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Abstract—A power-law graph is any graph G = (V, E), whose

degree distribution follows a power law i.e. the number of vertices

in the graph with degree i, yi, is proportional to i��
: yi / i��

.

In this paper, we provide information-theoretic lower bounds

on the sample complexity of learning such power-law graphical

models i.e. graphical models whose Markov graph obeys the

power law. In addition, we briefly revisit some existing state of

the art estimators, and explicitly derive their sample complexity

for power-law graphs.

I. INTRODUCTION

Undirected graphical models, also known as Markov Random
Fields (MRFs), are useful tools for representing multivariate
probability distributions. These models compactly represent a
joint distribution using clique-wise functions over an undirected
graph which captures the dependencies among the variables.
The task of graphical model selection is to infer this underlying
dependency graph (called the Markov graph) based on data
drawn from the corresponding distribution. This task is espe-
cially difficult in high-dimensional settings where the number
of observations, n is typically even smaller than the number
of variables p. In this paper, we study the graphical model
selection problem in the setting where the underlying graph
structure follows a power-law. A power-law graph [1], [2] is
any graph G = (V,E), whose degree distribution follows a
power law i.e. the number of vertices in the graph with degree
i, yi, is proportional to i�� : yi / i�� . Here, � > 1 is some
fixed constant, also called the power-law exponent of the graph.
Power-law graphs have been seen to occur in several real-world
scenarios e.g. internet graphs [3], biological networks [4] and
several social networks [5].

The sample complexity of existing sparse model estimators
[6], [7], [8], [9] scales at least linearly with the maximum node-
degree, and for discrete models it even scales quadratically and
cubically. For power-law graphs however, the maximum node
degree is not bounded, and could be very large. Motivated by
this, there have been a few M-estimators that explicitly target
power-law graphical model estimation. [10] propose a novel
non-convex regularization different from the `

1

norm motivated
by the power-law degree distribution, a convex variant of
which was considered in [11], but their experimental results
while better than `

1

regularization based methods, demonstrated
considerable room for improvements. In gist, there seems to

be a lack of efficient estimators for power-law graphical model
estimation, with clean guarantees as for degree-bounded graphs.

In this paper, we ask the following converse question: how
difficult are power-law graphical models to learn? Specifically,
our goal is to provide information-theoretic lower bounds on
the sample complexity of learning such power-law models.
Such bounds are needed not just to characterize difficulty of
learning, but also to provide a sample complexity target for
practical estimators, and to check whether existing estimators
are already optimal.

Our main set of contributions are two sets of lower bounds.
The first is for the broad class of power-law graphs, as specified
by the standard (↵,�) class of graphs [2]. Our second set
of lower bounds are for graphs drawn from the Chung Lu
model [12]. In addition, we also revisit some of the afore-
mentioned state of the art estimators, and explicitly derive
their sample complexity for power-law graphs. These results
thus pose the outstanding question of efficient estimators for
power-law graphical model selection in sharp relief.

II. PRELIMINARIES
Suppose X = (X

1

, . . . ,Xp) is a random vector, with each
variable Xs taking values in a set X . Suppose G = (V,E) is an
undirected graph over p nodes corresponding to the p variables,
and let C be a set of cliques (fully-connected subgraphs) of
the graph G. A graphical model distribution over X , given the
graph G, is then specified by a set of clique-wise functions
{ c(xc), c 2 C}, and takes the form

P(x;G) /
Y

c2C
 c(xc) . (1)

Note that xc corresponds to the subset of variables in the
clique c. We shall denote by PG some canonical graphical
model distribution with markov graph G. Let G denote the
set of graphs over the p nodes, and suppose nature picks a
graph G from this set according to some specified distribution
over G. We as the statistician observe n i.i.d. samples X =

(X(1), . . . ,X(n)

) drawn from the graphical model distribution
PG. The goal of the statistician is to come up with an efficient
graph structure estimator � : Xnp ! Gp, which is a function
that takes the data as input, and has a graph in G as the
output. Suppose we evaluate the estimator with the 0-1 loss,



I[�(X) 6= G]. The expected loss is then the probability of
incorrect graph selection, P [�(X) 6= G]. Our goal is to provide
information-theoretic lower-bounds on this probability, and in
particular provide a lower bound on the number of samples n,
so that if the number of samples n is smaller than the lower
bound, then this probability of error asymptotically goes to 1.

