
Creating Graphical Interactive
Application Objects by Demonstration

Abstract

Brad A. Myers
Brad Vander Zanden
Roger B. Dannenberg

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The Lapidary user interface tool allows all pictorial aspects of
programs to be specified graphically. In addition, the behavior of
these objects at run-time can be specified using dialogue boxes
and by demonstration. In particular, Lapidary allows the designer
to draw pictures of application-specific graphical objects which
will be created and maintained at run-time by the application.
This includes the graphical entities that the end user will manipu-
late (such as the components of the picture), the feedback that
shows which objects are selected (such as small boxes on the
sides and comers of an object), and the dynamic feedback objects
(such as hair-line boxes to show where an object is being
dragged). In addition, Lapidary supports the construction and use
of “widgets” (sometimes called interaction techniques or
gadgets) such as menus, scroll bars, buttons and icons. Lapidary
therefore supports using a predefined library of widgets, and
dejining a new library with a unique “look and feel.” The
run-time behavior of all these objects can be specified in a
straightforward way using constraints and abstract descriptions of
the interactive response to the input devices. Lapidary generalizes
from the specific example pictures to allow the graphics and
behaviors to be specified by demonstration.

CR Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Tools and Techniques-User Interfaces; 1.3.6
[Computer Graphics]: Methodology and Techniques.

General Terms: Human Factors.

Additional Key Words and Phrases: User Interface
Management Systems, Interaction, Object-Oriented Design,
Direct Manipulation. Interaction Techniques, programming
by Example.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1989 ACM O-89791-335-3/89/001 l/O095 $1.50

Introduction

Although a number of user interface management systems
(UIMSs) support the specification and layout of menus. buttons,
sliders and dialogue boxes, few help with the creation of objects
used in application displays or with the specification of the inter-
active behaviors of these objects. The Lapidary user interface tool
aims to help with all parts of user interface design by allowing all
pictorial aspects of user interfaces to be specified using a direct
manipulation graphical editor. In addition, Lapidary allows the
run-time behavior of objects to be specified. Cox~~traints can be
defined graphically and by demonstration to describe how the
objects relate to one another (e.g., that arrows stay attached to
boxes), and the objects’ responses to the mouse and other input
devices can be specified or demonsuated using abstract
interactors that embody particular kinds of interactive behaviors.

Lapidary supports both the creation and placement of widgets
(also called interaction techniques or gadgets) such as menus,
buttons, scroll bars, and dialogue boxes (also called forms or
property sheets), as well as providing the ability to define
application-specific graphical objects using the editor. For ex-
ample, if the application involves creating and manipulating
labeled rectangles connected by arrows (possibly, for a visual
programming language [131 or a project scheduling program such
as Apple Macintosh MacProject), the user interface designer can
draw samples of these rectangles and arrows, and then describe
their run-time behavior. Lapidary will automatically generalize
from the graphics to create objects that the application and end
user can create and manipulate at run-time. Therefore, Lapidary
allows the contents of application windows to be defined graphi-
cally, in addition to the menus and palettes that surround the
window.

The motivation for this project is the observation that a significant
part of the effort when creating graphical, direct manipulation
interfaces is designing the graphics and their behavior with
respect to the input devices. Lapidary aims to allow the designer
to specify these in the most direct, intuitive and straightforward
manner possible: by graphical drawing and demonstration.

95

cc8k
Typewritten Text
Originally published as: Dannenberg, Sanchez, Joseph, Saul, Joseph, and Capell,"An Expert System for Teaching Piano to Novices," in Proceedings of the 1990 International Computer Music Conference, Glasgow, Scotland U.K. September 10-15, 1990. Ed. Stephen Arnold. San Francisco: International Computer Music Association, 1990. pp. 20-23.

cc8k
Typewritten Text

Lapidary is being created as part of the Garnet user interface
development environment [151. Garnet. which stands for
Generating an Amalgam of Real-time, Novel Editors and
Toolkits, is a comprehensive en&onment for creating graphical,
&ect manipulation [21] user interfaces. Garnet is being im-
plemented in CommonLisp on top of the X window manager on
IBM RT/PC computers using the Unix operating system. We also
are considering porting Garnet to Display Postscript running on
NeXT machines. Garnet currently has six components:

1. The Lapidary graphical editor,

2. An object-oriented programming system called KR
(&nowledge I&presentation) [S],

3. An object-oriented graphics system called Opal
Qbject ~ogramming Aggregate Layer) [171,

4. A constraint system called Coral (constraint-Based,
Object-Oriented Relations &td Language) [23],
which allows rela&ships among graphical objects
to be specified easily and then maintained by the
system,

5. Encapsulations of interactive behaviors independent
from any graphical realization of that behavior [18],
and

6. User interface toolkits containing several default
sets of widgets.

A “Lapidary” is a workman who cuts. polishes and engraves
precious stones, and here is a Lisp-Based Assistant for
Prototyping Interface Designs Allowing Rem&able Yield.
zapidarv. as well as thy rest of-&met, is-now under active
deielop-ment and only part of the implementation is complete.
This part is sufficient, however. to demonstrate that the ideas
described in this paper are workable and powerful.

