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Abstract

The ¢, regularized Gaussian maximum likelihood estimator has ls®wn to
have strong statistical guarantees in recovering a spaveese covariance ma-
trix, or alternatively the underlying graph structure of auSsian Markov Random
Field, from very limited samples. We propose a novel algonifor solving the re-
sulting optimization problem which is a regularized logeteninant program. In
contrast to other state-of-the-art methods that largedyfiust order gradient infor-
mation, our algorithm is based on Newton’s method and enspdoguadratic ap-
proximation, but with some modifications that leverage thecsure of the sparse
Gaussian MLE problem. We show that our method is superliyneanvergent,
and also present experimental results using syntheticeai@pplication data that
demonstrate the considerable improvements in performaincer method when
compared to other state-of-the-art methods.

1 Introduction

Gaussian Markov Random Fields; Covariance Estimatilmtreasingly, in modern settings statis-
tical problems are high-dimensional, where the number odipaters is large when compared to
the number of observations. An important class of such problinvolves estimating the graph
structure of a Gaussian Markov random field (GMRF) in the fdghensional setting, with appli-
cations ranging from inferring gene networks and analysogjal interactions. Specifically, given
n independently drawn samplés1,ya,...,ya} from ap-variate Gaussian distribution, so that
yi ~ N(u, X), the task is to estimate its inverse covariance mafri¥, also referred to as the
precisionor concentrationrmatrix. The non-zero pattern of this inverse covarianceimat—! can
be shown to correspond to the underlying graph structureefIMRF. An active line of work in
high-dimensional settings whepe< n is thus based on imposing some low-dimensional structure,
such as sparsity or graphical model structure on the modelespAccordingly, a line of recent
papers [2, 8, 20] has proposed an estimator that minimizeG#ussian negative log-likelihood reg-
ularized by the/; norm of the entries (off-diagonal entries) of the inverseacmnce matrix. The
resulting optimization problem is a log-determinant peogr which is convex, and can be solved in
polynomial time.

Existing Optimization Methods for the regularized GausdidLE. Due in part to its importance,
there has been an active line of work on efficient optimizatieethods for solving thé regularized
Gaussian MLE problem. In [8, 2] a block coordinate descerthowthas been proposed which is
called thegraphical lassoor GLAssOfor short. Other recent algorithms proposed for this pnoble
includepPsmthat uses projected subgradients [§]M using alternating linearization [14ipm an
inexact interior point method [11] arglNCcO a greedy coordinate descent method [15].

For typical high-dimensional statistical problems, optation methods typically suffer sub-linear
rates of convergence [1]. This would be too expensive forGheassian MLE problem, since the



number of matrix entries scales quadratically with the nenab nodes. Luckily, the log-determinant
problem has special structure; the log-determinant fondg strongly convex and one can observe
linear (i.e. geometric) rates of convergence for the stétre-art methods listed above. However,
at most linear rates in turn become infeasible when the prolsiize is very large, with the number
of nodes in the thousands and the number of matrix entrieg tesbmated in the millions. Here
we ask the questiorcan we obtain superlinear rates of convergence for the dpétion problem
underlying the/; regularized Gaussian MLE?

One characteristic of these state-of-the-art methodsishiey are first-order iterative methods that
mainly use gradient information at each step. Such firséiondethods have become increasingly
popular in recent years for high-dimensional problems i gae to their ease of implementation,
and because they require very little computation and merabeach step. The caveat is that they
have at most linear rates of convergence [3]. For superlirages, one has to consider second-order
methods which at least in part use the Hessian of the obgefitivction. There are however some
caveats to the use of such second-order methods in highdioral settings. First, a straight-
forward implementation of each second-order step woulddrg gxpensive for high-dimensional
problems. Secondly, the log-determinant function in thesS@an MLE objective acts as a barrier
function for the positive definite cone. This barrier prdapevould be lost under quadratic approxi-
mations so there is a danger that Newton-like updates wilietd positive-definite matrices, unless
one explicitly enforces such a constraint in some manner.

Our Contributions.In this paper, we present a new second-order algorithm t@gbe/; regular-
ized Gaussian MLE. We perform Newton steps that use iterafivadratic approximations of the
Gaussian negative log-likelihood, but with three innowasi that enable finessing the caveats de-
tailed above. First, we provide an efficient method to corapie Newton direction. As in recent
methods [12, 9], we build on the observation that the Newtmttion computation is hassoprob-
lem, and perform iterative coordinate descent to solveltagso problem. However, the naive ap-
proach has an update cost@fp?) for performing each coordinate descent update in the irowg, |
which makes this resume infeasible for this problem. But h@wshow a careful arrangement and
caching of the computations can reduce this cogp{p). Secondly, we use an Armijo-rule based
step size selection rule to obtain a step-size that ensufiésent descenand positive-definiteness
of the next iterate. Thirdly, we use the form of the statignemndition characterizing the optimal
solution to therfocusthe Newton direction computation on a small subsefreé variables, in a
manner that preserves the strong convergence guarantsesoofd-order descent.

Here is a brief outline of the paper. In Section 3, we presantafgorithm that combines quadratic
approximation, Newton’s method and coordinate descerelition 4, we show that our algorithm
is not only convergent but superlinearly so. We summarieeettperimental results in Section 5,
using real application data from [11] to compare the algong, as well as synthetic examples which
reproduce experiments from [11]. We observe that our dlyoriperforms overwhelmingly better
(quadratic instead of linear convergence) than the otHatisns described in the literature.

