 12 (pitch classes) matrix.

With the data, we can see how well a solo corresponds to the measured distribution by a simple
algorithm: take the product of the probability of each note in the solo, where the probability is the value of
matrix element corresponding to the pitch class and location of the solo note.

More formally, the computation is
n-1

Hmb mod 96, Sp
b=0

where my, o is the probability of pitch class p on (eighth-note) beat b, where s, is the pitch class played
during beat b, and where n is the length of the solo in eighth-note beats.

The actual implementation differs slightly from this mathematical description. Rather than storing
estimated probabilities in m, cummulative times are stored. Thus, if a C (pitch class 0) is played during
beat 10 on 6 repetitions of the chord progression (choruses) and the length of the eighth note is 0.25
seconds, then My00 would be 1.5. In practice, no solo is going to make pitch changes exactly on the beat
or hold notes through the beat. Therefore, the values in m reflect fractions of beats. If a C is played for
only 0.05 seconds of beat 10, then that contributes 0.05 to the value of m,,,. Finally, even though
probability theory tells us that we should multiply probabilities here, it was discovered that addition works
just as welll The result is no longer a number between 0 and 1, but here we are only interested in relative
rather than absolute likelihood.

This method for computing the likelihood of a solo given a distribution can be used to determine how
the solo relates to the underlying chord progression. Let

n-1

L=Y Mty mod 9,5
b=0

Notice in this formula that the first subscript of m is shifted by i. This effectively “shifts” the probability
table m as in a correlation computation. L; estimates the likelihood that solo s starts on beat / of the
progression. Figure 2-1 plots a typical L; for i ranging from 0 to 100. Note that L; is periodic with a period
length of 96. (The redundant points were plotted to show the peak more clearly.) This graph clearly
shows that the best correspondence between the solo and m occurs at offset 0 (or 96). Since the second
half of every 4 bars returns to the tonic it is not surprising to see smaller peaks every 4 bars in the graph.

1987 ICMC Proceedings 243

r
N
o}
o
o

A & A
A O ©
Q O O
© O O
Q © O

H
N
o
o
Qo

1

400000 1l0 20 30 40 50 60 70 80 90 100

Offset (Eighth Notes)
Figure 2-1: Correspondence between solo and the probability
distribution at different offsets.

2.2. Real Time Strategies

Since our goal is to follow an improvisation in real time, we want a likelihood estimate L;, which is
updated on each new beat b. To track the improvisation, we want to weight recent data more heavily
than older data, so some sort of windowing strategy must be used.

Exponential and square windows are attractive because they allow L; , to be computed incrementally.
For the exponential window, we have L;, = cL;, 1 +Mg, 1 mog 96,5, where c is a decay constant slightly
less than 1. For a square window, we have L;, = L; , 1 +M (1) mod 96,5,~ Li p-u» Where wis the width of the

,sb
window. Our experiments have shown that the exponential formulation does not work well, probably

because it uses the probability table m non-uniformly. A square window with width 96, the size of the
table m, appears to work better.

We are currently implementing a real-time follower based on this strategy. At any given beat, the
maximum value for 0<i <95 of L;;, should indicate where the soloist is relative to the 12-bar blues chord

progression. The follower will use beat information from another module which is described in the next
section.

3. Following the Beat

In order to follow a blues solo, one needs a “beat follower” capable of counting, say, 8th notes in
approximate synchrony with the performance. If such a “tracking metronome” can be designed, it will
provide a handle on a closely related family of tasks woven around tempo tracking.

We should note the relation between foot-tapping, a naive skill that operates on the fly, and music
transcription, an expert skill which requires multiple passes in all but trivial examples. Intuitive tapping
provides an initial and approximate time-map which a transcriber must then re-examine, gaining
robustness at the expense of real-time operation, by bringing in a more global view of a piece, section or
phrase. A mature transcription system ought to be sensitive to most important aspects of musical
context. Such a degree of musical understanding cannot be expected of a real-time foot-tapper, as
discussed in the rest of this section. The reader is referred to [5, 6, 3, 2]for further discussions of music
transcription.

244 1987 ICMC Proceedings

3.1. Why is Beat Tracking a Problem?

For some musical styles, beat tracking is not an issue, but we are concerned here with the common
situation where the precision and regularity of occurrence of musical events cannot be counted on with
any certainty.

The first difficulty comes from inexact (non-mechanical) timing, possibly resulting from expressive
performance, sloppy performance, or inaccurate collection of timing data. A quasi-periodic sequence of
onset times can be smoothed by treating the successive durations as the sum of a relatively slowly-
moving beat duration, and uninterpreted “timing jitter”. (Note: in this paper, we ignore note releases, and
call “durations” the differences between onset times in a single melody. Square windows, which require
a memory buffer, and exponential windows, which do not, are the two averaging techniques most
adapted to real-time implementation.