Related Work

Lapidary can be classified under the broad heading of User Intcr-
face Management Systems [l]. There have been a large number
of previous systems that allow users to select from a pre-defined
library of widgets, and place them on the screen. Some of these,
including Menulay [5], Trillium [9], DialogEditor [6]. vu [22] and
the NeXT Interface Builder, use a graphical editor to allow the
position and size of each widget to be specified in a direct
manipulation manner using a mouse. Often, these systems also
allow a few limited properties to be changed using a dialogue box.
The Peridot system [14,16] allows the widgets themselves to be
created using direct manipulation. Lapidary combines both of
these capabilities.

Most of these systems mainly support relatively static panels or
dialogue boxes where the objects in the panels are menus. buttons
or text fii-in slots that do not move around. XY-Wins [7] allows
more mobile objects to be drawn (such as elements of visual
programming languages), but they still can have only limited
properties change at run time (such as their position). Other
systems, such as EDGE [19] support more dynamic behavior by
limiting the applications to a certain form, such as those that use
graphs to display their data. Lapidary can handle almost any kind
of direct manipulation interface except text editing.

Much of the behavior in Lapidary is specified using constraints on
objects. A constraint is a relationship among objects that is

defined once and then maintained automatically by the system,
even when the objects change. Like Peridot [14] and Apogee
[lo]. Lapidary uses one-way constraints, which means that a

property of one object (e.g.. the LEFT of object A) can depend on
another object (B. LEFT). but the reverse is not implied (if B. LEFT
changes, A-LEFT is changed automatically, but if A. LEFT is
changed, B. LEFT is not changed by the system).’ Other con-
straint systems, such as ThingLab [2], have two-way constraints,
but these usually have long delays before they are able to respond
to mouse events [3].

Creating Objects

Graphical objects can be created in a number of different ways
using Lapidary. As shown in Figure 1. the standard menus
provide the usual range of graphical primitives, so objects can be
created from scratch. For example. Figure 1 (a) shows a menu
object being created from rectangles and strings. Alternatively,
objects can just be copied from predefined sets of “prototypes.”
The Prototype menu item brings up palettes of standard graphi-
cal widgets. These presumably will have a consistent “look and
feel.” For example, Figure 2 shows a palette of Macintosh-lie
widgets and Figure 3 shows a palette of Open-Look style
widgetsa The designer can then select widgets in the prototype
window and drag copies into the user interface construction win-
dow. Here, the copies can be edited as desired in a direct
manipulation manner. Typically, this will include modifying text
labels and the size and position of objects. Constraints help keep
all objects in perfect alignment as widgets are edited. Unlike
other user interface tools, Lapidary also allows the graphics of the
widgets themselves to be modified Whereas some may feel that
this defeats the purpose of having a standard “look and feel,” we
believe that user interface designers should be given full
flexibility. It is clearly easier to use the standard widgets without
modification, so this is what most people will do, and changes
will only be made when necessary.

One example of where editing of the objects may be required is
when the designer is creating custom application objects that
should be consistent with the standard user interface. For ex-
ample. if widgets have drop shadows at a certain offset and
rounded rectangles (“roundtangles”) with a certain curvature for
the edges, the designer might want to copy some standard objects
and edit out pieces for use in his new objects.

Lapidary objects are represented using KR [S]. a frame-based
knowledge representation system. In KR, there is no distinction
between instances and classes; any instance can serve as a
“prototype” for other instances [121. All data and methods are
stored in “slots” (sometimes called fields or instance variables).
Data and method slots3 that are not overridden by a Particular
instance inherit their values from their prototypes. An instance
can have any number of additional slots as well.

‘Actually, the constrtits in Lapidary arc slightly IIIO~ gemal, because cycles
w#d.lowd ThusA.LEFTcmdcpcndonB.LEFTmdB.LEFTcandcpad
on A. LEFT. Whcm eitha chm&, the other is updated. What in disallo-wed.
however, is any situstion whue a prop&y has man than one cmstraint that
ulatlates its value.

%tcse “looks and feels” are copylighted by Apple and AT&T respectively. We
UC not suggesting that pcoplc illegally we these de&m, but just want to show that
our systan can support VaIiouS popular styles.

?‘here is no distinction betwem data and method slots in KR. Any slot can hold
any type of value. and in CanmmLisp. P function is just P type of value.