2 Problem Setup
Lety be ap-variate Gaussian random vector, with distributi®ity, ). We are givem indepen-
dently drawn sample§y+, . . ., yn } Of this random vector, so that the sample covariance madrix ¢
be written as
1< X X R
S=—> (-~ )", whereji=—3 ;. @)
k=1 =1
Given some regularization penalty> 0, the¢; regularized Gaussian MLE for the inverse covari-
ance matrix can be estimated by solving the following regz#allog-determinanprogram:

in{ —logdet X +tr(SX) + A\|X|:} = in f(X 2

arg min { —log det X +tr(SX) + M| X |11} = arg min f(X), 2
where || X||; = szl |X;;| is the elementwisé; norm of thep x p matrix X. Our results
can be also extended to allow a regularization term of thenfpk o X||; = f,j:l Xij | Xijl,

i.e. different nonnegative weights can be assigned tordifiteentries. This would include for
instance the popular off-diagonalregularization variant where we penal@# | X;|, but not the
diagonal entries. The addition of su¢hregularization promotes sparsity in the inverse covaganc
matrix, and thus encourages sparse graphical model steudtar further details on the background
of ¢, regularization in the context of GMRFs, we refer the readg20, 2, 8, 15].
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3 Quadratic Approximation Method

Our approach is based on computing iterative quadraticoxppations to the regularized Gaussian
MLE objective f(X) in (2). This objective functiorf can be seen to comprise of two paptéX) =
9(X) + h(X), where

g(X) = —logdet X + tr(SX) andh(X) = A X||.. 3)

The first componeny(X) is twice differentiable, and strictly convex, while the sed part
h(X) is convex but non-differentiable. Following the standappra@ach [17, 21] to building a
guadratic approximation around any iterae for such composite functions, we build the second-
order Taylor expansion of the smooth compong(k'). The second-order expansion for the
log-determinant function (see for instance [4, Chapter.3})4is given bylogdet(X; + A) =~

log det X;+tr(X; 'A)— 1 tr(X; "AX; 'A). We introducéV, = X, ' and write the second-order
approximationjy, (A) to g(X) = g(X; + A) as

9x, (A) =tr((S — WpA) + (1/2) tr(W, AW, A) — log det X; + tr(SXy). 4)

We define the Newton directiaR; for the entire objectivg/ (X ) can then be written as the solution
of the regularized quadratic program:

D, = arg HlAiIlf]Xt(A) + (X + A). (5)

This Newton direction can be used to compute iterative egés{ X, } for solving the optimization
problem in (2). In the sequel, we will detail three innovasovhich makes this resume feasible.
Firstly, we provide an efficient method to compute the Newdimaction. As in recent methods [12],
we build on the observation that the Newton direction coratom is aLassoproblem, and perform
iterative coordinate descent to find its solution. Howetleg, naive approach has an update cost of
O(p?) for performing each coordinate descent update in the irowgs, lwhich makes this resume
infeasible for this problem. We show how a careful arranggnaed caching of the computations
can reduce this costt@(p). Secondly, we use an Armijo-rule based step size seleatleria obtain

a step-size that ensures sufficient desegtpositive-definiteness of the next iterate. Thirdly, we
use the form of the stationary condition characterizingoggmal solution to thefocusthe Newton
direction computation on a small subsetfafe variables, in a manner that preserves the strong
convergence guarantees of second-order descent. Weeoeiloh of these three innovations in the
following three subsections. We then detail the completthotein Section 3.4.

3.1 Computing the Newton Direction

The optimization problem in (5) is i regularized least squares problem, also cdlless0[16]. It
is straightforward to verify that for a symmetric matrlxwe havetr(W, AW, A) = vec(A)T (W, @
W) vec(A), where® denotes the Kronecker product anet(X) is the vectorized listing of the
elements of matrixX .

In [7, 18] the authors show that coordinate descent methedgesy efficient for solving lasso type
problems. However, an obvious way to update each elemefttofsolve for the Newton direction
in (5) needg)(p?) floating point operations sine@ := W, @ W, is ap? x p*> matrix, thus yielding an
O(p*) procedure for approximating the Newton direction. As wevsbhelow, our implementation
reduces the cost of one variable updat®tp) by exploiting the structure of) or in other words
the specific form of the second order tetndiV, AW, A). Next, we discuss the details.

For notational simplicity we will omit the Newton iteratidndex ¢ in the derivations that follow.
(Hence, the notation fogx, is also simplified tag.) Furthermore, we omit the use of a separate
index for the coordinate descent updates. Thus, we simmyluso denote the current iterate
approximating the Newton direction and uBéfor the updated direction. Consider the coordinate
descent update for the varialbtg;, with i < j that preserves symmetrjp’ = D+u(eiejT+ejeiT).
The solution of the one-variable problem correspondingjyields u:

argmin (D + p(e;el + ejel)) + 2\ Xi; + Dij + pl. (6)
m :
As a matter of notation: we usg to denote thé-th column of the matrixX. We expand the terms

appearing in the definition gf after substitutingD’ = D + u(eiejT + e;jel’) for Ain (4) and omit
the terms not dependent an The contribution ofr(SD’) — tr(W D’) yields2u(S;; — W;;), while



the regularization term contribut@s| X;; + D;; + 1|, as seen from (6). The quadratic term can be
rewritten usingr(AB) = tr(BA) and the symmetry oD andV to yield:

tr(WD'WD') = te(WDWD) + Adpw] Dw; + 2> (W7 + Wi W,;). )
In order to compute the single variable update we seek tharmim of the following function ofu:

1
§(ij + WiiWii)u? + (Sij — Wi + wi Dwj)u+ A Xij + Dij + pl. (8)

Lettinga = W2 +W;W;j;, b = Sij —Wi;+w] Dw;, andc = X;; + D;; the minimum is achieved
for:

p=—c+8(c—b/a,\/a), )

whereS(z,r) = sign(z) max{|z| — r,0} is the soft-thresholding function. The valueswfndc
are easy to compute. The main cost arises while computintittteterm contributing to coefficient
b, namelyw! Dw;. Direct computation require(p?) time. Instead, we maintaitl = DW by
updating two rows of the matrik/ for every variable update iV costingO(p) flops, and then
computew? u; using alsaO(p) flops. Another way to view this arrangement is that we mainéai
decompositiodV DW = $"7_, wiu! throughout the process by storing thg vectors, allowing
O(p) computation of update (9). In order to maintain the matfixve also need to update two
coordinates of each; when D;; is modified. We can compactly write the row updated/obs
follows: u;. < u;. + pw;. andu;. < u;. + puw;., whereu,. refers to the-th row vector ofU.