First, we review some standard random graph distributions
used in power-law network analysis.

A. Standard Random Power Law Graph Models
In this section, we describe two offline models (i.e. models

for a fixed number of nodes) for generating power law graphs.
1) Uniform Distribution and the Configuration Model: A

natural way to study power-law graphs that satisfy degree
requirements strictly is through (↵,�)-graphs [13], which are
defined using two parameters : ↵ and �. ↵ influences the
number of vertices in the graph, and � is the power-law
exponent. A graph G = (V,E) is said to be an (↵,�)-graph
if it satisfies

yi =

�
e↵

i�

⌫
8 i 2 {1, . . . ,�}, (2)

where yi is the number of vertices in G with degree i and �

is the maximum degree. Then, �  be↵/�c. Note that fixing
an ↵ and � fixes the number of nodes, p and the number of
edges, m in an (↵,�) graph as :

p =

�X

i=1

yi =

�X

i=1

�
e↵

i�

⌫
,

m =

1

2

pX

i=1

di =

1

2

�X

i=1

i.yi =

1

2

�X

i=1

i

�
e↵

i�

⌫
.

(3)

The following lemma establishes inequalities between p, m,↵
and �.

Lemma 1. Given an (↵,�)-graph G = (V,E) with |V | = p
and |E| = m, we have

For � > 1, p  e↵�

� � 1

.

For � > 2, m  1

2

e↵
(� � 1)

� � 2

.

Also, p � e↵ and m � 1

2

e↵.

For any graph G = (V,E) with |V | = p, a degree sequence
D = (d

1

, d
2

, . . . , dp) represents an assignment of degrees to
the vertices of G i.e. the ith vertex has degree di. A degree
sequence D is said to be an (↵,�)-sequence if any graph
that is realized with this degree sequence is an (↵,�)-graph.
In other words, for D to be an (↵,�)-sequence, for every
i 2 {1, . . . ,�}, we must have i occurring in yi (= be↵/i�c)
number of positions in D. Note that, for a fixed ↵ and �, the
total number of different (↵,�)-sequences is

p!

Q
�

i=1

(yi!)
. (4)

Let us denote by GU (↵,�), the uniform distribution over
all (↵,�)-simple graphs. Also, for a fixed (↵,�)-sequence D,

let us denote by GU (↵,�, D), the uniform distribution over all
(↵,�)-simple graphs that satisfy the specific degree distribution
D. Ideally, we would like a model that generates a graph as
per GU (↵,�, D) (and by a simple extension, as per GU (↵,�)).
However, this is not easy to do for any degree sequence D, and
a common way to examine random graphs with given degree
sequence D is through the Configuration model [14].

For any degree sequence D, the configuration model imposes
a distribution on the set of all multi-graphs that satisfy the
degree sequence D (and not just the set of simple graphs). For
a fixed (↵,�)-sequence D, we shall denote this distribution by
GCM (↵,�, D). The configuration model generates a random
graph as follows : Given a degree sequence D = (d

1

, . . . , dp),
consider a set S of

Pp
i=1

di (= 2m) points such that there
are di distinct points corresponding to vertex i. Now, choose a
perfect matching on the points in set S uniformly at random,
and for each pair of matched points, draw an edge between
their corresponding vertices.

Clearly, a graph constructed by this process may have loops
and/or multiple edges, and therefore, can be a multi-graph. Note
that even though each matching is picked above with equal
probability

⇣
which is m!2

m

(2m)!

⌘
, this does not imply a uniform

distribution on the set of multi-graphs, since a different number
of matchings could correspond to the same graph, depending
on the multiplicity of the edges in the graph. However, the
configuration model does impose the same probability on all
simple graphs, as discussed below.

Let G ⇠ GCM (↵,�, D) and let NG denote the number of
matchings corresponding to a graph G. If G is simple, it can
be seen that NG =

Qp
i=1

(di)!, while for the case where G is
not simple, NG 

Qp
i=1

(di)!. Then, for a simple graph G,

P (G = G) =

m!2

m

(2m)!

NG =

m!2

m

(2m)!

pY

i=1

(di)!. (5)

If G is not simple,

P (G = G) =

m!2

m

(2m)!

