
Probabilistic Workflow Mining

Ricardo Silva∗

School of Computer Science - CALD
Carnegie Mellon University

Pittsburgh, PA 15213

Jiji Zhang*

Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA 15213

James G. Shanahan

Clairvoyance Corporation
5001 Baum Boulevard, Suite 700

Pittsburgh, PA 15213

Abstract

In several organizations, it has become in-
creasingly popular to document and log the
steps that makeup a typical business pro-
cess. In some situations, a normative work-
flow model of such processes is developed,
and it becomes important to know if such a
model is actually being followed by analyz-
ing the available activity logs. In other sce-
narios, no model is available and, with the
purpose of evaluating cases or creating new
production policies, one is interested in learn-
ing a workflow representation of such activ-
ities. In either case, machine learning tools
that can mine workflow models are of great
interest and still relatively unexplored. We
present here a probabilistic workflow model
and a corresponding learning algorithm that
runs in polynomial time. We illustrate the al-
gorithm on example data derived from a real
world workflow.

1 MOTIVATION

Most large social organizations are complex systems.
Every day they perform various types of processes,
such as assembling a car, designing and implement-
ing software, organizing a conference, and so on. A
process is a set of tasks to be accomplished, where ev-
ery task might have pre-requisites within the process
that have to be fulfilled before its execution.

For instance, implementing a database query system
should not be performed before the necessary data
structures are designed. One should not add the doors
to a car before the seats are in place. That is, some
tasks are essentially sequential. But it is fair to say

∗This work was carried out while on internship at Clair-
voyance Corporation.

that building the speakers of a car bears no implica-
tion on the manufacturing of the tires, and vice-versa,
i.e., some tasks can be executed in parallel. More-
over, there are tasks that are mutually exclusive: for
instance, one has to decide if a given share of coffee
harvest is to be exported, or sent to the internal mar-
ket. Some tasks might also be executed in cycles.

To analyze productivity, identify outliers, cut unnec-
essary expenses, and design other production poli-
cies, organizations are often interested in models of
work, i.e., abstract representations of typical process
instances modeling the causal and probabilistic depen-
dencies among tasks. Such models are fundamentally
based on the concepts of sequential, parallel, iterative
(cyclic) and mutually exclusive tasks and are used to
evaluate costs, monitor processes, and predict the ef-
fect of new policies (van der Aalst and van Hee, 2002).
For these reasons, empirically building process mod-
els from data is of great interest. Such a problem has
been called process mining (van der Aalst and We-
jters, 2004; Greco et al., 2004; Herbst and Karagian-
nis, 2004). Another common name is workflow mining,
because the usual representation of work processes is
workflow graphs.

In this paper, we describe a probabilistic model for
workflow graphs, and algorithms for learning such
graphs from data. The setup is similar to other prob-
abilistic graphical models. In Section 2, we introduce
a formal description of workflow graphs and the asso-
ciated generative models. Section 3 describes a data
mining algorithm for learning the structure of work-
flow graphs from data. An empirical study is given in
Section 4. Related work is discussed in Section 5.

2 APPROACH

This section is organized as follows: first, we give a
description of the family of graphs that are allowed in
our framework. This is followed by a probabilistic pa-
rameterization of such graphs. We then describe the

role of temporal information in our approach, followed
by our treatment of hidden variables and noise. We
conclude this section with a concept (called faithful-
ness) that links empirically observable constraints to
graphical structures.

2.1 WORKFLOW GRAPHS

For simplicity, in this paper we will work with acyclic
graphs only. A future extension of this work will cover
the cyclic case.

In a typical process, each task T has pre-requisites, a
set of other tasks whose execution will determine the
probability of T being executed. A workflow graph G
is a directed acyclic graph (DAG) where each task is
a node, and the parents of a node are its direct pre-
requisites. That is, the decision to execute T does not
depend on any (other) task in G given its parents.

Motivated by other workflow representations (see van
der Aalst and Wejters, 2004, for a review) which are
used to model a large variety of real-world processes,
we adopt a constrained DAG representation. Let a
AND/OR workflow graph (AO graph) be a constrained
type of DAG, with any node being in one of the fol-
lowing classes:

• split node, a node with multiple children;

• join node, a node with multiple parents;

• simple node, a node with no more than one parent
and no more than one child;

We require that an AO graph must have exactly one
node that has no parents (a start node) and exactly one
node that has no children (an end node). Informally,
split nodes are meant to represent the points where
choices are made (i.e., where one among mutually ex-
clusive tasks will be chosen) or where multiple parallel
threads of tasks will be spawned. As a counterpart,
join nodes are meant to represent points of synchro-
nization. That is, a join node is a task J that, before
allowing the execution of any of its children, waits for
the completion of all active threads that have J as
an endpoint. This particular property is very specific
to workflow graphs, which we call synchronization

property.

However, not any split-join pattern is permitted. Ev-
ery split node T has also to obey the following con-
straints in an AO graph:

• there must be a node that is a descendant of all
children of T . The end node obviously is one such
node. Among all such nodes, we assume there is

a unique minimal one that is not a descendant of
any other such node. There may also be a node
that is a descendant of more than one, but not all
children of T . Such a node we call a partial join
for T ;

• Let S1 and S2 be any two directed chains from T
to a node V that only intersect at T and V . Then
all nodes in G that are descendants of nodes in
S1 ∪ S2\{T} are either ancestors of V , or descen-
dants of V .

This property is desirable in order to give join nodes
the semantics of real synchronization tasks, i.e., join
nodes as tasks that finalize threads started by the most
recent split node. It essentially enforces nesting of
threads. A case where this assumption is not respected
is illustrated by Figure 1.

...

0

T1 T2

T3

...

T

Figure 1: This construction is not allowed because T1

creates another thread that is not nested between the
split point that generated {T1, T2} and its synchroniza-
tion point T3.

These constraints are the most characteristic con-
straints of workflow graphs adopted in the literature,
and provide distinctive features to be explored by
workflow mining algorithms.

2.2 A PARAMETRIC MODEL OF

WORKFLOW GRAPHS

Each task T is an event. It either happens or it does
not happen. By an abuse of notation, we will use the
same symbols to represent binary random variables
and task events, where T = 1 represents the event
“T happened”. We define a parametric model for a
DAG by the conditional probability of each node given
its parents, i.e. by assuming the Markov condition
(Spirtes et al., 2000). There is, however, a special
logical constraint in workflow graphs.

Let an OR-split be a split node that forces a unique
choice of task to be executed among its children, i.e.,
all of its children are mutually exclusive. Any other

type of split node is called an AND-split1. Children of
OR-splits will have a special parameterization.