We note that the calculation of the Newton direction can Imep§fied if X is a diagonal ma-
trix. For instance, if we are starting from a diagonal matiy, the termsw! Dw; equal
D;;/((Xo0)ii(Xo0);;), which are independent of each other implying that we onlgydn® update
each variable according to (9) only once, and the resulingill be the optimum of (5). Hence, the
time cost of finding the first Newton direction is reduced frop?) to O(p?).

3.2 Computing the Step Size

Following the computation of the Newton directi@n, we need to find a step sizec (0, 1] that
ensures positive definiteness of the next itecdie+ oD, and sufficient decrease in the objective
function.

We adopt Armijo’s rule [3, 17] and try step-sizesc {3°, 3', 32, ...} with a constant decrease rate
0 < 8 < 1 (typically 8 = 0.5) until we find the smallest € N with o = 3* such thatX, + aD;
(a) is positive-definite, and (b) satisfies the following dition:

f(Xt + OéDt) S f(Xf) + OéO'At, At = tr(Vg(Xt)Dt) =+ A”Xt =+ DtHl — /\”XtHl (10)

where0 < o < 0.5 is a constant. To verify positive definiteness, we use a Ghgléctorization
costingO(p?) flops during the objective function evaluation to compgtedet (X, + aD;) and this
step dominates the computational cost in the step-size atatipns. In the Appendix in Lemma 9
we show that for any; and Dy, there exists a; > 0 such that (10) and the positive-definiteness of
X; + aD, are satisfied for any € (0, a;], S0 we can always find a step size satisfying (10) and the
positive-definiteness even if we do not have the exact Newiattion. Following the line search
and the Newton step updalé.,; = X; + aD; we efficiently computéV, ., = X,;ll by reusing

the Cholesky decomposition of;, ;.

3.3 Identifying which variables to update

In this section, we propose a way to select which variableptiate that uses the stationary condition
of the Gaussian MLE problem. At the start of any outer loop potimg the Newton direction, we
partition the variables intéree andfixedsets based on the value of the gradient. Specifically, we
classify the(X,);, variable adixedif |V;;g(X;)| < A — e and(X;),; = 0, wheree > 0 is small.
(We usede = 0.01 in our experiments.) The remaining variables then cortstitiiefree set. The
following lemma shows the property of the fixed set:

Lemma 1. For any X, and the correspondinfixed andfreesetsS sizcd, Sfree, the optimized update
on thefixed set would not change any of the coordinates. In other wohdssolution of the following
optimization problem ig\ = 0:

arg mAin f(X, + A)suchthath;; =0 V(i,5) € Srree-
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The proof is given in Appendix 7.2.3. Based on the above ohsen, we perform the inner loop
coordinate descent updates restricted to the free settorfipd the Newton direction). This reduces
the number of variables over which we perform the coordidatcent fronO(p?) to the number
of non-zeros inX;, which in general is much smaller thad when ) is large and the solution is
sparse. We have observed huge computational gains frocmtidgfication, and indeed in our main
theorem we show the superlinear convergence rate for tlogitlln that includes this heuristic.

The attractive facet of this modification is that it leveragjge sparsity of the solution and intermedi-
ate iterates in a manner that falls within a block coordigtgcent framework. Specifically, suppose
as detailed above at any outer loop Newton iteration, wetpartthe variables into the fixed and
free set, and then first perform a Newton update restrictélgetdixed block, followed by a Newton
update on the free block. According to Lemma 1 a Newton upateicted to the fixed block does
not result in any changes.

In other words, performing the inner loop coordinate descgualates restricted to the free set is
equivalent to two block Newton steps restricted to the fixedifeee sets consecutively. Note further,
that the union of the free and fixed sets is the set of all vlegalvhich as we show in the convergence
analysis in the appendix, is sufficient to ensure the comrerg of the block Newton descent.

But would the size of free set be small? We initialiXg to the identity matrix, which is indeed
sparse. As the following lemma shows, if the limit of the d@ties (the solution of the optimization
problem) is sparse, then aftefiaite number of iterations, the iteraté& would also have the same
sparsity pattern.

Lemma 2. Assume{ X, } converges taX *. If for some index pai(i, j), |V;;9(X™*)| < A (so that
X7; = 0), then there exists a constant- 0 such that for allt > ¢, the iteratesX; satisfy

[Vijg(Xe)| < A and(Xy);; = 0. (11)
The proof comes directly from Lemma 11 in the Appendix. NdittV;;g(X™*)| < X implying
X7; = 0 follows from the optimality condition of (2). A similar (scaled shrinking) strategy is
used in SVM or/;-regularized logistic regression problems as mentiondd9h In Appendix 7.4
we show in experiments this strategy can reduce the sizeriafbles very quickly.

3.4 The Quadratic Approximation based Method

We now have the machinery for a description of our algorithnc standing foilQUadratic Inverse
Covariance A high level summary of the algorithm is shown in Algorithmwhile the the full
details are given in Algorithm 2 in the Appendix.

Algorithm 1: Quadratic Approximation method for Sparse Inverse Comagd_earning (QUIC)

Input : Empirical covariance matrig, scalar), initial X, inner stopping tolerance
Output: Sequence oK converging taarg minx. o f(X), where
f(X) = —logdet X +tr(SX) + \|X];.
fort=0,1,...do
ComputelV, = X; *.
Form the second order approximatif, (A) := gx, (A) + h(X: + A) to f(X: + A).
Partition the variables into free and fixed sets based onrtddient, see Section 3.3.
Use coordinate descent to find the Newton direcfign= arg mina fx, (X; + A) over the
free variable set, see (6) and (9). (Assoproblem.)
Use anArmijo-rule based step-size selection to get.t. X; 1 = X; + aD; is positive definite
and the objective value sufficiently decreases, see (10).
end

4 Convergence Analysis

In this section, we show that our algorithm has strong cayemee guarantees. Our first main result
shows that our algorithm does converge to the optimum of @)r second result then shows that
the asymptotic convergence rate is actually superlinpacifically quadratic.