NG 
m!2

m

(2m)!

pY

i=1

(di)!. (6)

2) Chung-Lu Model: The Chung-Lu model [12] is an
extension of the Erdős-Rényi model [15] for producing random
graphs with given expected degree sequences. An appropriate
assignment of these expected degrees can promote power-
law behaviour in the random graphs generated by this model.
Note that this model is different from the Uniform distribution
discussed in Section II-A1 in the sense that, this is a distribution
over the space of all possible graphs, which simply encourages
graphs with degree sequence close to the given expected degree
sequence by assigning higher probabilities to those graphs.
However, even among graphs with the same degree sequence,
different graphs may be assigned different probabilities.

Given a set of labelled vertices V with |V | = p and a
sequence of expected degrees w = (w

1

, w
2

, . . . , wp), where
the ith vertex has expected degree wi, the Chung-Lu model
generates a random graph G = (V,E) as follows: for any
two nodes i, j 2 V , the edge (i, j) occurs independently with



probability
wiwj

⇢
, where ⇢ :=

P
k wk. It is assumed that

w2

max

 ⇢, for the probabilities to be valid. To enforce power-
law behaviour, the expected degrees are taken as:

wi = ↵(i + �

min

� 1)

� 1
��1 8 i 2 [p], with

↵ :=

(� � 2)

(� � 1)

wp
1

��1 , �

min

= p

✓
w(� � 2)

�

max

(� � 1)

◆��1

,

(7)

where w is the average degree, �

min

is the minimum degree,
�

max

is the maximum degree and � > 2 is the power-law
exponent. �

min

is usually set to 1. For a fixed p, w and �, this
enforces a restriction on �

max

as �

max

=

w(��2)

(��1)

p1/(��1),
and our expected degrees become

wi = ↵i�
1

��1 8 i 2 [p]. (8)

We shall denote by GCL(p, w,�), the distribution on all graphs
for the Chung-Lu random graph model with �

min

= 1. Note
that in the extreme case of � = 1 and w = c (constant), the
Chung-Lu model, GCL(p, w,�) transforms to the Erdős-Rényi
model [15], GER(p, c/p).

III. LOWER BOUNDS

In this section, we present lower bounds on the sample
complexity for graph estimation given samples from a discrete
graphical model whose underlying graph is drawn from
two specific distributions on power-law graphs : a Uniform
distribution and the Chung-Lu model. The proofs of all
Lemmas, Theorems and Propositions can be found in [16].

A. Uniform Distribution and the Configuration Model

A graph counting argument. One way to obtain a lower bound
for estimation of a graph drawn from GU (↵,�, D) is to lower
bound the total number of graphs in the space of GU (↵,�, D)

and then, follow the approach in [17]. The space of graphs for
GU (↵,�, D) is the set of all (↵,�)-simple graphs that satisfy
the degree sequence D. Let us denote this as SD,↵,� .

First, we present the main theorem for the lower bound.
Recall that we let PG to be some discrete graphical model
distribution over X p with Markov graph G and this gives a
family of distributions {PG |G 2 SD,↵,�}. Also, note that we
use H(·) to denote entropy in this and all subsequent sections.

Theorem 1. Let � > 3. Let G ⇠ GU (↵,�, D) and let X =

(X(1), . . . ,X(n)

) be n i.i.d. samples drawn from PG. Let � :

Xnp ! Gp be any estimator. Then, there exists a constant
✏ > 0, such that for n  ✏ ��1

� log|X | log

⇣
(��1)p

�

⌘

P (�(X) 6= G) ! 1 as p !1. (9)

Proof Summary for Theorem 1: Using the approach of
[17], we can show

P (�(X) 6= G) � 1� |X |np

|SD,↵,� |
. (10)

So, for any constant � s.t. 0 < � < 1, if n  � log|SD,↵,� |
p log|X | , then

P (�(X) 6= G) ! 1 as p !1. Now, if we have lower bound

for |SD,↵,� |, we may substitute it here to get the bound for n.
The approach for computing this lower bound is now stated
below.

The lower bound on |SD,↵,� |, required for the above theorem,
is obtained indirectly from the configuration model as follows.

Consider G ⇠ GCM (↵,�, D). Let,

W =

(
1 if G is simple
0 otherwise.