96

(4 (4
Figure 1.

The workspace window of Lapidary (a), where a mmu is beiig
created out of rectangles and strings, along with the standard
command (b) and object menus (c).

Item1 tA

Item2 tl3
_ ----- - ------

Item3 tC

Item4 tD
.___---_____ -

Item5 tE I

lxl Item 1

w
Item 2

Figure 2.
Prototypes for Macintosh-like widgets.

Lapidary allows prototypes to be constructed by example: any slot
of an instance can be changed, and then that instance can be used
as a prototype for new objects. Changes to a slot of the prototype
are reflected in all instances that do not override that slot. This
makes it easier to edit the look and feel of an entire interface by
just editing the prototypes from which the interface was created.
For example, if the scroll bar in Figure 3 was itself edited, all
scrollbars created from it would change.

Objects in KR can be collected into aggregate objects (also called
’ ‘groups” or “collections”). Each object (including each
aggregate) must be in exactly one aggregate (except the top-level
aggregate, of course). For example (see Figure 4). a widget might
have a top level aggregate containing an aggregate of all the
background graphics (the border and shadow), an aggregate of all
selectable items, and an aggregate containing the feedback
graphics. Another important capability, therefore, is to easily
modify the contents of aggregates. Individual objects can be
edited even while they are still grouped. and it is easy to add new
objects to an aggregate and remove objects from an aggregate,
without disrupting the aggregation hierarchy.

Figure 3.
Prototypes for OpenLook-like widgets.

top-lavd qgrcgue

Figure 4.
OJ)

A menu with the primitive objcas labeled (a). The aggregates
used to construct that menu ate shown in (b).

Lapidary also provides an unusual capability that allows the type
of objects to be changed. For example, a square can be selected
and converted into a circle. Its size. position, color. other at-
tributes, and behavior will be maintained. To facilitate this opera-
tion, Lapidary provides a graphical replace mechanism that allows
wholesale replacements of one type of object with another type of
object [ll]. For example, the designer could use graphical
replace to convert the black-filled selection squares shown in
Figure 5a to the three part selection aggregate shown in Figure 5b.
This capability might also be used to create round “radio
buttons” out of square “check boxes.” while still retaining the
correct offsets for shadows and object sixes. Since all graphical
objects in the system have the same structure internally. this is
easy to implement. When the change is ambiguous (for example,
when changing a rectangle into a line, should the line go from the
upper left to the lower right, or from the lower left to the upper
right?), the user is queried.

Constraints

A central feature of Lapidary that makes it appropriate for creat-
ing run-time application graphics is the use of constraints. Con-
straints allow the designer to specify a relation between a graphic
object and other objects in the scene, and have that relation
maintained at run-time by the system. For example, the designer
might specify that an arrow should be connected to the center of a

97

box (see Figure 6). The system will maintain this constraint, even
if the box is moved.

(4 (W

Figure 5.

(a) Eight small boxes are. attached to a ractangle and will show
which objects am selected, (b) the selection boxes have been
changed to aggregates of three objects: a character, a circle and
a grey rectangle, without affecting their behavior.

Figure 6.

Anows are connected to the centers of the boxes by constraints
so they stay attached even when the objects are moved.

Constraints are also useful for ensuring that the resulting interface
looks attractive. For example, it is trivial to ensure that objects
are lined up correctly. or are exactly centered This is in contrast
with interfaces created by some other UIh4Ss, where objects must
be aligned by hand with the mouse and may look sloppy. It is
also often easier to use constraints than gridding to align objects.
since the desired locations do not always end up on a fixed grid.

If a constraint is one of a standard set, then it can be specified
easily using the Lapidary menus. These menus support having
objects be connected on their edges or in the middle, with optional
offsets. The sizes of objects can also be related There are some
additional special constraints for lines and a few other objects.
Experience with Peridot [141 demonstrated that these simple types
of constraints make up the vast majority of those needed in typical
user interfaces.

To specify a constraint, the designer selects one object as the
“primary selection,” another object as the “secondary
selection,” and then selects the constraint to apply (see Figure 7).
The primary object is then made to depend on the secondary
object (the Primary object changes, and the secondary object does
not change). The left (horizontal position), top (vertical
position), width, and height each have their own section of the
constraint menu. For the left and top, the small boxes are
buttons that represent the primary selection, and the large box
represents the secondary selection. The buttons constrain the
primary selection to be at the left-outside, left-inside, center,
right-inside, and right-outside of the secondsry selection. The

other choice is unconstrain, which means that there is no con-
straint on the left of the primary selection. The offset can be
used to adjust how close the objects are (the default is zero). If
the centered button is selected, the offset button changes to one
labeled percent and selects what percent of the way across the
secondary selection the primary selection should be. The default
here is-50%. which is directly in the center. In Figure 7, the
primary selection is the outline rectangle, and it is to the right of
the gray rectangle, offset by 20 pixels.