Let PaT represent the parents of task T in an AO
graph G. By another abuse of notation, let PaT also
be a random variable representing the joint state of
the parents of a task T , i.e., PaT = j is a particular
combination of binary assignments to the elements of
PaT . In particular, PaT = 0 represents the event
where all parents of T are assigned the value 0. The
basic parametetrization is as follows:

• if T is not a child of an OR-split, P (T = 1|PaT =
j) = Θtj < 1 for j > 0, and P (T = 1|PaT = 0) =
0.

• if T is a child of an OR-split, then by assumption
PaT has an unique element V . Let Choice(V)
be an auxiliary multinomial random variable in
{1, ..., c}, where c is the number of children of
V . Each Choice(•) random variable has its own
multinomial distribution, where the domain of
this function is the set of OR-splits of G. Finally,
define T as being the ith child of PaT . Then
P (T = 1|PaT = 1, Choice(PaT) = i) = Θt < 1,
and 0, otherwise;

The requirement that P (T = 1|PaT = 0) = 0 encodes
the modeling assumption that a necessary condition
for a task to be executed is that at least one of its
parents is executed. This is a very specific charac-
teristic of workflow models and seems appropriate to
model actual real-world processes (van der Aalst and
van Hee, 2002), which we call backward determin-

ism, and the reason why we interpret the parents of
a node as its “pre-requisites”2. Also important, back-
ward determinism will allow us to design an algorithm
to learn workflow graphs in polynomial time.

2.3 TEMPORAL INFORMATION

We assume that the data available for our learning al-
gorithm is a workflow log (Agrawal et al., 1998). A
workflow log consists of records of which tasks were
performed for which process instances at which start-
ing time. For example, the following log

WorkflowLog = {(Car1, BuildChassis, 09:10am),
(Car2, BuildDoors, 10:17am), (Car2, AddSeats,
10:20am), (Car1, BuildDoors, 10:47am)}

1This is an unfortunate choice of names, since OR-splits
actually behave as XOR operators, while an AND-split is
technically an OR choice. We adopt this denomination
since it is already widespread in this field.

2The assumption Θtj < 1 is not an essential assumption
and was introduced here for the purposes of simplifying the
presentation. It does capture the common phenomenon
that any process can be aborted non-deterministically.

contains information concerning two instances
(Car1 and Car2) going through a series of tasks
(BuildChassis, BuildDoors, AddSeats) starting at
differente times.

Workflow logs are by-products of workflow manage-
ment systems (van der Aalst and van Hee, 2002). We
assume that our data source is a workflow log.

2.4 HIDDEN VARIABLES AND NOISE

We allow the possibility that non-simple nodes can be
hidden variables (i.e., split or join nodes might not be
recorded at all in the log). However, for identification
purposes, we make the following assumptions:

1. no hidden AND-split is a child of a hidden AND-
split, and no hidden OR-split is a child of a hidden
OR-split;

2. no hidden task is both a split and join node;

3. no hidden join is followed by a simple task and no
hidden OR-split follows a simple task;

4. there are no hidden partial joins;

These assumptions do not restrict the ability of the
AO graphs to represent any combination of sequen-
tial, parallel or exclusive patterns that appear in prac-
tice. Mathematically, however, they assure that any
AO graph can be distinguished from any other AO
graph given enough data, as will be explained in Sec-
tion 3. Furthermore, we allow the possibility of mea-
surement error. For each task T that is measurable,
we account for the possibility that T is not recorded in
a particular instance even though T happened. That
is, let TM be a binary variable such that TM = 1 if task
T is recorded to happen. Then we have the following
measurement model:

• P (TM = 1|T = 1) = ηTM > 0

• P (TM = 1|T = 0) = 0

Note that we assume measurement error happens only
in one direction. Although that might not be the case
in every application, this greatly simplifies our prob-
lem, and will allow us to learn the structure of work-
flow graphs without fitting latent variable models.

In this sense, every task is hidden. However, in this
paper, the name “hidden task” will be applied only to
tasks that cannot be measured at all. The description
of a workflow model as a specialized hidden Markov
model will be treated in Section 5. Notice also that for
every OR-split T in G, Choice(T) is a hidden variable,

and will not be explicitly represented in AO graphs,
unlike hidden splits and joins.

To identify hidden AND-splits, we need to assume
that the immediate observable descendants of a hidden
AND-split T (i.e., those that do not have an observ-
able proper ancestor that is a descendant of T) should
not be tied by any temporal constraint, i.e., given ob-
servable descendants T1 and T2, the probability that
T1 is executed (starts) before T2 is positive.

We assume that there is also a fixed measurement noise
for the temporal ordering information. For each pair
of tasks T1, T2, there is some probability ε that T1 is
recorded before T2 even though in the true workflow
graph T2 is an ancestor of T1. We will assume that the
noise level is the same for each pair.

2.5 STRUCTURAL INDEPENDENCE

The Markov condition gives us a way of parameter-
izing a probabilistic model as a AO graph. If one is
interested in calculating the effect of a new policy that
changes the probability distribution of some specific
set of tasks, then the Causal Markov condition needs
to be assumed (Spirtes et al., 2000).

If one is interested in a learning algorithm that will
recover the right structure, at least asymptotically, we
have to have some extra assumptions linking the prob-
abilistic distribution of the tasks to the corresponding
graphical structure. For the general case of learning
the structure of DAGs, a sufficient condition for consis-
tent learning is the faithfulness condition. This con-
dition states that a conditional independence state-
ment holds in the probability distribution if and only
if it is entailed in the respective DAG by d-separation
(Spirtes et al., 2000).

We want a similar assumption, because observed con-
ditional independencies can provide information about
the workflow graph underlying the data, but only if
conditional independencies are a result of the work-
flow structure (i.e., if they are entailed by the work-
flow graph). We cannot just assume faithfulness to
d-separation: due to backward determinism, a chain
such as T1 → T2 → T3 encodes that T2 is independent
of T1 given T3 = 1 (because if T3 happened, then by
assumption T2 happened, which means that T1 does
not add any information concerning the distribution
of T2), but T2 is not d-separated from T1 given T3.

