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Abstract

We study the problem of learning the graph
structure associated with a general discrete
graphical models (each variable can take any
of m > 1 values, the clique factors have
maximum size c ≥ 2) from samples, under
high-dimensional scaling where the number
of variables p could be larger than the num-
ber of samples n. We provide a quantitative
consistency analysis of a procedure based on
node-wise multi-class logistic regression with
group-sparse regularization.

We first consider general m-ary pairwise
models – where each factor depends on at
most two variables. We show that when
the number of samples scale as n > K(m −
1)2d2 log((m−1)2(p−1))– where d is the max-
imum degree and K a fixed constant – the
procedure succeeds in recovering the graph
with high probability. For general models
with c-way factors, the natural multi-way ex-
tension of the pairwise method quickly be-
comes very computationally complex. So we
studied the effectiveness of using the pairwise
method even while the true model has higher
order factors. Surprisingly, we show that un-
der slightly more stringent conditions, the
pairwise procedure still recovers the graph
structure, when the samples scale as n >

K(m− 1)2d
3
2 c−1 log((m− 1)c(p− 1)c−1).

1 Introduction

Markov Random Fields and Structure Learning. Undi-
rected graphical models, also known as Markov ran-
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dom fields, are used in a variety of domains, in-
cluding statistical physics [14], natural language pro-
cessing [19], image analysis [35, 13, 6], and spatial
statistics [27], among others. A Markov random field
(MRF) over a p-dimensional discrete random vector
X = (X1, X2, . . . , Xp) is specified by an undirected
graph G = (V,E), with vertex set V = {1, 2, . . . , p}
– one for each variable – and edge set E ⊂ V × V .
The structure of this graph encodes certain conditional
independence assumptions among subsets of the vari-
ables. In this paper, we consider the task of structure
learning, i.e. estimating the underlying graph struc-
ture associated with a general discrete Markov random
field from n independent and identically distributed
samples {x(1), x(2), . . . , x(n)}.

High-dimensional setting and Group sparsity. We are
interested in structure learning in the setting where
the dimensionality p of the data is larger than the
number of samples n. While classical procedures typ-
ically break down under such high-dimensional scal-
ing, an active line of recent research has shown it
is still possible to obtain practical consistent proce-
dures by leveraging low-dimensional structure. The
most popular example is that of leveraging sparsity us-
ing !1-regularization (e.g., [4, 12, 21, 23, 31, 34, 37]).
For MRF structure learning, such !1-regularization has
been successfully used for Gaussian [21] and discrete
binary pairwise (i.e. Ising) models [26, 17]. In these
instances, there is effectively only one parameter per
edge, so that a sparse graph corresponds to a sparse set
of parameters. In this paper, we are interested in more
general discrete graphical models – where each variable
can take m possible values, and factors can be of order
higher than two. We now have multiple parameters per
edge, and thus the relevant low-dimensional structure
is that of group sparsity: all parameters of an edge form
a group, and a sparse graph now corresponds to certain
groups of parameters being non-zero. The counterpart
of !1 regularization for such group-sparse structure is
!1/!q regularization for q > 1, where we collate the
!q norms of the groups, and compute their overall !1
norm. Recent work on group and block-sparse linear
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regression [32, 8, 22, 18, 24, 25, 2] show that under such
group-sparse settings, group-sparse regularization out-
performs the use of !1 penalization.

Our Results: Pairwise m-ary models. In this paper, we
provide a quantitative consistency analysis of group-
sparse regularized structure recovery for general dis-
crete graphical models. We first consider the case of
pairwise but otherwise m-ary discrete graphical mod-
els, and analyze a group-sparse variant of the proce-
dures in [26, 21]: for each vertex r ∈ V , we estimate
its neighborhood set using !1/!2-regularized maximum
conditional likelihood. This reduces to multi-class lo-
gistic regression, for which we characterize the number
of samples needed for sparsistency i.e. consistent re-
covery of the group-support-set with high probability.
This analysis extends recent high-dimensional analy-
ses for linear models to logistic models, and is of in-
dependent interest even outside the context of graph-
ical models. We then combine the neighborhood sets
across vertices to form the graph estimate. There has
been a strong line of work on developing fast algo-
rithms to solve these sparse multiclass logistic regres-
sion programs including Meier et al. [20], Krishnapu-
ram et al. [15]. Indeed, [9, 10] show good empirical
performance using such !1/!q regularization even with
the joint likelihood over all variables.

Our Results: General m-ary models. One (natural,
but expensive) extension to graphical models with
higher-order factors is to again use group-sparse reg-
ularization but with higher order factors as groups.
However, this leads to prohibitive computational com-
plexity – e.g. there are O(pc) possible factors of order
c. Indeed, in their empirical study of such regulariza-
tions, Dahinden et al. [9, 10] could scale up to small
graph sizes, even while using some intelligent heuris-
tics. This motivates our second main result. Sup-
pose we solve the pairwise graphical model estima-
tion problem, even when the true model has higher
order factors. What is the relationship of this estimate
with the true underlying graph? We investigate this
for hierarchical graphical models where the absence
of any lower-order factor also implies the absence of
factors over supersets of the lower-order factor vari-
ables. Higher-order factors could, in principle, cause
our pairwise estimator to include spurious edges. Sur-
prisingly, we obtain the result that under slightly more
stringent assumptions on the scaling of the sample size
(dependent on the size of the higher-order factors) the
pairwise estimator excludes the irrelevant edges, and
includes all “dominant” pairwise edges whose param-
eters are larger than a certain threshold that depends
on the size of the parameters values of higher-order
factors. As a consequence, if all pairwise effects are
dominant enough, we recover the graph exactly even

while using a simple pairwise estimator. But even oth-
erwise, the guaranteed false edge exclusion could be
used for further greedy procedures, though we defer
further discussion in the sequel.