4.1 Convergence Guarantee

We build upon the convergence analysis in [17, 21] of thelbtmordinate gradient descent method
applied to composite objectives. Specifically, [17, 21] sider iterative updates where at each



iterationt they update just a block of variablds. They then consider a Gauss-Seidel rule:

U Z2oNwe=12,. ., (12)

§j=0,...,T—1

whereN is the set of all variables arilis a fixed number. Note that the condition (12) ensures that
each block of variables will be updated at least once e¥eitgrations. Our Newton steps with the
free set modification is a special case of this framework: etg=s, .Jo; 11 to be the fixed and free sets
respectively. As outlined in Section 3.3, our selectionhef fixed sets ensures that a block update
restricted to the fixed set would not change any values simesetvariables in fixed sets already
satisfy the coordinatewise optimality condition. Thus,il&tour algorithm only explicitly updates
the free set block, this is equivalent to updating variabidixed and free blocks consecutively. We
also haveJy; U Joy 11 = N, implying the Gauss-Seidel rule wiffi = 3.

Further, the composite objectives in [17, 21] have the fdf(x) = g(x) + h(x), whereg(x)

is smooth (continuously differentiable), ahdx) is non-differentiable but separable. Note that in
our case, the smooth component is the log-determinantitmg{X) = —logdet X + tr(SX),
while the non-differentiable separable componerit(is) = A||x||;. However, [17, 21] impose the
additional assumption that(x) is smooth over the domaiR™. In our casey(x) is smooth over
the restricted domain of the positive definite caffe, . In the appendix, we extend the analysis
so that convergence still holds under our setting. In paldic we prove the following theorem in
Appendix 7.2:

Theorem 1. In Algorithm 1, the sequendeX; } converges to the unique global optimum(aj.

4.2 Asymptotic Convergence Rate

In addition to convergence, we further show that our alpanihas a quadratic asymptotic conver-
gence rate.

Theorem 2. Our algorithmQUIC converges quadratically, that is for some constanrt x < 1:
X — X+
i 11 = Xlle _
t=oo || Xy — X*[|7

The proof, given in Appendix 7.3, first shows that the step sig computed in Section 3.2 would
eventually become equal to one, so that we would be eventoiforming vanilla Newton updates.

Further we use the fact that after a finite number of iteratidhe sign pattern of the iterates con-
verges to the sign pattern of the limit. From these two agsertwe build on the convergence rate
result for constrained Newton methods in [6] to show thatroathod is quadratically convergent.

5 Experiments

In this section, we compare our method QUIC with other stdithie-art methods on both synthetic
and real datasets. We have implemented QUIC in C++, andekxperiments were executed on
2.83 GHz Xeon X5440 machines with 32G RAM and Linux OS.

We include the following algorithms in our comparisons:

e ALM: the Alternating Linearization Method proposed by [14Me use their MATLAB source
code for the experiments.

e GLASSO: the block coordinate descent method proposed by [8]. W tiseir Fortran code
available from cran.r-project.org, version 1.3 released (22/09.

e PSM: the Projected Subgradient Method proposed by [5]. Veetlus MATLAB source code
available ahttp://www.cs.ubc.ca/"schmidtm/Software/PQN.html

e SINCO: the greedy coordinate descent method proposed by Th® code can be downloaded
from https://projects.coin-or.org/OptiML/browser/trunk/s inco .

e |PM: An inexact interior point method proposed by [11]. Theice code can be downloaded
from http://www.math.nus.edu.sg/"mattohkc/Covsel-0.zip

Since some of the above implementations do not support thergkzed regularization terf\ o
X1, our comparisons usk| X ||; as the regularization term.

The GLASSO algorithm description in [8] does not clearly specify thepgiing criterion for the
Lasso iterations. Inspection of the available Fortran en@ntation has revealed that a separate



Table 1: The comparisons on synthetic datasetstands for dimension|>~!||, indicates the
number of nonzeros in ground truth inverse covariance mati *||, is the number of nonzeros in
the solution, and is a specified relative error of objective valueindicates the run time exceeds
our time limit 30,000 seconds (8.3 hours). The results sh@atv QUIC is overwhelmingly faster
than other methods, and is the only one which is able to sgeie solve problem wherg = 10000.

Dataset setting Parameter setting Time (in seconds)
pattern 1= o A TX o ¢| QUIC] ALM [ Glassd PSM| IPM|Sinco

. 10~2 0.30| 18.89| 23.28 | 15.59| 86.32|120.0
chain | 1000\ 29981 04\ 3028 56| 56| 41.85| 45.1| 34.91| 1512|5208
1072 11.28] 922] 1068 567.9| 3458 5246
1076| 53.51| 1734| 2119| 1258| 5754 *
10~2| 216.7/ 13820 * | 8450 * *
1079 | 986.6| 28190 * 119251 * *
10~2 0.52| 42.34| 10.31| 20.16| 71.62|60.75
1076 1.2|28250| 20.43| 59.89 | 116.7 | 683.3

chain | 4000| 11998| 0.4| 11998

chain | 10000 | 29998 | 0.4| 29998

0.12] 10414
random| 1000| 10758

10~2] 1.17| 65.64| 17.96| 23.53| 78.27 | 576.0
0.075| 55830 10| 6.87 *1 60.61| 91.7| 145.8| 4449
102 23.25] 1429| 1052| 1479 4928 7375
0.08| 41910 :
1076 | 160.2 *| 2561 | 4232| 8097 *
random 4000| 41112 005 | 2a7aas |10 76557 *| 3328| 2963| 5021|  *
: 1076| 478.8 * | 8356| 954113650 *
—2 * * *
0.08] 89652 18—6 313172.; 26279 2129§ ; : ;
random| 10000 | 91410 1021 8035 - * = < -
0.04 | 392786 10-6| 2051 . N . . .

threshold is computed and is used for these inner iteratMesfound that under certain conditions
the threshold computed is smaller than the machine precaid as a result the overall algorithm
occasionally displayed erratic convergence behavior Emdgerformance. We modified the Fortran
implementation ofGLASSOto correct this error.