Instead, we assume a variation of faithfulness. First,
two definitions: an augmented AO graph is a modifi-
cation of a AO graph G such that, for each OR-split
T we introduce a new node, Choice(T), as a child
of T , and make every original child of T a child of
Choice(T) only. We denote the augmented version of

G by Augmented(G). Also, given Augmented(G), we
say that task A is a sure-ancestor of task B if for ev-
ery ancestor C of B, C is an ancestor of A and A
d-separates C and B, or A is an ancestor of C. We
then assume that Ti is independent of Tj given a set of
tasks T if and only if either of the following situations
hold in the workflow graph G associating such tasks:

• Ti and Tj are d-separated given T in
Augmented(G);

• Ti and Tj are d-separated given a sure-ancestor of
some Tk ∈ T such that Tk = 1;

• Ti (or Tj) is a sure-ancestor of some Tk ∈ T such
that Tk = 1;

The idea embedded in faithfulness is that conditional
independences should be given by the graphical struc-
ture, not by the particular choice of parameters defin-
ing the probability of a task being accomplished. That
d-separation entails conditional independencies is a
well-known result in graphical models (see Spirtes et
al., 2000, for instance). Sure-ancestry also entails in-
dependencies because in an AO graph G, if A is a
sure-ancestor of B, then P (A = 1|B = 1) = 1 in any
probability model parameterized by G.

3 LEARNING AO GRAPHS

Assume for now we have an ordering oracle O for a
workflow graph G such that O(T1, T2) returns true,
false or exclusive as follows:

• if T1 and T2 are immediate observable descendants
of an AND-split, then O(T1, T2) = O(T2, T1) =
true;

• if T1 is an ancestor of T2, then O(T1, T2) = true;

• if O(T1, T2) = true, then T2 is not an ancestor of
T1;

• O(T1, T2) = exclusive if and only if T1 and T2 are
mutually exclusive;

Notice that according to this oracle it is possible to
have O(T1, T2) = true even though T1 is not an ances-
tor of T2, as long as T2 is not an ancestor of T1.

Analogously, assume for now we have an independence
oracle I for a workflow graph G such that I(Ti, Tj , Tk)
is true if and only if Ti and Tj are independent given
Tk = 1. The motivation for defining such oracles is
given by the following theorem:

Theorem 1 Let G1 and G2 be two AO graphs with
respective ordering and independence oracles {O1, I1}

and {O2, I2} over a same set of observable tasks T. If
O1 and O2, and I1 and I2 agree on all queries concern-
ing members of T, then G1 = G2 up to a renaming of
the hidden tasks.

The proof of this theorem is given in Appendix A.

In simple terms, given certain partial information of
ordering and conditional independences among the ob-
servable tasks, one is able to uniquely recover the AO
graphs that represents the workflow.

3.1 MAIN ALGORITHM

With these oracles, we claim that the algorithm
LearnOrderedWorkflow, given in Figure 2, will re-
turn the correct workflow structure.

Algorithm LearnOrderedWorkflow

Input O, an ordering oracle for a set T of tasks;
I , an independence oracle for T;

Output H , an AO graph

1. Let H and GO be two empty graphs, where H has
no nodes and T are the nodes of G0

2. For every pair of tasks Ti and Tj such that O(T1, T2)
if true but not O(T2, T1), add the edge T1 → T2 to G0

3. Let CurrentBlanket be the subset of T whose
elements do not have a parent in GO

4. Add nodes in CurrentBlanket to H
5. H ← HiddenSplits(H,CurrentBlanket, O)
6. GO ← GO −CurrentBlanket
7. While GO has nodes
8. NextBlanket← GextNextBlanket(

CurrentBlanket, GO, O, I)
9. Add nodes in NextBlanket to H

10. Ancestors← Dependencies(CurrentBlanket,
NextBlanket, O, I)

11. H ← InsertLatents(H,CurrentBlanket,
NextBlanket, Ancestors,O)

12. GO ← GO −NextBlanket
13. Let CurrentBlanket be the subse of T whose

elements do not have a child in H
14. H ← HiddenJoins(H,CurrentBlanket, O)
15. Return H

Figure 2: An algorithm for learning AO graphs.

This algorithm makes references to other sub-
algorithms given in Section 3.2. We will first provide
a higher-level description of its steps. The algorithm
works by iteratively adding child nodes to a partially
built graph in a specific order. Initially, the ordering
oracle will tell us which nodes are “root causes” of all
other measurable tasks, i.e., which nodes do not have
any measurable ancestor. Such nodes are identified in
Step 3 of Figure 2. If we have more than one mea-
surable node as a “root cause”, and because an AO
graph requires a single starting point and explicit con-
trol nodes (i.e., AND-splits and OR-splits), it is the
case that unobserved splits have to be added to the

graph. This is done by HiddenSplits.

At each main iteration (Steps 7 - 12), we have a set
of nodes called CurrentBlanket, which contains all
and only the “leaves” of the current workflow graph H ,
i.e., all the task nodes that do not have any children in
H . The initial choice of nodes for CurrentBlanket

are exactly the root causes. The next step is to find
which measurable tasks should be added to H . We are
interested in building the graph by selecting only a set
of tasks NextBlanket such that:

• there is no pair (T1, T2) in NextBlanket where
T1 is an ancestor of T2 in G;

• no element in NextBlanket has an ancestor in
G that is not in H ;

• every element in NextBlanket has an ancestor
in G that is in H ;

We claim that GetNextBlanket, as described
later, returns a set corresponding to these proper-
ties. We still need to identify which elements in
NextBlanket should be descendants of which ele-
ments in CurrentBlanket, and this is accomplished
by Dependencies.

It is quite possible that between nodes in
CurrentBlanket and nodes in NextBlanket

there are several hidden join/split tasks. Such tasks
are detected and added to H by InsertLatents.

This procedure is iterated till all observable tasks are
placed in H . To complete the graph, we just have to
make sure that all tasks are synchronized in a final-
ization task, as required by all AO graphs. If the end
task is not visible, several threads will remain open if
we do not add latent joins. This is accomplished by
the final HiddenJoins call. A sample execution of this
algorithm is given in Appendix B.

3.2 ALGORITHM DETAILS

While mutually exclusive tasks are directly identifi-
able from the ordering oracle, this is not true concern-
ing parallel tasks. If two tasks are potentially paral-
lel, they still might be executed always in the same
order. The only way we can identify parallelism is
by identifying a previous task that make these two
tasks independent. This is the purpose of algorithm
GetNextBlanket, as described in Figure 3.

