Carnegie-Mellon University Studio Report

Roger B. Dannenberg
Paul McAvinney
Marilyn T. Thomas
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

Computer music activity is taking place in three
separate facilities at Carnegie-Mellon University. The
Computer Music Studio is is equiped with computer,
recording, and synthesis equipment, and is used for
teaching, composing, and the recording of concerts. The
Solfege Lab is a cluster of personal computers, some with
inexpensive synthesizers attached, for computer-assisted
instruction in basic music skills. The Computer Music
Laboratory is a research facility that supports several
projects, including Arctic, a real-time control and
composition language, and Vivace, a rule-based Al
system for composition. Work is also being done in the
area of real-time accompaniment and the development of
a personal computer music system: the Musician’s
Workbench.

1. Introduction

In the summer of 1983, Carnegie-Mellon University
constructed a Computer Music Studio for education,
composition, and recording. At the same time, a
laboratory was opened for computer music research.
Already in place was a Solfege Lab for computer-assisted
instruction. These three facilities represent a cooperative
effort by members of the Music, Computer Science, and
Computer and Electrical Engineering Departments. We
will summarize current activities in these facilities and
describe some of the work planned for the near future.

2. The Computer Music Studio

The Computer Music Studio is housed in the College of
Fine Arts Building in a room adjacent to the Alumni
Concert Hall, where most of the Music Department
concerts and recitals are presented. This location enables
the facility to serve three separate but interrelated
functions: 1) a classroom for courses in electronic and

computer music; 2) a studio for the composition and
performance of new music using analog and digital
equipment, sometimes in combination with live voice
and/or acoustic instruments; and 3) a recording studio for
performances in the concert hall, for out-of-studio
recording work using studio equipment, and for dubbing
tapes.

For recording purposes, the facility is equipped with a
Scully half-inch quadraphonic tape machine, Teac
quarter-inch quadraphonic recorder, Sony quarter-inch
stereo machine, and two Technics cassette decks. An
Audioarts twelve input, four-output mixer with four
channels of DBX noise reduction, two sterco amplifiers,
and four studio speakers complete the basic recording
system. The studio is also equipped with a video
monitoring system to enable remote recording of live
performances in the adjacent concert hall.

As an educational facility, the Computer Music Studio
is equipped with an ARP 2600 synthesizer used to
demonstrate basic analog signal processes, and as one of
the sound sources for the four compositional projects
required of students taking Electronic and Computer
Music I. This course is designed as an introduction to
acoustics and to electronic and digital sound processes;
the historic evolution of electro-acoustic music is also
taught through outside readings and listening to musical
examples. The focus of the course is on the students’ own
compositions, the best of which are included in two
concerts of electronic and computer music, presented
each year by the Music Department.

Additional sound sources in the studio are the Roland
Compumusic System, the Soundchaser software, used
with an Apple lle computer, and the CMU digital

Dannenberg, McAvinney, and Thomas, “Carnegie-Mellon University Studio Report,” in Proceedings of
the International Computer Music Conference 1984, Paris, France, October 19-23, 1984. Ed. William
Buxton. San Francisco: Computer Music Association, June 1985. pp. 281-286.

281 ICMC '84 Proceedings

cc8k
Typewritten Text
Dannenberg, McAvinney, and Thomas, “Carnegie-Mellon University Studio Report,” in Proceedings of the International Computer Music Conference 1984, Paris, France, October 19-23, 1984. Ed. William Buxton. San Francisco: Computer Music Association, June 1985. pp. 281-286.

synthesis system, a low-cost system assembled from
commercially available hardware and software written at
Carnegie-Mellon University. The sound source for this
system is a Mountain Hardware music synthesizer, which
uses an Apple lle computer to generate amplitude and
frequency ramps. The system is controlled by IBM XT
and a Sritek 68000 coprocessor running under the Xenix
operating system. The system can be programmed in
Adagio, a note-oriented symbolic score language
developed at Carnegie-Mellon University, or in the C
programming language, which offers greater flexibility
but requires more programming ability. Both languages
are taught to students in the first semester of the
computer music coursework.