The constraints for top are of the same form. For the width and
height, the constraints are either on or off, and these can be
modified either by Offset (A.Width = B.Width t offset) or
percentage (A.Width = percent * B-Width) or both. In
Figure 7, the outline rectangle has no constraints on its width, and
its height is 33% of the height of the gray rectangle.

When two objects are selected that already have a constraint
attached to them, the constraint menu shows what constraints
exist. When only one object is selected, the who buttons can be
used to show what other object is constrained to it. In the future,
we plan to provide further debugging aids for investigating con-
straints, for example, to show all the objects that contribute to the
selected object’s display.

Sometimes, designers want to use relationships that cannot be
created out of these simple choices. In that case, the Custom
option is selected, and the designer is allowed to type in an
arbitrary CommonLisp expression specifying the formula. As
described in 1231. this expression can use conditionals, loops,
local variables, and any other Lisp form. Objects can be selected
during this process, and the system will automatically include
references to them in the constraint. These references take the
form (gv object slot), where gv stands for “get-value,” and
object is the name of the object referenced- An example is (+
10 (gv BlackRectOl25 :left)), which adds 10 to the value
ofthe left slotoftheobject BlackRectOl25.

As an example where a custom constraint is needed, in Figure 6,
the arrows were attached to the centers of the boxes using the
standard menus. In Figure 8, constraints on the top positions of
the lines have been changed so that they are spread evenly along
the side, sorted by the vertical position of the box at the other end
of the line. To make this modification required writing only about
8 lines of Lisp code (using the built-in Lisp sort routine).

Clearly, writing Lisp code is not a job for user interface designers
that are not programmers, but we did not feel that there was any
reason to try to invent a special language that would be more
accessible. The most common relationships are trivial to specify
using the menus, and the more complex ones are not likely to be
attempted by non-programmers anyway. Since the programmers
are likely to already know Lisp (because the application is written
in it), there is a tremendous disadvantage to making them learn a
new language [20]. Furthermore, if it seems appropriate, we
could easily integrate a more graphical expression for these com-
plex constraints, such as in Graphical ThingLab [4]. and use
Lapidary to design the components of this graphical language.

Constraints can be put on any property of an object, not just on
the numeric ones. For example, the string for a label might be
constrained to be the name of the object, or there might be a
constraint linking the color of a rectangle to a status variable. It is
also easy to add new slots to objects which contain constraints, if
desired. For example, in Figure 8. an extra slot was added
containing a sorted list of the objects at the other end of the lines.

98

puctnt

-heighc-

Figure 7.

The Lapidary constraint menu for rectangles on the left, and the workspace window on the right. The white rectangle in the workspace window
is the “primary selection” and the gray rectangle is the “secondary selection.” In the section labeled “left” of the constraint menu, the
darkened box shows that the white rectangle is constrained to be offset from the right of the gray rectangle by 20 pixels, the “top” constraint is
that the white rectangle is aligned at the top-inside of the gray one, its width is not constrained, and it is 33% as tall. If the gray rectangle
changes, the white one will be adjusted automatically.

Figure 8.

The arrows’ vertical constraints have been modified from Figure
6 so the lines spread themselves along the box edge, sorted by
the position of the top of the box at the other end. Note that the
arrows from B and C have switched their location on the left
edge of D in the two views.

Restricting the constraints to be one-way allows their execution to
be very fast. Lapidary can handle dozens of constraints on objects
that follow the mouse in real-tune. Another advantage of having
one-way constraints is that the designer can write arbitrary Lisp
code for a constraint, and not have to worry about whether there is
an inverse formula to handle the reverse direction.

Generalizing the Constraints

In order for the graphical objects to be useful at run-time, the
specific constraints must be generalized to work on run-time
objects, rather than on the specific example objects used in the
editor. For example, in Figure 5, the eight selection boxes are
attached to a particular rectangle, and the constraints will refer to
that rectangle. In order for the selection boxes to appear over
whatever object is selected, the constraints need to be generalized
to reference objects indirectly through variables, rather than by
specific object names. To do this. the reference to the object is
replaced with an expression that calculates the object desired.
Usually, this has the form (gv (gv object slot-
containing-object) slot). For example (gv (gv :SELF
:other-object) : LEFT), where : SELF is a special reference
to the object containing the constraint. Since this form is so
common, we allow a short-hand (gv object slot slot slot
. . .), where, starting from the left, each slot is used to get the
object from which the next slot is accessed. The constraint
system ensures that whenever any object referenced in these vari-
ables is changed, the constraints are updated.