This algorithm select tasks, but does not indicate
which elements are descendants of which previous
tasks. This is the role of Dependencies (Figure 4).
The fact that the independence oracle condition only
positive values of T2M (Step 3 of Dependencies) is

Algorithm GetNextBlanket

Input CurrentBlanket, a set of tasks;
GO , a DAG encoding ancestral relationships;
O, an ordering oracle;
I , an independence oracle;

Output NextBlanket, a subset of the tasks in GO

1. For every pair of adjacent tasks (T1, T2) in GO

2. Remove the edge between T1 and T2 if and only if
I(T1M , T2M , TiM), where TiM is the measure
of some task Ti ∈ CurrentBlanket and
O(Ti, T1) 6= exclusive, O(Ti, T2) 6= exclusive

3. Return all nodes from GO that do not have parents

Figure 3: Identifying the next set of elements to be
added.

a necessary and sufficient condition. It is necessary
because by our assumptions there might be measure-
ment error when we observe value 0. It is sufficient
because by backward determinism (if a task happens,
all elements in a chain before it also happened), we
do not need to condition on multiple tasks. Figure 5
illustrates an example of this case.

Algorithm Dependencies

Input CurrentBlanket, a set of tasks;
NextBlanket, another set of tasks;
O, an ordering oracle;
I , an independence oracle;

Output AncestralGraph, a DAG

1. Let AncestralGraph be a graph with nodes in
CurrentBlanket ∪NextBlanket

2. For every task T0 in NextBlanket
3. For every task T1 in CurrentBlanket, add

edge T1 → T0 to AncestralGraph if and only if:
i. O(T0, T1) 6= exclusive
ii. There is no task T2 ∈ CurrentBlanket s.t.

O(T1, T2) 6= exclusive, O(T0, T2) 6= exclusive,
and I(T0M , T1M , T2M), where TiM is the
measure of task Ti;

4. Return AncestralGraph

Figure 4: Determining ancestors for a set of new tasks.

This algorithm runs in O(N3), N being the number of
measurable tasks. It also requires simpler statistical
tests of conditional independence than general DAG
search algorithms, since we condition only on single-
tons.

Finally, there are several points in
LearnOrderedWorkflow where we need to introduce
hidden tasks. The algorithm HiddenJoins is shown
in Figure 6. Notice that here we tag nodes according
to their role (“AND-join” and “OR-join”). We do not
show an explicit description of HiddenSplits: this
algorithm is analogous, with the exception that edges

5

1

T0

T2

T3 T3M

T2M

T

T4

5 TT5M

T

Figure 5: An example of why conditioning on a single
element is enough. Here, T3M and T5M are indepen-
dent measures given T2M = 1. If T2M is 1, by assump-
tion we know that T2 = 1, because measurement error
is one-sided. T0 is 1 by backward determinism, which
means that we are effectively asking if T3M and T5M

are independent given T0 = 1, which is entailed by the
graphical structure.

are added in the opposite direction. It is very similar
in principle to an algorithm given by Herbst and
Karagiannis (2004). The algorithm InsertLatents
builds upon HiddenJoins and HiddenSplits. It is
given in Figure 7. The final steps of this algorithm
just verify if a measurable task that has measurable
children actually d-separates them. If not, a hidden
task is introduced.

3.3 PRACTICAL IMPLEMENTATION

The independence oracle can be implemented by sta-
tistical tests of independence, such as the χ2 test.
Given the parameter ε for the noise level, binomial
tests can be used to create an ordering oracle by test-
ing if the probability of task Ti antecedes task Tj given
the instances where both are recorded is larger than ε.

To learn a good level of ordering noise, one can do a
grid search for ε over the interval [0, 0.5] and heuristi-
cally choose the one that maximizes some measure of
fitness, such as a posterior probability for the output
model (using a Dirichlet prior for the parameters, for
instance), or some other measure that relies on inde-
pendence constraints only, which is the basis of our
model. For instance, by adjusting ε one could try to
bring the set of independence constraints that are en-
tailed by the output graph as close as possible to the
ones judged to hold in the data. This does not re-
quire fitting a latent variable model and is not subject
to constraints other than independence constraints.
Learning ε will be treated in detail in a future work.

An important practical issue is how to avoid outputing
invalid AO graphs, which can be due to deviations
from the assumptions or statistical mistakes. Due to
lack of space, we omit a discussion of the necessary
conditions that the ordering and independence oracles

Algorithm HiddenJoins

Input H , a DAG;
S, a set of nodes;
O, an ordering oracle;

Output H , a DAG

1. (H,NewJoin)← JoinStep(H, S, O)
2. Return H

Algorithm JoinStep

1. If S has only one element S0

Return (H,S0)
2. Let M be a graph having elements of S as nodes,

and with an undirected edge between a pair of
nodes {S1, S2} if and only O(S1, S2) 6= exclusive

3. Let NewLatent be a new latent node, and
add it to H

4. If M is disconnected
5. M ′ ←M
6. Tag NewLatent as “OR-join”
7. Else
8. M ′ ← the complement of M
9. Tag NewLatent as “AND-join”

10. For each component C of M ′

11. If C has only one node C0

12. Add edge C0 → NewLatent to H
13. Else
14. (H,NextLatent)← JoinStep(H, C, O)
15. Add edge NextLatent→ NewLatent to H
16. Return (H,NewLatent)

Figure 6: An algorithm for inserting required join
nodes.

should satisfy to generate a valid AO graph.

4 EXPERIMENT

Workflow data is not as easy to obtain as other data
sources. In this paper, we perform a simulated study
based on a theoretical workflow that models the an-
nual process of writing final reports at Clairvoyance
Corporation. The process basically consists of parallel
threads of preparing documents, preparing summaries,
booking flights and hotel rooms for an annual work-
shop hosted by the parent company of Clairvoyance
in Japan. The graph was constructed by manually
analysing e-mail logs exchanged among the company’s
employees over the course of four projects. The details
are given in Appendix C.

There are 15 observable and 2 hidden tasks, with no
mutually exclusive tasks and no measurement noise
(the algorithm still assumes the possibility of noise).
One task (Printing materials) naturally happens much
later than the actions of booking flights and hotels,
even though there is no temporal constraint that dic-
tates that printing should be performed only after

Algorithm InsertLatents

Input H , a DAG H ;
CurrentBlanket, NextBlanket, two sets;
AncestralGraph, a DAG;
O, an ordering oracle;

Output a DAG H

1. For every task T ∈ NextBlanket
2. Let Siblings be the set of elements in

NextBlanket that have a common parent
with T in AncestralGraph

3. Let AncestralSet be the set of parents of
Siblings in AncestralGraph

4. (H, JoinNode)← HiddenJoins(H, AncestralSet,O)
5. (H, SplitNode)← HiddenSplits(H,Siblings, O))
6. Add edge JoinNode→ SplitNode to H
7. NextBlanket← NextBlanket− Siblings
8. For every set C of observable tasks, |C| > 1,

that are children of a single hidden node PaH

that is child of an observable task Pa in H
9. If all pairs in CM are independent conditioned on

PaM = 1, CM being the set of respective measures
of C and PaM the measure of Pa,

10. Add edges Pa→ Ci for every Ci ∈ C
11. Remove latent PaH

12. Return H

Figure 7: An algorithm to introduce required hidden
tasks between two layers of measurable tasks.

travel is arranged. Many other workflow approaches
(van der Aalst and Wejters, 2004) would be deceived
by this temporal information, i.e., they would regard
the two tasks as strictly sequential when in fact they
are not.