The second difficulty is that the sequence of onset times is not even quasi-periodic. Even though there
are passages of running eighth notes, most music is made of a mixture of note values. Thus, one must
quantize durations by rounding to an integer multiple of a specific metrical unit. The simplest approach is
to keep the quantization level constant throughout. But a good transcriber doesn’t, and perhaps an
intelligent real-time beat tracker should not necessarily stick to a fixed level of quantization. If the level is
too large, e.g. quarter notes, the frequent use of finer divisions (8ths) may confuse an adaptive tracker
that seeks to readjust its tempo continuously. If the level is too small, e.g. 16th notes, the risk of rounding
to the wrong side gets very high. The level of 8th notes has been selected as the correct compromise
unit for quantization in the present context, but the inherent ambiguity involved in quantization remains an
intrinsic characteristic of the problem.

There are further sources of difficulty, including grace notes, which do not fall squarely within a metrical
framework, and notes that result from artifacts of data collection, such as spurious firings of a front-end
pitch detector. Dealing with different difficulty types requires different techniques which each pull in their
own directions, and the true design challenge for a beat tracker is to find a proper balance between the
various defensive measures.

3.2. A Simple Real-time Foot-Tapper

The following beat tracking method has been devised after a certain amount of experimentation, and
considering several more complex schemes, including multiple parallel trackers. First, we choose to track
8th notes. A different choice might be made for a differnt musical style.

The state of a beat tracker is represented by five numbers (T, B, S, W, D) as follows. The real T and
integer B represent the time, in seconds, and metrical position, in beats, of the most recent established
position. The reals S and W yield the current beat value D = S/W. The reason we use a homogeneous
coordinate system for the current beat value, rather than a single number, is that the two numbers S and
W allow one to keep running statistics: S is the running sum of beat durations, and W is a running weight.
We actually use a redundant representation where the exact invariant is S = W * D. (The number S could
be omitted from the state)

The beat tracker, or predictor, in the state (T, B, S, W, D) is essentially a way to expect, or predict,
events at metrical times B+1, B+2, ... and physical times T+D, T+2*D, ..., where D = S/W. There are two
main algorithms, one to create a predictor and install its initial state, and the other to adjust the predictor
so it keeps tracking notes as they come. Any additional processes which need to be synchronized with
the beat tracker, can simply schedule themselves out of the predictor state, which is globally available.
This allows one to perform particular actions on every beat, or at fractions or muitiples of beats, but this is
independent of the tracker proper.

We need some terminology. We say that D1 is much shorter than D2, denoted D1 << D2, if (D1 * a +
b) < D2. Here, a is a constant larger than 1, such as 1.1, and b is a small duration, such as .1 sec. We
say that D1 is roughly equal to D2 (D1 == D2) if neither D1 << D2 or D1 >> D2 holds. We say that a note
is “weak” if it is shorter than some absolute threshold (say .05 sec) or if it is much shorter than the

1987 ICMC Proceedings 245

preceding note. We say that a note is “healthy” if it isn't weak. We say that a note is “accented” if it
strong, and it is either the first note, or if the preceding note is substantially shorter than the note itself.
We now describe the two main algorithms, which respectively create a predictor, and update its state.

The method used for creating a predictor is to notice a “rhythmic alignment” i.e. a succession of 3
healthy notes N1 N2 N3 whose onset times T1 T2 T3 are in quasi-arithmetic progression, i.e. (T2-T1) ==
(T3-T2). The relation of N1 to N2, and N2 to N3, is that N(i+1) is either the note immediately following
N(i), or the first accented note following N(i). Among the possible choices of N1 N2 N3 one uses the first
that succeeds, as note are heard.

Since metrical time does not start counting until such an alignment is found (a first sense of beat) we
take B1 to be 0, but this is arbitrary. The state is initialized at (T1, B1=0, S=0.0, W=0.0, D) and the only
non-obvious choice is that of D, since S/W = 0.0/0.0 is currently indeterminate. The choice of the initial
beat is made by taking the average A of the two almost equal durations (T2 - T1) and (T3 - T2) and
bringing it back to near the range of an expected eight note, E, as follows: D= A/round(A/E). (If A<
E/2 so that round(A/E) = 0, we do not consider that we have an alignment). For example, if the first two
notes we see have durations .4 and .46, with the average .43, and E is .20, we start with D = .43/2, which
amounts to saying that we treat the first two notes as quarter notes. A variety of other strategies could be
designed for the initialization of a predictor, or to eliminate the (mild) dependence upon the “typical eighth
note” E, but the topic will not be considered further.