5.1 Comparisons on synthetic datasets

We first compare the run times of the different methods onh®titt data. We generate the two
following types of graph structures for the underlying Gaas Markov Random Fields:

e Chain Graphs: The ground truth inverse covariance matrix is set to b@;}_l = —0.5 and
¥} =1.25.

° Gr’é\phs with Random Sparsity Structures: We use the proeedantioned in Example 1 in [11]
to generate inverse covariance matrices with random nomzatterns. Specifically, we first
generate a sparse matfixwith nonzero elements equal 41, set>~! to beU? U and then add
a diagonal term to ensuté~! is positive definite. We control the number of nonzerog/iso

that the resultingz~! has approximately0p nonzero elements.

Given the inverse covariance matbix !, we draw a limited number, = p/2i.i.d. samples, to sim-
ulate the high-dimensional setting, from the correspapdRF distribution. We then compare
the algorithms listed above when run on these samples.

We can use the minimum-norm sub-gradient defined in Lemmafppendix 7.2 as the stopping
condition, and computing it is easy because! is available in QUIC. Table 1 shows the results
for timing comparisons in the synthetic datasets. We vaeydimensionality fromL000, 4000 to
10000 for each dataset. For chain graphs, we selesbd that the solution had the (approximately)
correct number of nonzero elements. To test the performainalgorithms on different parameters
(\), for random sparse pattern we test the speed under twosvaluieone discovers correct number
of nonzero elements, and one discovetisnes the number of nonzero elements. We report the time
for each algorithm to achieweaccurate solution defined by X*) — f(X*) < ef(X*). Table 1
shows the results far= 10~2 and10~%, wheree = 102 tests the ability for an algorithm to get a



good initial guess (the nonzero structure), and 10~ tests whether an algorithm can achieve an
accurate solution. Table 1 shows that QUIC is consistemity @/erwhelmingly faster than other
methods, both initially withk = 10~2, and ate = 10~5. Moreover, forp = 10000 random pattern,
there arep?> = 100 million variables, the selection of fixed/free sets beQJIC to focus only on
very small part of variables, and can achieve an accuratgisolin about 15 minutes, while other
methods fails to even have an initial guess within 8 hourstiddahat our)\ setting is smaller
than [14] because here we focus on therhich discovers true structure, therefore the comparison
between ALM and PSM are different from [14].

5.2 Experiments on real datasets

We use the real world biology datasets preprocessed by ¢lépmpare the performance of our
method with other state-of-the-art methods. The regu#idm parametea is set to0.5 according

to the experimental setting in [11]. Results on the follogvitatasets are shown in Figure 1: Estrogen
(p = 692), Arabidopsis f = 834), Leukemia p = 1,225), Hereditary p = 1,869). We plot the
relative error(f(X;) — f(X*))/f(X*) (on a log scale) against time in seconds. On these real
datasets, QUIC can be seen to achieve super-linear comeergehile other methods have at most
a linear convergence rate. Overall QUIC can be ten timesiféisan other methods, and even more
faster when higher accuracy is desired.
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7 Appendix

7.1 Algorithm

We present the detailed algorithm description as Algorighm

Algorithm 2: Quadratic Approximation method for Sparse Inverse Conagd earning QUIC)

Input : Empirical covariance matri, scalar), initial Xy, inner stopping tolerance parameters
0<o<05, 0<8<1
Output: Sequence oK converging taarg minx. o f(X), where
f(X) = —logdet X +tr(SX) + \|X];.
ComputelWy = X, '
fort=0,1,...do
D=0,U=0
while not convergedio
Partition the variables into fixed and free sets:
Sfiwed = {(7’?.7) ‘ ‘Vijg(Xt)‘ <A—e€ and(Xt)ij = 0}’ Sfree =N \ Sfized-
for (i,j) € Sfree dO
a = wi; + wiiw;;

b= Sij — Wiy =+ wfu.j
C= Tyj + dij
pw=—c+S(c—>b/a,\a)
dij — dij +p
U;. < ;. + puwj.
u;. < Uj. + uws.
end
end
fora=1,3,4%...do
Compute the Cholesky factorizatidn.” = X, + aD.
if X;+ aD % 0then
continue
end
Computef (X + aD) from L and X; + oD
if f(X, +aD) < f(X) + ac [tr(Vg(X:)D) + M| X, + Dy — A|X|] then
break
end
end
Xt+1 = Xt +aD
ComputeW; 1, = Xt;ll reusing the Cholesky factor.
end

7.2 Convergence guarantee (Proof of Theorem 1)

In this section, we prove that Algorithm 2 converges to thabgl optimum. Our proof is based
on the proof in [17], which was developed for coordinate gratidescent methods. [17] considers
composite objectives of the form

F(x) = g(x) + h(x), 13)

whereg(x) is sufficiently smooth (continuously differentiable) ah(k) is non-differentiable but
separable. Recall, that in our cagéX ) = —logdet X + tr(SX) andh(X) = A||X||1. In[17] it

is assumed that(X ) is smooth over the domaiR™. In our casey(X) is smooth over the restricted
domain of the positive definite cong" ™. We extend the analysis so that convergence still holds
under our setting.
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7.2.1 Notation

In the following arguments, capital letters such¥asX, A arep x p matrices, and is the identity
matrix. f(X) is our objective function defined by (2). As is standard [13¢ domain of the convex
function — log det is extended t&? (p x p Symmetric matrices) by

= > log(M\(X)), ifX =0

—logdet X = .
08 e {oo, otherwise

where; (X) is theith eigenvalue of{. We use|| X ||, to define the induced two norm of a matrix,
and||D||r to denote th&-norm ofvec(D), which is equal to the Frobenius norm of the matfix

We are only dealing with symmetric matrices, and therefoeer@strict our attention to the upper
triangular indices denoted by = {(4,5) | 1 < i < j < p}. The matrix functiong(X) can be
viewed as aiR”V — R function operating on the vector containing the upper gidar elements
of X. The gradientVg(X) accordingly becomes aR!V! vector, while the HessiaW2g(X) =

X1 @ X~ can be represented by &<V matrix. We emphasize that we will treat any
symmetric matrix as its vectorization of the upper diagaiaiments, for example, we will denote
vec(D)TV2g(X) vec(D) by DTV2g(X)D.