The graph is parameterized by a single parameter α
that gives the probability of a task being executed
given its pre-requisites. In our model, a necessary con-
dition for any task is that all of its parents have to be
performed. We simulated samples of size of 100, 200
and 500 and with α = {0.9, 0.95}3. We do not intro-
duce noise in the time order of the samples, since this
will only be explored in full detail in the future.

The independence oracle is implemented by a χ2 test
using a significance level of 0.05. We ran 10 trials
for each configuration, and evaluated the true model
against the output of our algorithm, assuming the or-
dering information is correct, by the following criteria:
number of edges between measurable tasks in the true
graph that are not in the estimated graph (edge omis-
sion, out of 12 possible edges); number of edges be-
tween measurable tasks in the estimated graph that
are not in the true graph (edge omission); number

3The value of α cannot be too small, or otherwise we will
need large sample sizes in order to have a relatively large
number of instances that are completed. Workflows with
large chains will usually have some deterministic steps.

of measurable pairs that share a common parent in
the true graph but not in the estimated graph (sibling
omission). Sibling comissions did not happen in our
experiments. The results are: for sample size 100 and
α = 0.95, the average edge omission was 5.1 (2.1 of
standard deviation); the average edge comission was
1.7(0.7) and the average sibling omission was 2.6(1.4).
For sample size 100, α = 0.9, we had 4.9(2.6), 0.7(1.1)
and 2(1.4). For sample size 200, and α = 0.95, we got
0.4(0.5), 0.1(0.3), 0.1(0.3). For sample size 200 and
α = 0.9, we got edge omission error of 0.2(0.4) and
no other error. For sample size 500, we got the ex-
act graph in all 10 trials for both values of α. In the
experiments, missing edges usually implied sequential
tasks being treated as parallel.

The results are convincing, but it is still of interest
to obtain more robust outcomes with smaller sample
sizes. We plan to pursue Bayesian approaches in an
extended version of this framework.

5 RELATED WORK

Agrawal et al. (1998) introduced the first algorithm for
mining workflow logs. Greco et al. (2004) approach
the problem using clustering techniques. A broad sur-
vey on the current work in workflow mining, or process
mining, is given by van der Aalst and Wejters (2004).
None of the approaches in that survey are based on a
coherent probabilistic model. Instead, they use a vari-
ety of heuristics to deal with noise, while focusing on
deterministic models such as Petri nets.

Herbst and Karagiannis (2004) use a representation
very similar to AO graphs with cycles. While some
probability distribution is informally applied to define
the likelihood of a workflow graph, this likelihood is
not used anywhere in learning the structure of work-
flow graphs as defined in our paper.

It is clear that workflow models could be represented
by off-the-shelf methods such as dynamic Bayesian
networks and stochastic Petri nets. In particular, the
factorial hidden Markov model (Ghahramani and Jor-
dan, 1997) seems to naturally apply to the problem of
modeling parallel threads of tasks. However, workflow
modeling has its own particular issues that are not
efficiently explored by generic dynamic Bayesian net-
works: instances have a well defined beginning and
end; the synchronization property; backward deter-
minism, which naturally applies to many real-world
problems; the fact that the “hidden states” of a work-
flow model are in general associated with one “visible
symbol” only. Even if a same task might be gener-
ated under different contexts, as explored by Herbst
and Karagiannis (2004), this is the exception, not the
rule, and it seems wasteful to arbitrarily allow hidden

states of a workflow-like dynamic system to be able to
generate any symbol. A generic dynamic model would
not be as statistically efficient as a constrained model.

Moreover, one is often interested in understanding the
causal chains of a business process. For instance, a
generic factorial hidden Markov model with a fixed
number of chains would be a very opaque model to
provide such understanding, even if the fit is good.

6 CONCLUSION

We have presented an algorithm for learning workflow
graphs that makes use of a coherent probability model.
To the best of our knowledge, this is the first approach
with such a property. Results from a real world work-
flow are very encouraging.

Several extensions are planned for a near future: more
extensive experiments, learning with cycles, showing
consistency of the learning algorithm and Bayesian
variations. A very interesting problem is to determine
identifiability conditions for learning semantic roles for
tasks, i.e., how tasks can appear in multiple parts of a
workflow model depending on context. Ultimately, we
also want to extract a task ontology from text data ob-
tained from groupware and e-mail software, therefore
creating workflow logs from free text data.

References

van der Aalst, W. and Wejters, A. (2004). “Process
mining: a research agenda”. Computers and Industry
53(3):231-244.

van der Aalst, W. and van Hee, K. (2002). Workflow
Management: Models, Methods and Systems. MIT
Press.

Agrawal, R; Gunopulos, D. and F. Leymann (1998).
“Mining process models from work-flow logs”. Proc. of
6th International Conference on Extending Database
Technology, 469-483.

Greco, G.; Guzzo, A.; Pontieri, L. and Sacca, D.
(2004). “Mining expressive process models by clus-
tering workflow traces”. Proc. of the 8th PAKDD.

Ghahramani, Z. and Jordan, M.I. (1997). “Factorial
hidden Markov models”. Machine Learning 29.

Herbst, J. and Karagiannis, K. (2004). “Work-
flow mining with InWoLvE”. Computers and Industry
53(3):245-264.

Spirtes, P.; Glymour, C. and Scheines, R. (2000). Cau-
sation, Prediction and Search. MIT Press.

Appendix A: Proof of the Theorem 1

Theorem Let G1 and G2 be two AO graphs with
respective ordering and independence oracles {O1, I1}
and {O2, I2} over a same set of observable tasks T.
If O1 and O2, and I1 and I2 agree on all queries
concerning members of T, then G1 = G2 up to a
renaming of the hidden tasks.

We will do induction on the number of observ-
able tasks to prove the proposition. For that purpose,
we need a few lemmas. The first two lemmas show
that the start tasks in the two graphs are identical.
Let s1 be the start task in G1, and s2 the start task
in G2.

Lemma 1 Either s1 = s2 ∈ T, or they are both hid-
den tasks.