(11)

Then, from Equation (5), for a simple graph G 2 SD,↵,� , we
have,

P (G = G |W = 1) =

1

|SD,↵,� |
=

P (G = G)

P (W = 1)

=

1

P (W = 1)

m!2

m

(2m)!

pY

i=1

(di)!.

(12)

Thus, if we can lower bound P (W = 1), then we also lower
bound |SD,↵,� |. Luckily, from a result in [18], we know that
if the maximum degree in D is o(M

1

(D)

1/3

), then,

P (W = 1) = e
�O

„
M2(D)2

M1(D)2

«

, (13)

where M
1

(D) and M
2

(D) are the first and second moments
of D respectively, i.e.,

M
1

(D) =

pX

i=1

di, M
2

(D) =

pX

i=1

d2

i . (14)

For an (↵,�)-sequence D, Lemma 1 relates M
1

(D)(= 2m)

to ↵ and �. Additionally, we have the following lemma that
relates M

2

(D) to ↵ and �.

Lemma 2. If D is an (↵,�)-sequence, then

For � > 3, M
2

(D)  e↵
(� � 2)

� � 3

.

Also, M
2

(D) � e↵.

Note that the requirement of � = o(M
1

(D)

1/3

) is also
satisfied for � > 3, and thus in this case,

P (W = 1) = e
�O

„
(��2)2

(��3)2

«

. (15)

Now, we have the following proposition.

Proposition 1. For � > 3, there exists a constant c > 0 s.t.

log|SD,↵,� | � e↵↵� e↵
[(2� � 3)(� � 2) + 2]

2(� � 2)

2

� c
(� � 2)

2

(� � 3)

2

.

(16)

Writing the result in terms of p and ignoring lower order
terms, we get

log |SD,↵,� | = ⌦

✓
(� � 1)p

�
log

✓
(� � 1)p

�

◆◆
. (17)

Generalizing over all (↵,�)-sequences. To obtain a lower
bound for GU (↵,�), we need to lower bound the cardinality
of S↵,� , the set of all simple (↵,�)-graphs i.e., (↵,�)-graphs



over all possible degree sequences. However, obtaining this
bound is easy once we have lower bounded SD,↵,� since each
(↵,�)-sequence D gives a distinct set of (↵,�)-graphs. Letting
D to be the set of all (↵,�)-sequences, we have :

|S↵,� | =

X

D2D
|S↵,�,D|. (18)

Note that |D| is as specified in Equation (4). We obtain the same
asymptotic lower bound as |S↵,�,D|, given in the following
proposition.

Proposition 2. For � > 3,

log|S↵,� | = ⌦

✓
(� � 1)p

�
log

✓
(� � 1)p

�

◆◆
. (19)

Thus, the lower bound on the sample complexity is the same,
and is restated here for completeness.

Theorem 2. Let � > 3. Let G ⇠ GU (↵,�) and let X =

(X(1), . . . ,X(n)

) be n i.i.d. samples drawn from PG. Let � :

Xnp ! Gp be any estimator. Then, there exists a constant
✏ > 0, such that for n  ✏ ��1

� log|X | log

⇣
(��1)p

�

⌘
,

P (�(X) 6= G) ! 1 as p !1. (20)

Argument using Fano’s Lemma. A straightforward use of Fano’s
lemma [19] also gives us a converse result on the lower bound
on sample complexity required to guarantee that the probability
of error is upper bounded by some fraction. This is presented
in the following theorem.

Theorem 3. Let � > 3. Let G ⇠ GU (↵,�, D) and let X =

(X(1), . . . ,X(n)

) be n i.i.d. samples drawn from PG. Let � :

Xnp ! Gp be any estimator. If P (�(X) 6= G)  �, we must
have

n = ⌦

✓
(1� �)

� � 1

� log|X | log

✓
(� � 1)p

�

◆◆
. (21)

Proof Summary for Theorem 3: Using Fano’s Lemma, we
have

1 + P (�(X) 6= G) log|SD,↵,� | � H(G)� np log|X |, (22)

so that n � log|SD,↵,� |
p log|X | (1�P (�(X) 6= G)). Now, the restriction

on P (�(X) 6= G)) and Proposition 1 gives the result.
This result can also be easily generalized to all (↵,�)-

sequences by considering GU (↵,�) instead of GU (↵,�, D).