Therefore, for Lapidary to change an object reference to be a
variable, it is only necessary to change references of the form (gv
obj slot) to (gv :SELF obj-reference slot), and then

99

store the original object in the ob j-reference slot of the object.
For example, the eight selection boxes of Figure 5 might be made
to refer to the object they are attached to using a slot called
ob j-over. The constraint system then automatically ensures that
the selection objects move to whatever object is assigned to the
ob j-over slot, thus making it easy to place the selection boxes
on any object. Therefore, the complete specification for the
top-left selection box might be:
(Create-Instance 'TopLeftSelectionBox :Rectangle

(:Left (- (gv :SELF :obj-over :left) 10))
(:Top (- (gv :SELF :obj-over :top) 10))
(:width 21)
(:height 21)
(:visible (gv :SELF :obj-over)) ; visible

- when there is an obj-over
(:obj-over 'OutiineRect0125)) ; initial

; value is the example object

It is important to emphasize that Lapidary makes these transfor-
mations automatically. The user interface designer never sees any
of this code. Even if the designer created custom constraints by
typing Lisp code. the references in the expression can be to
example objects (selected by pointing at them with the mouse),
and the system will convert these references to be general vari-
ables where appropriate.

Another way that Lapidary generalizes from the examples is to
automatically copy objects at run-time if necessary. For example,
the designer will demonstrate one set of selection boxes over a
particular example object (as in Figure 5), but may desire that
multiple objects be selectable. Therefore, Lapidary arranges for
the selection objects to be duplicated at run-time if necessary.
One complication of copying objects is that a set of objects may
be copied together (for example. all eight selection boxes). and
any constraints from one of these objects to another must refer to
the correct other object. For example, if the left of the left-
middle selection box was constrained to be the same as the left
of the first box (rather than based on the left of ob j-over), it
would be necessary to make sure that each middle-left selection
box referenced the correct top-left selection box. Using indirect
variable references to name the objects in these constraints is
therefore used to make the copy operation simpler. Again,
Lapidary deals with this complication automatically. so the desig-
ner does not have to know about it.

interactive Behavior

Although it is useful to Prototype the graphic appearance of user
interfaces. it is much more useful if the interactive behavior can
also be specified easily. Lapidary therefore Provides this
capability. When objects are copied from the prototype libraries
(Figures 2 and 3), they bring with them the prototypical be-
haviors. By selecting the Test command from the Lapidary main
menu, the buttons, menus, etc. can be operated by the mouse and
keyboard, just as they will by the end user.

The graphics of objects can be edited without affecting the be-
havior attached to them. For example, the selection boxes of
Figure 5a could be ma& hollow and larger without affecting the
behavior. In fact, the boxes could even be replaced by aggregates
of many objects (Figure 5b).

For example, to change which mouse button operates a menu, it is
only necessary to change the button indicated in the dialogue box.

The inkractors represent pure input device behaviors, and are
devoid of any graphical presentationP The graphics are linked to
the interactors using the dialogue boxes.

The interactors supported by Lapidary include:

l Choice-of-Items - for selecting one or more of a set
using the mouse (e.g., for menus and buttons).

l Move-Grow-Interactor - for changing the size and/or
position of objects with the mouse.

a New-Point-Interactor - for entering new points with
the mouse (e.g., for creating new objects),

l Angle-Interactor - for measuring angles that the
mouse moves around a point (e.g., for circular
gauges),

l Edited-Text-String-Interactor - for entering edited
single lines of text using the keyboard.

Each of these interactors has a number of parameters that can be
specified using a dialogue box. The most unusual of these is the
particular graphics that will be used by the interactor. For ex-
ample, for the Choice-of-Items interactor (Figure 9). the designer
can select an aggregate which contains the items to be chosen
among, the graphics that highlight the item the mouse is currently
over (called the interim feedback), and the graphics that show
the final selection (the final feedback). These parts are
labeled in Figure 10 for a Macintosh-like radio-button. To specify
the connection, the designer simply selects the appropriate object
in the picture, and then clicks on the check box next to the role
that that object will play. Lapidary automatically modifies the
constraints on the object to allow it to operate as specified. There
is a command to show which object is used by each role, so the
designer does not have to remember what the object names are.

If the designer selects the “default” button, Lapidary tries to guess
what would be appropriate based on the information already
provided. For example. if the selectable items are circles,
Lapidary might use a dot, as shown in Figure 10, and if the items
are squares, it might use a square that has the same size and shape
as a selected item. For interim feedback, it might choose to XOR
the feedback object over a selected menu item, thus inverting the
selection.