Proof One of the following two cases must obtain.
Case 1: s1 and s2 are both observable. Then s1

is the unique common predecessor of all observable
tasks according to O1, and s2 is the unique common
predecessor of all observable tasks according to O2.
Because O1 and O2 agree, s1 = s2.
Case 2: One of them, say s1 without loss of generality,
is hidden, then by our assumption it must be a split
and there is NO observable task that is a common
predecessor of all observable tasks according to O1

(this follows from our assumption about the immedi-
ate observable descendants of an AND-split). Because
O1 and O2 agree, there is no common observable
predecessor according to O2. It follows that s2 is not
observable.
Therefore, either s1 = s2 ∈ T, or they are both
hidden. 2

Lemma 2 s1 is an AND-split iff. s2 is an AND-split.
Similarly, s1 is an OR-split iff. s2 is an OR-split.

Proof By Lemma 1, we only need to consider two
cases:
Case 1: s1 and s2 are both hidden. It suffices to show
that it cannot be the case that one of them is an
OR-split while the other is an AND-split. For the sake
of contradiction, suppose, without loss of generality,
s1 is an OR-split and s2 is an AND-split. Then there
exist two immediate observable descendants of s1,
T1, T2 ∈ T, that are mutually exclusive according
to O1. Because O2 agrees with O1, T1 and T2 are
also immediate observable descendants of s2 in G2,
which means they are in the split-join session initiated
by s2 in G2. Furthermore, they are also mutually
exclusive according to O2, so they cannot belong to
different threads in that split-join session, since s2 is
an AND-split. So there must be another immediate

observable descendant of s2, T3 ∈ T, such that it is
in parallel with both T1 and T2 according to O2. It
follows that T3 is in the split-join session initiated
by s1 in G1, and is in parallel with both T1 and T2

according to O1. But this is impossible, because T1

and T2 are in different threads of that OR-split-join
session initiated by s1. Hence either they are both
AND-splits, or they are both OR-splits.
Case 2: s1 = s2 = T ∈ T. By symmetry, we only
need to rule out three scenarios: (i) T is an OR-split
in G1 but an AND-split in G2; (ii) T is an OR-split
in G1 but a simple task in G2; (iii) T is an AND-split
in G1 but a simple task in G2. (i) can be ruled out
by rehearsing the arguments in case 1. In the case of
(ii) and (iii), notice that T may not be followed by an
observable task in G2, for otherwise that observable
task will be the unique common predecessor of all
observable tasks but T according to O2 but will
not be such according to O1. Furthermore, by our
assumption, T , as a simple task in G2, may not be
followed by a hidden OR-split, so it can only be
followed by a hidden AND-split in G2. (ii) can thus
be ruled out by rehearsing the arguments in case 1,
since T is an OR-split in G1. For (iii), notice that
some immediate observable descendants of T will be
independent conditional on T = 1 according to I1,
but dependent conditional on T = 1 according to I2.
Hence (iii) contradicts the assumptions, too. 2

Suppose, for the moment, that s1 and s2 are
both splits. Let ji be the (full) join that synchronizes
the split initiated by si in Gi, i = 1, 2. We define
a thread of the split-join session between si and ji

to be the subgraph between si and any parent of ji

(over the ancestors of that parent of ji). A thread,
under this definition, can contain any number of
(observable) partial joins of the split initiated by si.
It is easy to see that each thread is either an AO graph
or of the simple form si → T , where si is hidden.
Furthermore, by our enforcement of nesting of splits
and joins, it is easy to see that different threads will
only intersect at the starting point si. The next two
lemmas concern the observable tasks that appear in
the split-join session, and in particular, in each thread
of the session.

Lemma 3 Suppose s1 and s2 are both splits. For any
T ∈ T, T is in the split-join session initiated by s1 in
G1 iff. T is in the split-join session initiated by s2 in
G2.

Proof Let IODi be the set of immediate observ-
able descendants of si in Gi, i = 1, 2. Because O1 and
O2 agree, IOD1 = IOD2. Hereafter we will drop the
subscripts and write IOD. By our assumption, any
member in IOD must be in the split-join session initi-

ated by si, otherwise there exists some observable task
that lies in between. So for any T ∈ T, if T ∈ IOD,
then it is in the split-join session in G1 iff. it is in the
split-join session in G2. If T /∈ IOD, there are two
cases to consider: (i) s1 and s2 are both AND-splits.
In this case, if T is in the session initiated by s1 in G1

but not in the session initiated by s2 in G2, then there
exist T1, T2 ∈ IOD such that T is independent of T2

conditional on T1 according to I1, but T is dependent
of T2 conditional on T1 according to I2. (Specifically,
let T1 be an immediate observable descendant of s1 in
the same thread as T is in G1, and T2 be an immedi-
ate observable descendant of s1 in any other thread.)
Hence a contradiction. By symmetry, it may not be
the case either that T is in the session initiated by
s2 in G2 but not in the session initiated by s1 in G1.
(ii) s1 and s2 are both OR-splits. In this case, if T
is in the session initiated by s1 in G1 but not in the
session initiated by s2 in G2, then T will be mutually
exclusive with some member in IOD according to O1,
but will not be mutually exclusive with any member
in IOD according to O2. Hence a contradiction. By
symmetry, it may not be the case either that T is in
the session initiated by s2 in G2 but not in the session
initiated by s1 in G1. 2

Lemma 4 Suppose s1 and s2 are both splits. For any
T1, T2 ∈ T that are in the split-join session initiated by
the start task in both graphs, they are in a same thread
of that session in G1 iff. they are in a same thread of
that session in G2.

Proof Let IOD be the set of immediate observable
descendants of s1 (and s2) according to O1 (and O2).
By Lemma 2, we only need to consider two cases:
Case 1: s1 and s2 are both AND-splits. We first show
that if T1, T2 ∈ IOD, then it is not the case that they
are in the same thread in one of the graphs but not
in the other graph. Suppose otherwise and, without
loss of generality, that T1 and T2 are in the same
thread in G1 but not in the same thread in G2. It
follows that O1(T1, T2) and O1(T2, T1) are both true.
Because O1 agrees with O2, we also have O2(T1, T2)
and O2(T2, T1). Since T1 and T2 belong to the same
thread initiated by s1 in G1 and are both in IOD,
there must be an OR-split that lies between s1 and
T1, T2, as an AND-split cannot immediately follow
another AND-split. This implies that there exists
T3 ∈ IOD that is mutually exclusive with both T1

and T2 according to O1. However, because T1 and
T2 belong to different threads initiated by s2, an
AND-split, in G2, it is impossible that a task can be
mutually exclusive with both of them according to
O2. Hence a contradiction. Thus, if T1, T2 ∈ IOD,
then they are in a same thread in G1 iff. they are in
a same thread in G2.