B. Chung-Lu Model
GCL(p, w,�) is a distribution over the set of all graphs

{G1, . . . , GM}, where M = 2

(

p
2). As earlier, we let PG to be

some discrete graphical model over X p with Markov graph G.
So, we have a family of distributions {PG1 , . . . , PGM }. Now,
the following theorem presents the lower bound on sample
complexity for estimating G given samples from PG :

Theorem 4. Let � > 2. Let G ⇠ GCL(p, w,�) and let X =

(X(1), . . . ,X(n)

) be n i.i.d. samples drawn from PG. Let � :

Xnp ! Gp be any estimator. Then, if

Pe = P (�(X) 6= ✓)  1

p
,

we must have

n = ⌦

„
w

log|X | log

„
(� � 1)

2

(� � 2)

2 w

«
+

„
� � 2

� � 1

«
w

log|X | log p

«
.

Proof Summary for Theorem 4: Using Fano’s Lemma, we
have

1 + Pe log|Gp| � H(G)� np log|X |, (23)

where Gp is the set of all graphs on p nodes and |Gp| = 2

(

p
2).

Now, if we can lower bound the entropy of GCL(p, w,�), then
this combined with the restriction on Pe gives us a lower bound
as n = ⌦

⇣
H(G)

p log|X |

⌘
.

The lower bound on entropy is presented below in Proposi-
tion 3.

Proposition 3. Let � > 2. Let G ⇠ GCL(p, w,�). Then,

H(G) = ⌦

✓
wp log

✓
(� � 1)

2

(� � 2)

2 w

◆
+

✓
� � 2

� � 1

◆
wp log p

◆
.

(24)

Stating the lower bound in a simplified manner, we get
that n must scale as ⌦

⇣
w

log|X | log

h
p (��2)

(��1)

i⌘
, where w could

possibly depend on p. In the extreme case of � = 1 and w = c
(constant), our lower bound becomes, n = ⌦(

c
log|X | log p),

which is the same as the lower bound for GER(p, c/p) reported
in [9].
Modified Chung-Lu. The Chung-Lu model fixes the expected
degree for each node i.e. the ith node has expected degree
wi, and so, graphs that have actual degree close to wi have a
greater probability of occurrence. One may want to avoid this
by picking a permutation � : [p] ! [p] uniformly randomly
and then, picking the graph according to the distribution
G�

CL(p, w,�), where the ith vertex gets the weight w�(i), and
the weights are defined as in (8). Let us call this model the
average Chung-Lu model, GA

CL(p, w,�).
In this case, however, the same lower bound for entropy

and therefore, the sample complexity, will hold. This can be
seen as follows. Let pA be the probability mass function for
GA

CL(p, w,�) and let p� be the probability mass function for
G�

CL(p, w,�). Let Sp be the set of all permutations from [p] !
[p]. Then, for any graph G,

pA
(G) =

X

�2Sp

1

p!

p�
(G). (25)

Note that H(p�
) would be the same for all � 2 Sp. Also,

Proposition 3 holds for each � 2 Sp. Now, by the concavity
of entropy,

H(pA
) �

X

�2Sp

1

p!

H(p�
) = H(p�

) (for any �). (26)

Thus, the same lower bound on entropy holds for pA (and
therefore, the same lower bound for sample complexity for
GA

CL(p, w,�)).



IV. ESTIMATOR GUARANTEES

In this section, we study the statistical guarantees available
for certain state of the art estimators, for this problem of
learning power-law graphical models. We examine guarantees
for two estimators : the node-wise `

1

regularization of [6] and,
the thresholding based estimator of [9].

A. The `
1

-estimator

Neighbourhood selection via `
1

based logistic regression
[6] guarantees exact graph recovery for Ising models if the
sample complexity scales as n = O(d3

log p), where d is the
maximum degree of the graph, and if the graphical model
satisfies certain irrepresentability conditions. However, as seen
below, this sample complexity is unsuitable for learning power-
law graphical models in the high-dimensional setting.