Another way for the designer to specify how the picture changes
for an interactor is by demonstration. This is useful when objects
in the picture should be modified, for example so that the cur-
rently selected item in a menu is shown in italics (see Figure 11).
Another use is to have buttons move to cover their shadows (and
therefore look more “3-D”). as is done for Lapidary’s own user
interface (Figure 12). The conventional layered model, where the
interim and final feedback are objects that are displayed on top of
the selected items, does not work very well in these cases. To
specify the changes by demonstration, first the designer selects
the objects that will change, and then uses the By Demo button in

In order to edit the behavior of objects, or to add behavior to new
objects. we have encapsulated a number of kinds of interactive
behaviors into “interactor” objects [IS]. each of which has its +lkrcfm, this use of the term “intcrpctor" is diffumtfmm Ca&Ji's[6]. In
own dialogue box for specifying properties (see Figures 9 and 13). his systen,m "in~ctor" is what is here c&cd a widgu--r combination of

gnphicsmdbehavior.

100

Choice of kerns Zntemctor
La

New

Abort
sdt-whas Aggregate of Items:

E3
~ItcrasAgg0234 I

La

Single Ittm:
tm I

61

&I
Raanova

InterimFeadbadt

FiialFaedback

Toggle 0 Set @ LietTogglt 0 <Formula> 0

Figure 9.

Dialogue box for specifying the Choice-Of-Items Interactor.

Figure 10.
A Macintosh-like radio button, with the parts labeled as to the
roles they play iu the Choice-of-Items interactor.

Computer Science

Figure 11.

A menu where the the item under the mouse changes to bold and
the fmal item selected shows as italics.

Figure 12.

Three groups of buttons. ‘Ihe canter button of each group has
moved in “simulated 3 dimensions” (towards the shadow) to
show that it is being pressed by the mouse (this serves as interim
feedback). ‘Ihe reverse video rectangle, the black dot, and the
X’s are fmal feedback objects.

101

the dialogue box (see Figure 9). The full current state of the
selected objects is remembered. Then, the designer edits the
objects in whatever way desired, for example to make the string
be italic (in Figure 11). Then, the By Demo button is hit again,
and Lapidary creates a constraint that will choose between the two
values based on whether the object is selected or not. Lapidary
can smooth the transition between these graphical states by
automatically adding intermediate positions. For example, the
movement of the pushdown buttons in Figure 12 might be
smoothed in this fashion. Changes can be made to as many
properties as desired, and correct constraints will be created for all
of them.5

Other properties of the interactor can also be selected in the
dialogue boxes. These include which mouse button starts and
stops the action; whether single or multiple objects can be
selected, whether the item under the mouse is added. removed or
toggled in the set of objects selected; an application procedure to
be called when the interactor is complete; etc. It is useful to note
that an attached procedure is only needed if the application needs
to be notified. Usually, all graphical updates are handled
automatically by the constraints.

As with constraint specification, if the dialogue boxes do not
provide sufficient flexibility, then arbitrary Lisp code can be used,
by selecting the <Formula> option. Naturally, we do not expect
this to be needed often. In fact, usually most fields of the
dialogue boxes will contain appropriate default values, either
proposed by Lapidary or because the interactor was copied from a
prototype.

As an example of the use of the interactor dialogue boxes, to
program the eight selection boxes of Figure 5 to appear over
objects that are specified by the mouse, the designer would first
ensure that all the selection boxes were grouped into an aggregate.
Then, the choice of items interactor dialogue box would be used
(Figure 9). The Aggregate of Items is the top level aggregate
in the window which holds all the objects that can be selected by
the end user. The selection box aggregate is the Final
feedback. The interactor operates immediately when the shift
key is depressed and the middle mouse button goes down, so there
is no interim feedback. After hitting OK in the interactor dialogue
box, the selection box interaction can then be tested immediately
and written out to a file for use by application programs. The file
will contain all the code to display the selection boxes as well as
the interactor to control them.

To demonstrate the flexibility of the interactors, suppose the
designer wants to allow the end user to change the selected
object’s size by pointing at the selection boxes (as in Apple
MacDraw). To specify this, the designer brings up the
Move/Grow Interactor dialogue box (Figure 13). The object to be
changed is an element of the selectable set of objects. the feed-
back object might be an XORed outline rectangle as in MacDraw
(this is the default feedback object), the object that the user must
press on is the selection box aggregate. the object is to grow, and
the attach point is where the mouse hits (where-hit). This is all
that needs to be specified. Suppose now that the designer wanted
to change it so that the selection boxes on the sides changed the

% the fuhue. WC will prcbably add a fcatux that will allow prcperti~ of objects
that depend on “ective vslucs” [14] to be demonstrated this way, so that the
graphica that change under application ccntrol (such as p’ognss and mtus
indicatm) CM be danocstratcd as easily.

position of the object, and the selection boxes on the comers
changed the size. In this case, two different interactors could be
specified, one for the four side selection boxes and one for the
four comer ones. Alternatively. the designer could use one inter-
actor. The <Formula> choice would be used for whether to move
or grow, and a custom constraint (Lisp code) would be written to
differentiate whether to move or grow. Again when the standard,
simple kinds of interactions are desired, these can be specified
easily, and a straightforward path is provided to allow more com-
plex interactions to be created.