The “update” method is quite critical. It amounts to noticing a new note, and adjusting tempo
accordingly. After we notice the alignment N1 N2 N3, we set up a new predictor at N1, to notice N2 and
then N3. Thereafter, the predictor is updated on every “healthy” note. If (T, B, W, S, D) is the current
state, and T’ is the onset time of the new healthy note, let:

AT=T-T

AB =AT/D

DELTA = abs(AB - round(AB))
CONFIDENCE =1-2*DELTA
AB = round(AB)

DECAY = .9 ** (- AB)

Then the state is updated as follows:

T=T+ATie.T

B=B+AB

W =W * DECAY + AB * CONFIDENCE
S =8 * DECAY + AT * CONFIDENCE

Note that DECAY implements an exponential window over past values, at the rate of .9 per beat. Also
note that the confidence varies between 0 and 1 as the rounding error varies between its minimum and
maximum values. This de-emphasizes ambiguous matches in such a way that they do not change the
beat value much at all.

4. Resuits
Overall, the current performance of the chord follower is encouraging but not high. Ideally, assuming
the solo starts at beat 0 of the chord progression, Lo p Will be greater than any other L;ptor1<i<96. If

this were dependable, we could reliably follow the soloist. Figure 2-1 illustrates a case where this indeed
happens. The peak at zero correctly predicts the location of the soloist, but this result was obtained
without windowing.

In practice, the likelihood estimate of the “correct” answer (Lgp) using @ 12 measure (96 eighth note)
square window is virtually always one of the 10 largest likelihood values, but it is the maximum likelihood
only about 70% of the time. More research is needed to improve upon this figure.

The results of the beat follower are shown in Figs 3.1 - 3.5 (see captions).

246 1987 ICMC Proceedings

5. Summary and Conclusions

The chord progression follower introduces a new method for matching an improvised solo against a
given chord structure. The method is designed to tell us where the soloist is playing in relation to the
chords, and it also gives an indication of how closely pitch choices correspond to an expected pitch
distribution.

The beat follower has not received sufficient experimentation to evaluate its full potential. It does
appears to offer a good starting point for building a beat tracker with a broad range of applicability, which
could solve an important outstanding problem in performance following.

These modules are intended to work together to implement a rudimentary understanding of a jazz solo.
They could be used to drive an intelligent accompaniment system or used to assist in further analysis and
understanding.

In conclusion, we offer some new techniques for real-time analysis of improvised music with the goal of
following a soloist playing according to a fixed chord progression. We claim that programs based on
these techniques can exhibit at least a small degree of music understanding, consistent with real time
constraints. In the future, intelligent programs will extend the role of the computer in music and enrich the
possibilities for combined human and computer performance.

Systems that we have built [5, 6, 3, 2, 4, 1] have pointed in this direction. By continuing to build
systems like these and the one described in this paper, we accumulate knowledge and experience that
guides us along this evolutionary path.

References

1. Joshua J. Bloch and Roger B. Dannenberg. Real-Time Computer Accompaniment of Keyboard
Performances. Proceedings of the 1985 International Computer Music Conference, Computer Music
Association, 1985, pp. 279-290.

2. Chris Chafe, Bernard Mont-Reynaud, and Loren Rush. "Toward an Intelligent Editor of Digital Audio:
Recognition of Musical Constructs". Computer Music Journal 6, 1 (Spring 1982), 30-41.

3. John Chowning, Bernard Mont-Reynaud, et. al. An Intelligent System for the Analysis of Digitized
Acoustic Signals. Tech. Rept. STAN-M-15, Stanford University, 1984.

4. Roger B. Dannenberg. An On-Line Algorithm for Real-Time Accompaniment. Proceedings of the
1984 International Computer Music Conference, Computer Music Association, 1984, pp. 193-198.

5. Bernard Mont-Reynaud. Problem-solving Strategies in a Music Transcription System. IJCAI
Proceedings, 1985.

6. Bernard Mont-Reynaud and Mark Goldstein. On Finding Rhythmic Patterns in Musical Lines.
Proceedings of the 1985 International Computer Music Conference, Computer Music Association, 1985,
pp. 391-397.

1987 ICMC Proceedings 247

rwy
- A

PIANG ROLL FOR AN EXAMPLE SOLO

DURATION
DENSITY
PROFILE

20 .30 .45
SECONDS —~v—r—womenac)

Fiﬂ. 32

Fia. 3.1

CUMULATIVE) o M
DISTRIBUTION 'I“.‘
"l
'..
s
J
r
ks -
.l"' F t 3 .
o ©
v
el 18 | 14 |

13 15

17 13 21 26

248

1987 ICMC Proceedings

	ICMA_1987.pdf