Electronic and Computer Music Il is an advanced
course for students wishing to pursue independent
projects in the studio. Each student must produce either a
large-scale musical composition or a significant piece of
computer music research. This course also focuses on
developments outside of CMU, with required readings of
important computer music papers and directed research
into the writings of others, which may relate to and/or
influence the students’ own creative work. Both courses,
Electronic and Computer Music I and 11, are offered as
part of the music curriculum; these courses are taught by

a faculty team from Music and from Computer Science
and are elected by students from all departments on
campus,

2.1. The Adagio Language

The language used most frequently in the studio is
Adagio. Adagio is based on the note-list concept of
Music V, where each line of a score file describes one
note or event. In Adagio, parameters of notes such as
pitch and duration are described using self-identifying
fields, so the order of parameter specification is arbitrary.
For example, a half note G #4 followed by a half notc A4
could be written:

h gsé
a

The order of the two ficlds in the first line does not
matter: it could also have been written "gs4 h”. In the
second line, the duration is “inherited” from the line
above and need not be rewritten. Similarly, the octave (4)
is derived from that of the G# above, and can also be
omitted from the program. In addition to the high-level
symbolic notation used in this example, all parameters in
Adagio can be specified in an optional low-level numeric

ICMC '84 Proceedings

282

format. For example, Lff means “the loudness is
Jortissimo”, but this could also have been written L127,
which means “use the number 127 as the peak
amplitude”. :

We have found the Adagio language to be simple but
versatile. The translator, combined with our synthesis
hardware, can process a typical score and begin
generating sound in seconds. A keyboard transcription
program has been written to translate a real-time
keyboard performance into an Adagio source file, which
can then be edited and manipulated by the composer. In
addition, several composing programs that generate
Adagio as output have been written by students. The
Adagio translator has also been adapted to generate tables
for our real-time accompaniment programs, and another
version of Adagio will soon provide MIDI output.

Adagio has some serious limitations, however. The

~ primary one is that Adagio can only describe music in

terms of a fixed set of parameters. While the set can be
enlarged by modifying Adagio, we need a more flexible
and extensible notation. The Arctic language, des‘cribed
below, is a step in the right direction. We are also
developing a graphics-oriented score editor that will have
the flexibility required to support serious composers and
researchers. '

3. The Solfege Lab

The Solfege Lab contains four Apple lle workstations
with Mountain Hardware music synthesizers, an
Alphasyntauri keyboard, and an IBM PC. Music
Department students use this lab in conjunction with
their coursework to help develop skills in basic
musicianship. The heart of the software in use here is
Camus, an ear-training system developed at Carnegie-
Mecllon, which provides self-paced tutoring in pitch and
rhythm perception.

4. The Computer Music Laboratory

The laboratory is equipped with a 68000/Multibus
system for research in real-time control, and a prototype
Musician’s Workbench. The Musician’s Workbench is
currently under construction, and is described in more
detail below. It is intended to serve as a vehicle for
packaging the results of our research, and for making
these results available to the campus community. Current

research is focused on (1) Arctic, a functional real-time
control language, (2) Vivace, a rule-based Al system for
composition using traditional harmony, (3) the sensor
frame, a free-hand pointing device that allows users to
point to and manipulate sonic or graphic objects, (4) real-
time accompaniment systems, and (5) methods of acoustic
analysis.

4.1. The Arctic Language

Arctic, described in detail elsewhere in these
proceedings, is a language for the description and
implementation of real-time systems. Arctic is especially
adept at the manipulation of time-varying functions in a
manner similar to GROOVE, but it also allows the
programmer to build high-level descriptions of behaviors
that can represent anything from the attack portion of a
note to an entire composition. Arctic has very few biases
toward particular ways of expressing music; it is primarily
a powerful tool enabling the programmer to build up his
own abstract concepts in terms of simple functions and
operators.

Arctic is currently limited to the manipulation of piece-

wise linear functions and we use Arctic to produce control
functions for synthesis software and hardware rather than

compute sampled audio directly. Direct computation of
sampled audio is possible with Arctic, but it would be
extremely slow. :

We use a standard file format to represent collections of
piece-wise linear functions. This format was originally
used by an “Arctic calculator”, a program that allows a
composer to interactively manipulate functions and see
the results displayed graphically. The results of this
program can be fed to our 68000/Muitibus system which
drives one of our Apple II/Mountain Hardware
synthesizers. (Incidentally, we use the same low-level
synthesizer software and hardware here as in our studio,
but the user interface is Arctic rather than Adagio or C))
This system provides rapid turnaround for
experimentation and composition, but the audio quality is
poor. We have improved the situation by writing a C
program to simulate the functionality of the Mountain
Hardware synthesizer while using large wavetables and
floating point arithmetic. Thus, by standardizing on an
appropriate representation for control functions, we have
gained the ability to trade speed for sound quality and
vice-versa.