For anyX > 0, we define
1
D,(X) =arg min Vg(X)TD + §1)Tv29(x)D + A X + D1, (14)
V(0 g
whereJ C N is any index set, and in particular (X ) takes the minimum over all variables.

We useX, X5, ... to denote the sequence of matrices generated by our algonitihere each
X1 is updated fromX; by
Xip1 = Xi+ Dy, (Xy),

whereJ, is the index set selected at thth iteration, andy, is the step size which is the maximum
value amond1, 3, 5%, ... } which satisfies

f(Xi +aDy) < f(Xy) + acly, (15)
where0.5 > ¢ > 0 is a constant and
A =Ag(Xy) = Vg(X)T Dy + M| Xy + Dylr — M| Xe |1
We useD; = D, (X;) for simplicity.
Following the setting in [17], the index sefs, Js, . .. need to satisfy
U A2Nve=12... (16)
j=0,....,T—1
for some fixedI". Our algorithm satisfies (16) as mentioned in Section 4.1s&td, Js, ... to be
the fixed sets, ands, Jy, . .. to be the free sets arld = 3 will suffice.

7.2.2 Lemmas

Our first lemma establishes that our iterates are in therget< X =< M1 for some positive
constantsn and M.

Lemma 3. The level seU = {X | f(X) < f(Xo)andX € S%, } is contained in the sefX |
ml < X < MI} for positive constants:, M > 0.

Proof. First, we prove thatX < M1 for all X € U. The fact thatS = 0 and X > 0 implies
tr(SX) > 0and||X||; > 0. Therefore we have
f(Xo) > f(X) > —logdet X + || X||s (a7)

Since || X |2 is the largest eigenvalue df, we have—logdet X > —plog(||X]||2). In addition,
[ X1 > tr(X) > || X]]2. We combine these two facts and (17) to arrive at

f(Xo) > —plog(||X[2) + Al X[l2-

11



Since—plog x + Az is unbounded as increases, there must exist &h that depends oX such
that || X ||» < M.

Next, we prove thain/ < X for all X € U. We denote the smallest eigenvalue’dby « and use
the upper bound on the other eigenvalues to get:

f(Xo) > f(X) > —logdet X > —loga — (p—1)log M, (18)
which shows thatn = e (X0) ;7 =(»=1) js a lower bound for:. O

Lemma 4. There exists a unique minimiz&r* for (2).

Proof. According to Lemma 3, the level set is contained in the compatS = {X | mI <

X X MI}, whereV2f(X)=X"t® X1, V2f(X) = M—2I. From Weierstrass’ Theorem, any
continuous function in a compact set attains its minimumaddition, f (X)) is strongly convex in
the compact set, so the minimiz&r is unique. O

Lemma 5. X* is the optimal solution of2) if and only if
gradisj f(X*)=0 Vi,j,

where the minimum-norm sub—gradi@hdfj f(X) is defined by

grads; f(X) = Vijg(X) — A if X;; <0,
sign(V,;9(X)) max(|Vi;9(X)| — A, 0) if X;; =0.

Proof. The optimality condition forf (X) is that for all(i, j) € N

— A ifX, >0,
Vig(X) 4= A if X,; <0, (19)

It is easy to prove that (19) holds if and onlygitfadfj f(X) = 0forall4,j. Notice that in our case
Vg(X) =8 — X! therefore

(S—Xil)ij + A if Xi]' >0,
grad f(X) = (S — X 1)y — A if X;; <0,
51gn((S — X_l)ij) max(|(S — X_l)ij| — /\7 0) if Xij =0.

O

Lemma 6. For any index sef C N, D,;(X) = 0if and only ifgradfj f(X)=0forall (,7) € J.

Proof. D;(X) = 0if and only if D = 0 satisfy the optimality condition of (14). The condition can
be written as??) with (i, j) € J. This is the same as (19) for a subset of indexes. Follow tme sa

argument we can prove that this condition is equivalelgmaifj f(X)=0forall (i,j) € J. O
Lemma 7. A ;(X) in the line search conditio(iL5) satisfies

As(X) =Vg(X)"Dy(X) + AIX + Ds(X) |1 = A X[l < =Dy (X)"V2g(X)Ds(X)., (20)
and consequently,

As(X) < -m|Ds(X)|% (21)
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Proof. For simplicity, and since there can be no confusion, we dndgx./J. By definition of D in
(14),Ya € [0,1]:

1 1
Vg(X)TD+§DTV29(X)D+>\||X+DII1 < Vg(X)T(aD)+§a2DTV2g(X)D+)\HX+aDH1.

(22)
Since|| - ||; is @ norm, the following holds for atl > 0:

AIX +aD|y = Aja(X + D) + (1 — a) X[l < Aa| X + DIl + A1 — )| X[1.  (23)
Combining (22) and (23) yields:

Vg(X)" D5 DT Vg(X)DHAI X+ D]y < aVg(X)T D+ 5a? DTV f(X)D+ A0 X+ D]l 4A(1-)] X1
Therefore
(1-a)Vg(X) "D+ (1 —a)A|X +D|1 — (1 — )| X1 + %(1 —a?)DTV2g(X)D < 0.
Divide both sides byt — « to get:
Vg(X)'D + M| X + D1 — M| X + %(1 +a)DTV2g(X)D < 0.
By settinga T 1, we have
Vg(X)"D + XX + Dl = M| X |, < -D"V?¢(X)D,
which proves (20). Combine with Lemma 3 to get (21). O

Lemma 8. For any convergent subsequenkg, — X,
Ds, =Dy, (Xs,) — 0.

Proof. The objective value is monotonically decreasing and bodrdgow, thereforef (X, ) can-
not go to negative infinity, s¢(X,) — f(X,,,,) — 0. From (15), we have,, A, — 0.