For a graph G drawn from GU (↵,�), G ⇠ GU (↵,�),
the maximum degree is exactly be↵/�c. Since e↵  p, the
maximum degree d

max

(G) scales as O(p1/�
). Thus, the `

1

-
estimator would require O(p3/�

log p) to work.
For a graph G drawn from GCL(w̄, p,�), G ⇠ GCL(w̄, p,�),

it is possible to show (see [2]) that almost surely (with
probability atleast 1� 2p�0.2) every vertex i 2 [p] satisfies

|di � wi|  2(

p
wi log p + log p). (27)

So, almost surely, d
max

(G) = ⇥ (wmax) = ⇥

⇣
wp

1
��1

⌘
. Thus,

for most graphs drawn from the Chung-Lu model, the `
1

-
estimator would require O(w3p

3
��1

log p).
Recently, a greedy algorithm for neighbourhood estimation

has also been proposed [7], that has an improved sample com-
plexity of O(d2

log p): for a power-law graph, this would mean
sample complexities of O(p2/�

log p) and O(w2p
2

��1
log p) for

GU (↵,�) and GCL(w̄, p,�) respectively.

B. The CVDT estimator

Another recent state of the art estimator based on thresh-
olding has been proposed by [9], and which they call the
conditional variation distance thresholding (CVDT) estimator.
Their estimator is targeted to estimating Ising models drawn
from the graph ensemble satisfying the (⌘, �)-local paths
property i.e. between any two vertices, the number of paths of
length atmost � is atmost ⌘.

The computational complexity of their procedure scales as
O(p⌘+2

) and the sample complexity scales as O((

1

↵ )

�
log p),

where ↵ < 1 is a quantity that depends on the particular graph
ensemble under consideration. In addition, for consistency,
they require the assumption that ↵�

= o(1/J
min

), where
J

min

is a term that depends on the maximum node-degree
through their assumptions. In the case of power law graphs,
we can show that this latter condition would entail that
� = !(log p/�). Now, [9] have also shown that GCL(w, p,�)

satisfies the (⌘, �)-local paths property with high probability
when w = o(p

⌘�1
2⌘� �

2
��1

). However, assuming constant ⌘
to obtain a polynomial time complexity, the requirement of
� = !(log p) enforces w = o(1), and also leads to a sample
complexity of O(poly(p) log p).

V. CONCLUSION

In this paper, we provided information-theoretic lower
bounds on the sample complexity of learning the graph for
two classes of power-law graphs, described through (↵,�)-
graphs and the Chung-Lu model. In addition, we looked at
guarantees for two state-of-the-art estimators. For both of these,
we observed that the sample complexity scales poorly with
the number of nodes. In the light of our information-theoretic
lower-bound results, this suggests that the task of deriving
efficient methods for power-law structured graphical model
selection is an outstanding open problem.

ACKNOWLEDGMENT

We acknowledge the support of NSF via IIS-1149803, and
DoD via W911NF-12-1-0390.

REFERENCES

[1] A. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[2] F. Chung and L. Lu, Complex Graphs and Networks. American
Mathematical Society, Aug. 2006.

[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships
of the internet topology,” SIGCOMM Comput. Commun. Rev., vol. 29,
no. 4, pp. 251–262, Aug. 1999.

[4] S. N. Dorogovtsev and J. F. F. Mendes, “Scaling properties of scale-free
evolving networks: continuous approach,” Phys. Rev. E, vol. 63, Apr
2001.

[5] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[6] P. Ravikumar, M. J. Wainwright, and J. Lafferty, “High-dimensional
ising model selection using `1-regularized logistic regression,” Annals
of Statistics, vol. 38, no. 3, pp. 1287–1319, 2010.

[7] A. Jalali, C. C. Johnson, and P. K. Ravikumar, “On learning discrete
graphical models using greedy methods,” in Advances in Neural
Information Processing Systems 24, 2011, pp. 1935–1943.

[8] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and variable
selection with the Lasso,” Annals of Statistics, vol. 34, pp. 1436–1462,
2006.

[9] A. Anandkumar, V. Y. F. Tan, and A. Willsky, “High-Dimensional
Structure Learning of Ising Models : Local Separation Criterion,” Preprint,
June 2011.

[10] Q. Liu and A. T. Ihler, “Learning scale free networks by reweighted l1
regularization,” Journal of Machine Learning Research - Proceedings
Track, vol. 15, pp. 40–48, 2011.

[11] A. Defazio and T. Caetano, “A convex formulation for learning scale-free
networks via submodular relaxation,” in Advances in Neural Information
Processing Systems 24, 2012.