Now suppose at least one of them, say T1 without
loss of generality, is not in IOD. If T1 and T2

belong to different threads in G1, then there exists
T3 ∈ IOD such that T1 and T3 are in parallel and T1

is independent of T2 conditional on T3 according to
I1. On the other hand, if T1 and T2 belong to the
same thread in G2, the only way that T3 could render
them independent is that T3 and T2 are two children
of an OR-split, but in that case they will be mutually
exclusive. So T1 and T2 must belong to the same
thread in G2, too. By symmetry, the converse also
holds.
Case 2: s1 and s2 are both OR-splits. If T1 and
T2 belong to different threads in G1, then they are
mutually exclusive according to O1, which means they
are also mutually exclusive according to O2. So, if on
the other hand T1 and T2 belong to the same thread
in G2, then there must be an AND-split in between
s2 and the (yet another) OR-split that splits T1 and
T2 because an OR-split cannot immediately follow
another OR-split. This implies that there exists T3

such that it is not mutually exclusive with either T1

or T2 according to O2. However, because T1 and T2

belong to different threads in G1, it is impossible
that T3 is not mutually exclusive with either T1 or T2

according to O1. Hence a contradiction. 2

Finally, we need a lemma about ji’s that com-
plete the split-join sessions initiated by si’s.

Lemma 5 Suppose s1 and s2 are both splits. Let j1
be the (full) join that synchronize the splits initiated
by s1 in G1, and j2 be the (full) join that synchronize
the splits initiated by s2 in G2. Then either j1 and j2
are the same observable task or they are both hidden.

Proof Two cases to consider:
Case 1: Suppose j1 and j2 are both observable. So
ji is the descendant of all observable tasks within the
split-join session initiated by si and the ancestor of
all other observable tasks, i = 1, 2. By Lemma 3, the
set of observable tasks within the split-join session
initiated by s1 is the same as the set of observable
tasks within the split-join session initiated by s2. It
follows that j1 = j2, otherwise O1 does not totally
agree with O2.
Case 2: Suppose one of them, say j1 without loss of
generality, is hidden. In this case, if j2 is observable,
then j2 must immediately follow j1 in G1, otherwise
O1 and O2 do not agree. By our assumption, j2

may not be a simple task. If it is an OR-split, then
in G2 a hidden-OR must immediately follow j2 (by
arguments very similar to those in previous lemmas),
which, however, is ruled out by our assumption. If
j2 is an AND-split in G1, then some tasks after j2
will be independent conditional on j2 according to

I1, but dependent conditional on j2 according to I2.
A contradiction. Therefore, j2 must be hidden, too. 2

We now prove the main proposition by induc-
tion on the number of observable tasks n. It is easy
to see that n ≥ 2 by our assumptions.
Base case: n = 2. Let T1 and T2 be the two observ-
able tasks. Only four AO graphs are compatible with
our assumptions (up to a renaming of latent tasks):
(1) T1 → T2; (2) T2 → T1; (3) T1 and T2 are two
threads of an AND split-join session with a hidden
split (start task) and a hidden join (end task); (4) T1

and T2 are two threads of an OR split-join session
with a hidden split (start task) and a hidden join
(end task). Obviously each graph entails a different
ordering relationship between T1 and T2. So, if O1

and O2 agree, then G1=G2 up to a renaming of the
hidden tasks.
Inductive Step: Suppose the proposition holds for
n ≤ m. Let n = m + 1 ≥ 3. There are three cases:
Case 1: s1 is a simple task in G1. By Lemmas 1 and
2, s1 = s2 = T and T is also a simple task in G2. It is
easy to see that the subgraph of G1 over T\{T} and
the subgraph of G2 over T\{T} are also AO graphs
(since n ≥ 3). By the inductive hypothesis, they
are identical up to a renaming of hidden tasks. It
follows that G1 = G2 up to a renaming of hidden tasks.

Case 2: s1 is a split, and the split is joined be-
fore reaching the end task in G1. By Lemmas 1,
2 and 5, s2 is also a split, and the split is joined
before reaching the end task in G2. Let Ti be the
set of observable tasks that belong to the split-join
session initiated by si in Gi (including the initial
split and the final join), i = 1, 2. It follows from
Lemmas 1, 2, 3 and 5 that T1 = T2. By the inductive
hypothesis, the subgraph of G1 over T1 is the same
as the subgraph of G2 over T2 up to a renaming, and
the subgraph of G1 over T\T1 is the same as the
subgraph of G2 over T\T2 up to a renaming. (Note
that there is a special case where the subgraphs over
T\Ti only contain one observable task, and hence the
inductive hypothesis is not applicable. But in that
case, the two subgraphs are trivially identical.) It
follows that G1 = G2 up to a renaming of hidden tasks.

Case 3: s1 is a split, and the split is joined at
the end task in G1. By Lemmas 1, 2 and 5, s2 is
also a split, and the split is joined at the end task in
G2. By Lemma 3, for each thread of that split-join
session in G1, there is a thread of the split-join
session in G2 such that the two threads involve the
exactly same observable tasks, and vice versa. By
the inductive hypothsis, the two threads (subgraphs)
are the same up to a renaming of hidden tasks.

(Again, there is a special case where the inductive
hypothesis is not applicable. That is, the threads are
of the form si → T , and si’s are hidden. In this case
the two subgraphs are trivially identical.) So in to-
tal G1 = G2 up to a renaming of hidden tasks. Q.E.D

Appendix B: An algorithmic example

We will now go through an example of how
LearnOrderedWorkflow works. Assume for now that
the graph G in Figure 8 corresponds to the true gener-
ative model, from which we know the ordering oracle
O and the independence oracle I for tasks {1, . . . , 12}.
We will demonstrate how LearnOrderedWorkflow is
able to reconstruct G out of O and I .

1

2

3

4

5

6 8 10

12

7 9 11

Figure 8: An example of an AO graph. Nodes without
label represent hidden tasks.

Suppose that the directionality graph GO is given in
Figure 9. Notice that even though elements in {8, 10}
are concurrent to elements in {9, 11}, there is a to-
tal order among these elements: 8 → 9 → 10 → 11,
according to O. 6 and 7 are not connected because
by assumption they should happen in either order a
frequent number of times. We consider this assump-
tion to be reasonable (at the moment of the split, tasks
should be independent, and therefore no fixed time or-
der implied). However, contrary to a naive workflow
mining algorithm, we do not require, for instance, that
6 and 11 are recorded in random orders. This type
of assumption seems considerably more artificial, be-
cause tasks in one chain might take much longer than
tasks in another chain, and a specific order may arise
naturally.