Move/Grow Interactor:

Interactor Name:

yq=J=iJ
Onc of this Aggregate J IAll-ItemsAgg02341

A-p~o No NE0 EQ SE0 So

SW 0 w 0 Whutit @ <Forrnular 0

Figure 13.

Dialogue box for specifying the Move/Grow Intcractor.

As another example. to allow the boxes of Figures 6 or 8 to be
movable by the mouse, it is only necessary to associate a
Move/Grow Interactor with them. Of course, the labels in the
boxes and the arrows to and from each box will stay connected
automatically, because they are defined with constraints.

Current Status and Future Work

The Lapidary editor, as well as the entire Garnet project, is now
under active development. The design for Lapidary is mostly
complete, and significant portions have been implemented, as
shown by the figures in this paper. Objects can be drawn and
constraints attached to them using the menus. The constraints can

102

be automatically generalized and objects can be replicated at
run-time. The interactors are implemented, but not all the
dialogue boxes for them, so only some can be attached to the
objects in the editor. The libraries of prototypes also do not yet
exist.

We plan to recreate Lapidary’s own user interface using
Lapidary. as well as make it usable by outside projects. We also
will implement a variety of types of applications and interaction
techniques, to test Lapidary’s range.

In the future, we want to explore further ways to make
application-specific behavior easy to specify. In particular, we
will be looking for kinds of interactions that this system cannot
handle, and trying to add them to this framework. Techniques for
making custom constraints on objects easy to specify and debug
will probably be particularly important.

We will also be looking to minimize the need for dialogue boxes
by making more inferences from demonstration. For example, if
the designer moves a mouse back and forth over a list of objects,
Lapidary might guess that a menu interactor is desired without
requiring any additional specification. If there are nearby objects
that resemble feedback objects (e.g., they are Xored to the
screen), Lapidary may infer that these objects are feedback ob-
jects and after a few mouse motions, attach one of these objects to
the mouse. Of course, if Lapidary makes the wrong guesses, the
designer can always correct them using the dialogue boxes.

Another problem we will be investigating is how to provide
composite interactors for higher-level functionality. For example,
a useful one might understand the concept of selected objects in a
graphical editor, or how to create objects selected from a palette.
This will make it easier to create graphical-editor-style programs.

Finally we would like to provide an “output toolkit” that paral-
lels the “input toolkit” we currently provide. This toolkit will
help organize the output of application objects into higher-level
structures such as graphs and trees. Specific parameters in these
structures will be inferred by demonstration.

Conclusions

Through the use of a direct-manipulation graphical editor, con-
straints which can be automatically generalized, and a small num-
ber of primitive interactive behaviors, Lapidary allows the user
interface designer to create widgets and run-time application ob-
jects with either a custom or a standard “look and feel.” The
behavior can be specified separately from the graphics by select-
ing among a small number of options using dialogue boxes and by
demonstration. If the designer requires more complex behavior,
specialized constraints can be written in Lisp and attached to any
property of an object. The use of graphical, direct manipulation
techniques to specify the graphics and constraints, and the use of
programming-by-demonstration to specify the behavior, should
make the creation of application objects significantly easier.
Using predefmed prototypes will also help create objects with a
standard look and feel.

Although there are only a small number of built-in constraints and
interactors. these are able to cover a wide range of user interfaces,
including most forms of widgets and many kinds of application-
specific interactions. We believe that significant numbers of user
interfaces can therefore be built without programming using
Lapidary.

Acknowledgements
This research was sponsored by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 4976, Amendment 20,
under contract M3615-87-C-1499, monitored by the Avionics
Laboratory. Air Force Wright Aeronautical Laboratories,
Aeronautical Systems Division @SC). Wright-Patterson APB.
Ohio 45433-6543. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the Defense Advanced Research projects Agency or the US
Government.

The Garnet system is being designed and implemented by Brad
Myers, Dario Giuse, Roger Dannenberg, Brad Vander Zanden,
Dave Kosbie, Ed Pervin, Andrew Mickish, Jake Kolojejchick.
Lynn Baumeister, Philippe Marchal, and Pedro Szekely. For help
with this paper, we want to thank Bcmita Myers and Dario Giuse.