283

We now have an interactive Arctic interpreter, that
augments the calculator capabilities with function
definitions and better graphics. This program uses the
same external data representation, so it is also compatible
with our software and hardware synthesis systems. We
have benefited greatly by making many of our tools
compatible with a single data representation for
functions. Consider the following, which actually took
place in our lab: a recently completed sound analysis
program had been used to obtain a description of a
trumpet tone. The description was output in our piece-
wise linear format, which we then fed into our synthesis
program to see if the output would faithfully reconstruct
the trumpet tone. It did, so we decided to try the same
functions on our hardware synthesizer. This time, the
sound was quite different, and it was obvious that the
synthesizer could not keep up in real time with the large
number of ramps produced by the analysis software.
Fortunately, we had a program to reduce the number of
ramps (inflection points) by producing a piece-wise linear
approximation. We used this program to process the
analysis and fed the results back to our synthesizer. The
synthesizer still failed to produce a realistic sound, and we
suspected that the approximation software might not be
working correctly. To test this suspicion, we used the
Arctic interpreter to plot amplitude functions for the
fundamentals, and they seemed close. To get a better
idea of how close, we used Arctic to subtract one from the
other. The resulting difference, that is, the error
introduced by the approximation, was also plotted. The
error was small, indicating that the approximation
program was working correctly, so our next step was to
resynthesize the tone, feeding the approximation
functions to our software synthesis program. This test
indicated that the approximation was good aurally as well
as visually, so we returned our attention to the hardware
synthesizer system to try to explain the problem. This
example illustrates how tools can often be put to uses that
were not intended by their designers. In a matter of
minutes, we were able to use five independent programs
to produce, manipulate, and examine data. We try to
encourage this sort of creative use of software by making
tools compatible with each other and by designing
representations that are concise, flexible, and general.

ICMC ’84 Proceedings

4.2. Vivace: A Rule-Based Al System for
Composition

Vivace models as closely as possible the human
approach to writing music. In fact, the purpose of this
research is to more clearly define the metarules governing
the compositional process. Vivace's current task is to
compose a four-part eighteenth-century chorale, using all
the guidelines and constraints needed to ensure good
voice leading, preferred doubling, effective choice of
chord functions, convincing cadences, and judicious use
of nonharmonic tones. Vivace is a modular system,
designed so that the musical results can be studied with
various aspects of knowledge implemented or ignored.
The goal is to determine just how the skillful musician
creates not just a correct chorale, but an aesthetically
pleasing one. What rules take preference in conflict
situations? How does the specific location within a
musical phrase influence the local choice of notes? How
much knowledge about good melody writing is needed in
the inner voices? Answering these and other questions
could significantly improve the teaching of such creative
processes.

Vivace is based on the concept of a musical phrf:se. In
contrast to previous attempts to harmonize a melody by
selecting chords according to rules of probability, Vivace
assumes that the role of any given chord is largely
dependent upon its location within a musical phrase; that
is, a IV chord at the beginning of a phrase serves a
different function from the 1V chord preceding a cadence.
Chord selection, therefore, is not based simply on the
value of the preceding chord.

If the musical phrase is adequately defined, and the
way in which phrases are put together described, the
computer should be able to generate a successful piece of
music in any specified style. Although the eighteenth-
century chorale is presently being used to test this
hypothesis, other musical styles and other compositional
conventions should be interchangeable without losing the
effectiveness of the general phrase-constructing approach.

Vivace is a modular system containing the following
components:

¢ Module #1: Melody Writer (optional)

e Module #2: Harmonic Rhythm Selector

ICMC ’'84 Proceedings

284

e Module #3: Phrase Shaper

e Module #4: Chord Designator
o Module #5: Bass Writer

o Module #6: Voice Assigner

« Module #7: Nonharmonic Tone Adder

Presently, modules 2 through 7 are written in LISP and
fully implemented on a DECsystem20 at Carnegie-
Mellon University with musical results heard in the
Computer Music Studio via translation into Adagio. The
Melody Writer module is under development. Vivace is
currently producing correct four-part harmonizations of
melodies using triads in the home key, adding passing
tones and neighbor tones in the tenor and alto voices to
enhance the musical results. The system will accept
melodies in any major or minor key using any standard
time signature.

The implementation of a system to harmonize melodies
correctly, using good voice leading, preferred doubling,
and appropriate chords is in itself not particularly
difficult, nor is it terribly interesting. But using this
computer system to demonstrate the importance of
various compositional practices and observing the results
when specific rules are changed has become-increasingly
fruitful.

Vivace has been under development for a little over a
year. We are just now beginning to reap the benefits of
its knowledge. Although much remains to be done,
Vivace has already produced a great deal of interesting
information about the chorale writing process. We hope
to eventually use this tool in the classroom to help
demonstrate the impact of various'procedures intuitively
employed by the masters of the past. Bach has nothing to
fear from our computer-generated music; he is still far
ahead of us.

4.3. Real-Time Accompaniment

The task of a real-time accompaniment program is to
listen o a live performance, to follow the performance in
a score, and to produce an appropriate accompaniment
according to the score. A successful accompaniment
system must cope with changes in tempo, and if must
ignore mistakes in the performance or errors in the

listening section of the system.