In the initial step, the set CurrentBlanket will con-
tain tasks {1, 2, 3, 4, 5}. The HiddenSplits algorithm
will work as follows: a graph M will be created based
on O and tasks {1, 2, 3, 4, 5}. M and its complemented
are shown in Figure 10. Since M is disconnected, it
will be the basis for the recursive call. We are going
to insert an hidden OR-split separating {1, 2, 3} and
{4, 5} at the return of the recursion, as depicted in
Figure 11.

Consider the new call for HiddenSplitsStep with ar-
gument S = {1, 2, 3}. The corresponding graphs M
and MC are now shown in Figure 12. M is not dis-
connected, but MC is. This will lead to an insertion

5

2

3

4

1

6 8 10

7 9 11

12

Figure 9: An ordering relationship for the graph in
Figure 8. We do not represent explicitly the edges
between elements in {1, 2, 3, 4, 5} and {8, 9, 10, 11} in
order to avoid cluttering the graph. The indication of
extra edges is symbolized by the unconnected edges
out of elements in {1, 2, 3, 4, 5}.

M

1

2

4

3

5

1

2

4

3

5

MC

Figure 10: Graphs M and its complement MC in
HiddenSplits for the first CurrentBlanket set.

of an AND-split separating sets {1} and {2, 3} and
another recursive call for {2, 3}.

At the end of the first HiddenSplits, H will be given
by the graph show in Figure 13. We now proceed to
insert the remaining nodes into H .

From the ordering graph of Figure 9, we will choose
as the next blanket the set {6, 7, 12}. Since they are
not connected by any edge in Figure 10, we did not
need to do any independence test to remove edges be-
tween them. When computing the direct dependencies
between {1, . . . , 5} and {6, 7, 12}, since no conditional
independence holds between elements in {6, 7, 12} con-
ditioned on positive measurements of any element in
{1, 2, 3, 4, 5}, all elements in {1, 2, 3, 4, 5} will be the
direct dependencies of each element in {6, 7, 12}.

We now have to perform the insertion of possible la-
tents between {1, 2, 3, 4, 5} and {6, 7, 12}. There is
only one set Siblings in InsertLatents, {6, 7, 12}, and
one AncestralSet, {1, 2, 3, 4, 5}. When inserting hid-
den joins for elements in AncestralSet, we will per-
form an operation analogous to our previous exam-
ple of HiddenSplits, but with arrows directed in the

1

4

2 3

5

To recursive call

To recursive call

Figure 11: The first call of HiddenSplitsStep will sep-
arate set {1, 2, 3, 4, 5} as {1, 2, 3} and {4, 5}.

M

1

2 3 2 3

11

2 3

M
C

To recursive call

Figure 12: Graphs M and MC corresponding to S =
{1, 2, 3} in HiddenSplitsStep.

opposite way. The modification in shown in Figure
14(a), while Figure 14(b) depicts the modification of
the relation between {6, 7, 12}. The last step of our
InsertLatents iteration simply connects the childless
node of Figure 14(a) to the parentless node of Figure
14(b).

Again, we proceed to add more observable tasks in
the next cycle of LearnOrderedWorkflow. The can-
didates are {8, 9, 10, 11}.

By Figure 9, all elements in {8, 9, 10, 11} are adjacent.
However, by conditioning on singletons from {6, 7, 12}
we can eliminate edges {8 → 9, 9 → 10, 8 → 11, 10 →
11}. The parentless nodes in this set are now 8 and 9,
instead of 8 only. CurrentBlanket is now {6, 7, 12}
and NextBlanket is {8, 9}.

When determining direct dependencies, we first select
{6, 7} as the possible ancestors of {8, 9}. Since 8 and
7 are independent conditioned on 6, and 9 and 6 are
independent conditioned on 7, only edges 6 8 and 7
9 are allowed. Analogously, the same will happen to
8 → 10 and 9 → 11. Graph H , after introducing
all observable tasks, is shown in Figure 15. After in-
troducing the last hidden joins in the final steps of
LearnOrderedWorkflow, we reconstruct exactly the
original graph in Figure 8.

Appendix C: the Clairvoyance model

This is a workflow based on a real-world process.
Every year, researchers at Clairvoyance Corporation
prepare a set of documents for their annual meet-
ing in Japan at the headquarters of the parent com-
pany, JSC. By observing e-mail messages exchanged
among researchers and managers concerning four dif-
ferent projects, we designed a theoretical model of the

1

2

3

4

5

Figure 13: The partially constructed graph H .

(b)

1

2

3

4

5

12

6

7

(a)

Figure 14: Inserting latents between two layers of ob-
servable tasks.

process, as depicted in Figure 16.

This model includes 15 observed tasks:

1. Request for reports

2. Request for accomplishments (acc.), which is a
short report summarizing the main ideas behind
the respective projects

3. Request for slides

4. Buy folders (to organize and store the documents)

5. Set JSC meetings (i.e., propose starting and end
dates of the annual meeting)

6. Report draft

7. Report accomplishments

8. Slide draft

9. Meeting agreement

10. Report review (final corrections of the draft)

11. Slide review

12. Book hotel

13. Book flight

14. Print documents

15. Present documents (in the meeting)

1

2

3

4

5

12

6 8 10

7 9 11

Figure 15: The graph H after introducing all observ-
able tasks and just before introducing the last hidden
joins.

Present documents

Print

Request for reports Request for acc. Request for slides Buy folders SetJSC meetings

Report draft

Report review Slide review

Meeting agreementSlide draft

Report acc.

Book hotel Book flights

Figure 16: A simplified workflow model of the process
of document preparation at Clairvoyance Corporation.

Notice that it is usually the case that the task “Buy
folders” does not affect how booking flights and hotels
is done. However, it is always the case that folders are
bought way in advance flights and hotels are booked.
Therefore, a simple workflow learning algorithm that
uses nothing but ordering information (and there are
several in the literature) will erroneously indicate that
“Buy folders” is a pre-requisite for booking a flight. In
this case, prior knowledge can be used to detect this
inconsistenty, but in general this will not be the case.
(“Buy folders” is a pre-requisite for “Print documents”
in our case: documents are not usually printed before
folders for storage are available).

The original model had cycles (between creating doc-
ument drafts and reviewing them). We removed them
from the experiment since the current paper deals only
with the acyclic case. The actual process in Clair-
voyance is deterministic: in every year, all steps are
accomplished. In the simulations, we add some inde-
terminism for task execution.