References

1. ACM SIGGRAPH. Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software. Banff, Alberta, Canada,
Oct., 1988.

2. Alan Boming. Thinglab--A Constraint-Oriented Simulation
Laboratory. Tech. Rept. SSL-79-3, Xerox Palo Alto Research
Center, July, 1979.

3. Alan Boming and Robert Duisberg. “Constraint-Based Tools
for Building User Interfaces”. ACM Transactions on Graphics 5.
4 (Oct. 1986). 345-374.

4. Alan Boming. Defting Constraints Graphically. Human Fac-
tors in Computing Systems, SIGCHI’86. Boston. MA, April,
1986, pp. 137-143.

5. W. Buxton, M.R. Lamb, D. Sherman, andK.C. Smith.
Towards a Comprehensive User Interface Management System.
Computer Graphics, 17(3), SIGGRAPH’83, Detroit, Mich, July,
1983, pp. 35-42.

6. Luca Cardelli. Building User Interfaces by Direct Manipula-
tion. proceedings of the ACM SIGGRAPH Symposium on User
Interface Software, Banff, Alberta, Canada, Oct., 1988. pp.
152-166.

7. Alessandro Giacalone. XY-WINS; An Integrated Environ-
ment for Developing Graphical User Interfaces. proceedings of
the ACM SIGGRAPH Symposium on User Interface Software,
Banff, Alberta, Canada, Oct., 1988. pp. 129-143.

8. Dario Giuse. KR: Constraint-Based Knowledge Represen-
tation. Tech. Rept. CMU-CS-89-142, Carnegie Mellon University
Computer Science Department, April, 1989.

9. D. Austin Henderson. Jr. The Trillium User Interface Design
Environment. Human Factors in Computing Systems,
SIGCHI’86, Boston, MA, April, 1986, pp. 221-227.

10. Tyson R. Henry and Scott E. Hudson. Using Active Data in a
U&IS. Proceedings of the ACM SIGGRAPH Symposium on
User Interface Software, Banff. Alberta, Canada, Oct., 1988, pp.
167-178.

11. David Kurlander and Eric A. Bier. Graphical Search and
Replace. Computer Graphics, SIGGRAPH’88, Atlanta, GA,
Aug., 1988, pp. 113-120.

103

12. Henry Lieberman. “Using Prototypical Objects to Implement
Shared Behavior in Object Oriented Systems”. SigpZan Notices
21.11 (Nov. 1986). 214-223. ACM Conference on Objeot-
Oriented Progr amming; Systems Languages and Applications;
OOPSLA’86.

13. Brad A. Myers. Visual Programming, Programming by Ex-
ample. and Program Visualization; A Taxonomy. Human Factors
in Computing Systems, SIGCHI’86. Boston, MA, April, 1986, pp.
59-66.

14. Brad A. Myers. “Creating Interaction Techniques by
Demonstration”. IEEE Computer Graphics and Applications 7.9
(Sept. 1987), 51-60.

15. Brad A. Myers. The Garnet User Interface Development
Environment: A Proposal. Tech. Rept. CMU-CS-88-153. Car-
negie Mellon University Computer Science Department, Sept.,
1988.

16. Brad A. Myers. Creating User InterfEes by Demonstration.
Academic Press, Boston, 1988.

17. Brad A. Myers, John A. Kolojejchick, and Edward Pervin.
Opal: Garnet Project Graphical Object System. Carnegie Mel-
lon University, School of Computer Science, 1989.

18. Brad A. Myers. Encapsulating Interactive Behaviors.
Human Factors in Computing Systems. SIGCHI’89, Austin, ‘IX,
April, 1989. pp. 319-324.

19. Frances J. Newbery. An interface description language for
graph editors. 1988 IEEE Workshop on Visual Languages, Pitts-
burgh, PA, Oct., 1988. pp. 144-149. IEEE Computer Society
Order Number 876.

20. Dan R. Olsen, Jr. “Larger Issues in User Interface
Management”. Computer Graphics 21.2 (April 1987), 134-137.

21. Ben Shneidemran. “Direct Manipulation: A Step Beyond
Programming Languages”. IEEE Computer 16,8 (Aug. 1983).
57-69.

22. Gurminder Singh and Mark Green. Designing the Interface
Designer’s Interface. Proceedings of the ACM SIGGRAPH Sym-
posium on User Interface Software, Ban& Alberta, Canada, Oct.,
1988, pp. 109-116.

23. Pedro A. Szekely and Brad A. Myers. “A User Interface
Toolkit Based on Graphical Objects and Constraint.s”. Sigplan
Notices 23, 11 (Nov. 1988). 36-45. ACM Conference on Object-
Oriented Progr amming; Systems Languages and Applications;
OOPSLA’88.

104