A successful system has been implemented and is
described elsewhere in these proceedings. We are
currently extending the system to handle polyphonic
input from keyboards (the present system deals with
strictly monophonic input, although it can generate
polyphonic accompaniment). We are also looking
forward to using our accompaniment software for the
performance of a serious composition for computer and
live performer. This will become possible when we
complete the initial stages of our computer music system,
which is described below.

4.4. Acoustic Analysis

We are presently investigating several techniques for
pitch extraction and period-synchronous spectral analysis
of acoustic instrument sounds. We hope to use the
resulting software to study the dependence of spectra
upon intuitive variables such as pitch and loudness. This
may lead to better models for the synthesis of natural-
sounding musical tones.

4.5. The Musician’s Workbench Project

We have been frustrated by the difficulty of teaching,
composing, and conducting computer music research on
computer systems that were never intended for that
purpose. We use machines that are optimized for text
input and output, and which have no built-in sound
synthesis capabilities. On the other hand, our experience
with Adagio and Arctic tells us that our efforts in
computer music could be substantially aided by a set of
software tools that can communicate using a common
representation for musical information. Furthermore, if
we could combine these tools with a high-quality real-
time synthesizer and a high-performance personal
computer, we would have a system that would fill most of
our needs and be available at low cost.

We are currently constructing the first version of a
music workstation called the Musician’s Workbench,
which will combine:

e a 32-bit personal computer,
o a velocity-sensitive keyboard,

o the Bradford Musical Instrument Simulator

285

devcloped by Peter Comerford and his
colleagues (at the University of Bradford,
West Yorkshire, U.K.),

ea sensor frame gesture sensing device to
facilitate free-hand pointing and the
manipulation of graphic objects.

The 32-bit personal computer is currently a Sun
terminal, connected by a 10 Mhz Ethernet to a campus
network which includes a centralized file server. It has a
high-resolution bitmapped graphics display and a 60
megabyte winchester disk used for local cacheing of a
working set of files. It runs under a modified Berkely 4.2
UNIX!, using window management and file system
software developed at CMU’s Information Technology
Center. We expect to move to machines with lower cost
and higher performance when they become available.

The Bradford Musical Instrument Simulator is a 20
MFLOP table-lookup digital synthesizer that performs
sample interpolation and in addition can interpolate
between waveforms. This allows dynamic changes in
spectrum at low cost. The device has hardware support
for fast waveform generation, and multiple synthesizer
boards can be attached to an inexpensive bus to allow
many units to be controlled in parallel.

The principal software component will be a subroutine
package for manipulating musical scores. QOur current
representation for scores bears a close resemblance to a
semantic network; however, the representation is
sufficiently restrictive to allow fast manipulation of
scores. The representation is essentially a list of events,
where each event is a list of attribute/value pairs.
Additional structure allows score events to be organized
into multiple hierarchies. As in Arctic, the basic
representation scheme makes few assumptions about
music, and it is up to programs that use the representation
to establish the semantics of the representation. The
primary use of the score manipulation routines will be to
construct a flexible score editor. If our experience with
Adagio and Arctic data structures is a good indicator, we
expect a large set of tools to be developed for
manipulating, viewing, creating, and performing scores.

1UNIX is a trademark of A. T. & T. Bell Labs

ICMC °84 Proceedings

The Musician’s Workbench will support computer-
assisted music education, composition, and research, and
will be fully integrated with the 5000-node personal
computer network under construction at CMU. This
means that students and researchers will be able to edit
scores using any machine, most of which will be in offices
and dormitory rooms outside our lab and studio. It also
means that the same system used for music will serve
other computing functions such as document production,
programming development, and computer mail. This
multiplicity of functions will greatly increase the utility of
the overall system.

The cost of the workbench in the 1986 time-frame is
estimated at about $6000 per workstation. It is intended
to provide a system that students can use directly for
studies in composition and orchestration. [n addition, it
will encourage the development of a variety of music
instruction programs by providing convenient program
access to a score editor and sound-generation hardware.

As a composition and performance system, the
workbench will provide excellent tools and high-quality
sound in real time. The Bradford Musical Instrument
Simulator is already in use as a church organ, and as such
it is quite impressive. We intend to develop software for
orchestral and artificial instrument simulation to
supplement the existing software for pipe organs, piano,
and harpsichord simulation.

5. Conclusion

In less than two years, we have made considerable
progress in establishing a computer music curriculum,
constructing research facilities, and producing music. We
owe a tremendous amount of thanks to the Computer
Science Department for providing a superb environment
for computer science research and for the opportunity to
pursue our computer music goals. We owe equal thanks
to the College of Fine Arts and to the Music Department
for encouraging the development of our curriculum and
for providing resources for teaching and performing
computer music.

ICMC ’84 Proceedings

286