We proceed to prove by contradiction. IIf;, does not converge t0, then there exist an infinite
index set7 C {si,s2,...} andd > 0 such thaf|D;||r > ¢ forall ¢ € 7. We will work in this
index setZ in what follows.

Let o, denote the line search step size which satisfies (15), byirmiséarch procedur%L will not
satisfy (15), so we have:

(6% (6%
J+()D1) = f(X0) = o(F) A (24)
If X, + %Dt is not positive definite, then we defirfé X; + %Dt) to beco, so (24) still holds. We
have
9(Xe + (5)De) — 9(Xe) + AMXe + G Delly = A Xe|ln

FAVILS o
B
9(Xe 4+ (%) Dy) — g(Xe) + (GF)AMXe + Deln + (1 = FG)MXe|lr — M X1
< ? A . (by (23)
3
9(Xe + () D) — g(Xy)
= - FAIX, + Dyl — M| X1,V € T.

B
By the definition ofA; we can replace the last two terms and get
9(Xe + (5)Dr) — 9(Xe)

at

B
9(Xe + (F)Dr) — 9(X)

o9

O'At S + At — Vg(Xt)TDt,

(1-0)(=4A) < ~Vg(X,)" Dy

13



By (21) in Lemma 7,

9(Xe + (%)Dy) — g(Xy)
(1 —o)m|| D3 < - ~Vg(X,)TD,
I}
9(Xe + () Dell 52 ) — 9(Xa) D
(1—0)m| Dyl r < o L2 — V(X))
AR Dl

Setay = % ||D[|p, and since|D,[|p > ¢ forallt € 7 we have

9(Xi + dip) — 9% V(X)) D,
Gy IDellr

(1 —=0)mo < (25)

By (21),
—OétAt > atm||Dt||% > mat||Dt||F5

and{o;A;}y — 0, so{ay||Ds|lp}e — 0, so{a"}t — 0. SinceA%—
ball, there exists a subsét C 7 such that{ - 2:— A 17 — D, so

”D i is in the compact-norm

9(Xy + &uD) — g(X;)

(1—0)ymé < 3, —Vg(X,)"D. (26)

Our algorithm guarantees thaf; is positive definite. AlsaX; + &, D is positive definite when
&y — 0. So taking limit of (26) ag € 7 andk — oo on (25), we have

(1—0)mé < Vg(X)TD - Vg(X)"D =0,
a contradiction, finishing the proof. O

Lemma 9. For any X = 0 and symmetrid), there exists am > 0 such that for all < @, (1)
X +aD = 0and (2) X + aD satisfies the line search conditi¢h5).

Proof. First, whena < ¢,,(X)/||D||2 (0, (X) stands for the smallest eigen-valueXy, ||aD||2 <
on(X),s0X + aD > 0.

Second,

F(X +aD) — F(X) = g(X +aD) — g(X) + AIX +aDlly — A|X]l
< g(X +aD) = g(X) + a([|[X + Dy - [|X]1) by (23)
= aA + o(a).

It follows that for a fixedd < o < 1, whene is sufficiently small, the line search condition must
hold. O

7.2.3 Proof of Lemma 1
Since thefixedsetSy;,.q is defined by
Sfirced = {(Z,]) | |V¢jg(Xt)| <A—¢€ and(Xt)ij = O},

SOgradfj f(X:) = 0forall (i,) € Stizea- From Lemma 6, this implieds,, ., = 0, therefore the
solution of the following optimization problem &5 = 0:

arg mAin f(X¢+ A) suchthat;; =0 V(i,5) € Sfree-

7.2.4 Main proof

Theorem 3. Our algorithmQUIC converges to a unique global optimum.

14



Proof. Assume a subsequen{&’; } - converges td?._ Since the choice of the index sétselected
at each step is finite, we can further assume fhat J, forallt € 7. From Lemma 8D (X;) —

0. By the continuity ofV f(X) and V2 f(X), it is easy to showD 7 (X;) — Dj, (X). Therefore
Dy (X)=0.

Furthermore{D; (X;)}; — 0 and|X; — X;11||r < || Dy, (X:)||r, S0{X:41} also converges to

X. By further subsetting of we can assume thdi; = J; forall t € 7. By the same argument
we can provg Dy, (X;)}+ — 0,80D; (X) = 0. Similarly, we can show thab ; (X) = 0 Vi =
0,...,T—1 can be assumed for an appropriate subs@&t.okccording to Lemma 6 and assumption
(16), X is a stationary point:

gradfj f(X) =0Vi,j.

Moreover, by Lemma 4, there exists a unique optimal pointhesequencéX, } generated by our
algorithm must converge to the global optimum. O

7.3 Quadratic Convergence Rate

7.3.1 Existing results for Newton method on Bounded constia

The convergence rate of Newton method on bounded congiraiirémization has been studied in
[10] and [6]. Here we briefly mention their results.

Assume we want to solve a constrained minimization problem

in
min F(z),

where() is a nonempty subset @@" andF : R" — R has a second derivativé?F(x). Then
beginning fromz:?, a natural extension of Newton method is to comptfté! by

1
2F T = arg 111618 VF(@"T (z - 2%) + §(x — 2MIV2F(a%)(x — 2F). 27)

For simplicity, we assumé’ is strictly convex and has a unique minimizet in Q. Then the
following theorem holds

Theorem 4. Assumér is strictly convex, has a unique minimizerin Q, andV2F(x) is Lipschitz
continuous, then for alk, sufficiently close ta., the sequencéz; } generated by27) converges
quadratically tozx,.

This theorem is proved in [6].