[12] F. Chung and L. Lu, “Connected components in random graphs with
given expected degree sequences,” Annals of Combinatorics, vol. 6, no. 2,
pp. 125–145, 2002.

[13] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law
graphs,” Experimental Math, vol. 10, pp. 53–66, 2000.

[14] B. Bollobas, Random Graphs, W. Fulton, A. Katok, F. Kirwan, P. Sarnak,
B. Simon, and B. Totaro, Eds. Cambridge University Press, 2001.

[15] P. Erdös and A. Rényi, “On the evolution of random graphs,” Evolution,
vol. 5, no. 1, pp. 17–61, 1960.

[16] R. Tandon and P. Ravikumar, “On the difficulty of learning
power law graphical models : Proofs.” [Online]. Available:
http://www.cs.utexas.edu/~rashish/plgm_proofs.pdf

[17] G. Bresler, E. Mossel, and A. Sly, “Reconstruction of markov random
fields from samples: Some observations and algorithms,” in APPROX.
Springer-Verlag, 2008, pp. 343–356.

[18] B. D. McKay and N. C. Wormald, “Asymptotic enumeration by degree
sequence of graphs with degress o(n1/2),” Combinatorica, vol. 11, no. 4,
pp. 369–382, 1991.

[19] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.



On the Difficulty of Learning Power Law Graphical
Models : Proofs

Rashish Tandon
Department of Computer Science

University of Texas at Austin
TX, USA

Email: rashish@cs.utexas.edu

Pradeep Ravikumar
Department of Computer Science

University of Texas at Austin
TX, USA

Email: pradeepr@cs.utexas.edu

I. PROOFS

Proof of Lemma 1. We have
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Proof of Lemma 2. For an (↵,�)-sequence D, we have

M
2

(D) =

pX

i=1

d2i =

�X

i=1

i2yi =
�X

i=1

i2
�
e↵

i�

⌫
(5)

Now, as in Lemma 1, we get
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Proof of Proposition 1. From the discussion, we have
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Combining these with P (W = 1) = e
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3), we get the stated result.

Proof of Theorem 1. Following the approach of [1], for G ⇠
GU (↵,�, D), we have
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where R(�) is the range of the estimator �. So, P (�(X) 6=
g |G = g) = 1 for g 2 R(�)c. Thus,
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where we used |SD,↵,� \ R(�)|  |R(�)|  |X |np for the
last inequality.

Now, for any constant � s.t. 0 < � < 1, if n  � log|SD,↵,� |
p log|X | ,

we would have P (�(X) 6= G) ! 1 as p ! 1. Then, plugging
in the lower bound on log|SD,↵,� | from Proposition 1, we get
the stated bound for n.

Proof of Proposition 2. We see that
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Thus, log|D| = ⌦(log p) and so, considering all (↵,�)-
sequences does not influence the asymptotic lower bound for
|S↵,�,D|. Thus, we may use the same lower bound for the case
of |S↵,� |.

Proof of Theorem 2. The proof of Theorem 2 follows the
same argument as Theorem 1, with G ⇠ GU (↵,�) (instead
of GU (↵,�, D). So, we would have,

P (�(X) 6= G) � 1� |X |np

|S↵,� |
(15)

Thus, for any constant � s.t. 0 < � < 1, if n  � log|SD,↵,� |
p log|X | ,

we would have P (�(X) 6= G) ! 1 as p ! 1. Now, plugging
in the lower bound on log|S↵,� | from Proposition 2, we get
the stated bound for n.

Proof of Theorem 3. For G ⇠ GU (↵,�, D), Fano’s Lemma
[2] gives us
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last inequality. Thus,
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Now, using Proposition 1 and P (�(X) 6= G)  � gives us the
result.

Proof of Proposition 3. Let G ⇠ GCL(p, w,�) and G =
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Now, we have,
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where the asymptotic bounds are obtained by computing the
integral.

Also,
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So, ⇢ = ⇥(wp).

Combining all of these bounds in the expression of H(G)

from Eq. 19 and substituting the value of ↵ for the Chung-Lu
model gives us the stated result.

Proof of Theorem 4. We have G ⇠ GCL(p, w,�). Let Pe =

P (�(X) 6= G) and M be the set of all simple graphs on p

nodes. Then, |M | = 2
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Now, substituting the lower bound on H(G) from Proposition
3 gives us the desired result.
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