7.3.2 Proof for the quadratic convergence oQUIC

Again we consider the composite objectives as (13), @3d) has Lipschitz continuous second
order derivatives. Assum& * is the optimal solution, then we can divide the indexes into

P={(i,7) | Vijg(X") = =AY, N ={(1,7) | Vijg(X*) = A}, Z={(0,7) | =A< Vijg(X*2)8< A}
Notice thatX;; > 0 for all (i, j) € P, X;; < 0forall (,j) € N andX}; = 0forall (4,5) € Z.
Lemma 10. If the second order derivative @f(-) is Lipschitz continuous, then whe¥ is close
enough taX ™, the line search conditio(iL5) will be satisfied with step size = 1.
Proof. To simplify the notation, here we dena® by X, D; by D, andA; by A. We bound the
decrease in objective function value by the following arguin First, define
g9(t) = g(X +tD),
s0g”(t) = DTV?2g(X + tD)D. From the Lipschitz continuity o¥2g(-), we have
IV?9(X +tD) — V?g(X)|| < tL|| DI,

whereL is the Lipschitz constant. By definition

19" (t) = §"(0)| = [T (V*g(X +tD) — V*g(X))D| < tL||D|]>.
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Therefore we can upper bougd(t) by
§"(t) < g"(0) +tL||D|> = DTV?g(X)D + tL|| D|]>.

Integrate both sides to get
1 1
§'(t) < §(0)+tDTV%g(X)D + §t2L||DH3 =Vg(X)ID +tDTV?g(X)D + 5t2L|\D||3.
Integrating both sides again, we have
1 1

g(t) < 3(0) +tVg(X)TD + §t2DTVQg(X)D + 6t3LHD||3.

Takingt = 1 the inequality becomes
~ T 1 T72 1 3
9(X + D) =g(1) <g(X)+Vg(X)" D+ 5D V(X)D + -L| D]
1 1
9(X + D)+ A|X + Dlli < g(X) + A|X[l1 + (Vg(X)"D + A X + DIl = M| X[h) + gDTV2g(X)D + 5LIIDH37
S0
1 T2 1 3
J(X+D) < f(X)+A+ 5D V?9(X)D + 8L||D||

< f(X)+ %A - é%\\DHA (by (20) and (21) in Lemma)7

= F(X)+ (5~ g 2 ID)A.

And from Lemma 8 we hav®" — 0, therefore wherk is large enough(} — £ || D¥||) will be
O

larger thary (0 < o < 0.5), so the line search condition holds with step dize

Lemma 11. Assume that the sequent; } converges to the global optimuXi*. There exists a
t > 0 such that
>0 if(i,j)eP
(X¢)ij & <0 if(i,j)eN (29)
=0 if(i,j)e”Z

forall t > .
Proof. We prove the case fofi,j) € P by contradiction, the other two cases can be handled
similarly. Assume that there exists an infinite subsequeXg } such that(Xy,);; < 0. We

consider the update froti,, _; to X,. From Lemma 10, we can assume thais large enough so
that the step size equalsthereforeX,, = X,,_1 + ds,. Note thatD, is the optimal solution of

1
mDian(Xsr1)TD + §DTV29(Xsr1)D + X + Dy — [ X1 (30)
Since(Xy,)i; = (Xs,-1)i; + (Ds,)ij < 0, from the optimality condition of (30) we have
(Vg(Xs,1) + V2g(X5,1)(Ds,))ij = . (31)
Since D, converges td), (31) implies that{V,;¢(X;, 1)} will converge toA. However, by the
definition of P, V;;9(X*) = —A\, and by the continuity oV g we get that{V;;¢9(X;)} converges
to V;,;9(X*) = —\, a contradiction finishing the proof for the case w(thj) € P in (29). O

Lemma 12. AssumeX; — X*. There exists & > 0 such that variables irP or N will not be
selected as fixed set (denoteddyy,..q) aftert > ¢. That s,

SfmedCZ:N\(PUN).
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Proof. Since X, converges taX* and Vg(-) is continuous,Vg(X;) will converge toVg(X™*).
ThereforeV,;;9(X,) converges te-\ if (7,5) € P and toXif (i,j) € N. Since we select fixed set
by testing whethefX,);; = 0 and

“Ate< Vijg(Xt) <A —k,

whenk is large enoughV,;g(X;) — V;;9(X*)| will be smaller thar, then all variables i® or N
will not be selected in the fixed set. O

Theorem 5. {X,;} generated by our algorithrQUIC converges asymptotic quadratically 16
whent is large enough.

Proof. First, if we the index set®, N andZ (related to the optimal solution) are given, solving (2)
is the same as solving the following constrained minimaaproblem.

min — logdet(X) + tr(SX) + OG- D Xy
(i,J)EP (i,j)EN
st X >0 VY(i,j) € P, (32)
X;; <0 V(i,j) €N,
X;; =0 V(i,j) € Z

Next we claim that wherk is large enough, our algorithm is equivalent to applying Mewton
method in Section 7.3.1 to minimize (32). Since the objectiinction values of (32) and (2) are the
same if we restrict variables to follow the sign patterns32)( to prove the equivalence it suffices
to show:

1. The sign of the optimal solution for the original sub-desb (5) will always be the same as (32)
after a finite number of iterations. This is the result of Leanii.

2. The fixed set selection does not affect the Newton subl@mabThis can be proved by Lemma
12 because at each iteration the fixed Sgt..¢ C Z, andZ is the set which always satisfies
(Dy)z = 0 aftert large enough. So we will never fix the wrong variables (cha@s&bles inP
or N in the fixed set) aftet is large enough.

Moreover, Lemma 10 shows the step size will alwayslbehent large enough. Therefore our
algorithm is equivalent to the Newton method in SectionI].®@hich converges quadratically to the
optimal solution of (32). Since the revised problem (32) andoriginal problem (2) has the same
minimum, our algorithm converges quadratically to the mjpitm of (2) when the iterationis large
enough. O

7.4 Size of free sets in experiments

In Figure 2, we plot the size of the free set versus iterationklereditarybc dataset. Starting from a
total of 18692 = 3,493, 161 variables, the size of the free set progressively dropsdtitb less than
120,000 in the very first iteration. We can see the super-linear caerece of QUIC even more
clearly when we plot it against the number of iterations.
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Figure 2: Size of free sets and objective value versus iteratHereditarybc dataset). There are

total 3,493, 161 variables, but the size of free set reduce to less 124n000 in one iteration, and
become abou20, 000 at the end.
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