Existing approaches. Methods for estimating such
graph structure include those based on constraint and
hypothesis testing [29], and those that estimate re-
stricted classes of graph structures such as trees [5],
polytrees [11], and hypertrees [30]. Another class of
approaches estimate the local neighborhood of each
node via exhaustive search for the special case of
bounded degree graphs. Abbeel et al.[1] propose a
method for learning factor graphs based on local con-
ditional entropies and thresholding, but the computa-
tional complexity grows at least as quickly as O(pd+1),
where d is the maximum neighborhood size in the
graphical model. Bresler et al. [3] describe a related
local search-based method, and prove under relatively
mild assumptions that it can recover the graph struc-
ture with Θ(log p) samples. However, in the absence of
additional restrictions, the computational complexity
of the method is O(pd+1). Csiszár and Talata [7] show
consistency of a method that uses pseudo-likelihood
and a modification of the BIC criterion, but this also
involves a prohibitively expensive search.

2 Problem Setup and Notation

MRFs and their Parameterization. We consider the
task of estimating the graph structure associated with
a general discrete Markov random field. Let X =
(X1, . . . , Xp) be a random vector, each variable Xi

taking values in a discrete set X = {1, 2, . . . ,m} of
cardinality m. Let G = (V,E) denote a graph with p
nodes, corresponding to the p variables {X1, . . . , Xp}.
Let C be a set of cliques (fully-connected subgraphs)
of the graph G, and let {φC : X |C| %→ R, C ∈ C} be a
set of “clique potential” functions. With this notation,
the distribution of X takes the form

P(x) ∝ exp

{
∑

C∈C
φC(xC)

}
. (1)

Since X is discrete, each potential function φC can be
parameterized as linear combinations of {0, 1}-valued
indicator functions – one for each configuration of xC .
For each s ∈ V and j ∈ {1, . . . ,m − 1}, we can define
node-wise indicators,

I[xs = j] =

{
1 if xs = j

0 otherwise.

Note that we omit an indicator for xs = m from the
list, since it is redundant given the indicators for j =
1, . . . ,m − 1. In a similar fashion, we can define the
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|C|-way clique-wise indicator functions I[xC = v], for
v ∈ {1, 2, . . . ,m − 1}|C|.

With this notation, any set of potential functions can
then be written as

φC(xC) =
∑

v∈{1,...,m−1}|C|

θ∗C;v I[xC = v] for C ∈ C

Thus, (1) can be rewritten as,

Pθ∗(x) ∝ exp

{ ∑

C∈C;v∈{1,...,m−1}|C|

θ∗C;v I[xC = v]

}
.

(2)

Thus, the Markov random field can be parameterized
in terms of the collection of tensors θ∗ := {θ∗C;v C ∈
C; v ∈ {1, . . . ,m−1}|C|}. In the sequel, it will be useful

to collate these into vectors θ∗C ∈ R(m−1)|C|
associated

with the cliques C ∈ C.

Pairwise Markov Random Fields. Here the set of
cliques consists of the set of nodes V and the set
of edges E. Thus, using nodewise and pairwise in-
dicator functions as before, any pairwise MRF over
(X1, . . . , Xp) can be expressed as

P(x) ∝ exp

{ ∑

s∈V ;j∈{1,...,m−1}

θs;jI[xs = j]

+
∑

(s,t)∈E;j,k∈{1,...,m−1}

θst;jkI[xs = j, xt = k]

}
,

(3)

for a set of parameters θ∗ := {θ∗s;j , θ∗st;jk : s, t ∈
V ; (s, t) ∈ E; j, k ∈ {1, . . . ,m − 1}}. It will be use-
ful to collate these into vectors θ∗s ∈ Rm−1 for each

s ∈ V , and the vectors θ∗st ∈ R(m−1)2 associated with
each edge.

Graphical Model Selection. Suppose that we are given
a collection D := {x(1), . . . , x(n)} of n samples, where
each p-dimensional vector x(i) ∈ {1, . . . ,m}p is drawn
i.i.d. from a distribution Pθ∗ of the form (2), for pa-
rameters θ∗ and graph G = (V,E∗) over the p vari-
ables. The goal of graphical model selection is to infer
the edge set E∗ of the graphical model defining the
probability distribution that generates the samples.
Note that the true edge set E∗ can also be expressed
as a function of the parameters as

E∗ = {(s, t) ∈ V × V : ∃C ∈ C; {s, t} ∈ C; θ∗C *= 0}. (4)

In this paper, we focus largely on the special case of
pairwise Markov random fields.

2.1 Pairwise Model Selection

We now describe the graph selection procedure we
study for the m-ary pairwise model. It is the natu-

ral generalization of the procedures for binary graph-
ical models [26] and Gaussian graphical models [21].
Specifically, we first focus on recovering the neighbor-
hood of a fixed vertex r ∈ V , and then combine the
neighborhood sets across vertices to form the graph
estimate.

Let us define the vector Θ∗
\r ∈ R(m−1)2(p−1), which is

the concatenation of (p − 1) groups – i.e. one (short)

vector θ∗rt ∈ R(m−1)2 for each t ∈ V \{r}. Note that r
having a small neighborhood is equivalent to many of
these vectors θ∗rt being zero; in particular, the problem
of neighborhood estimation for vertex r corresponds to
the recovery of the set

N (r) =

{
u ∈ V \{r} | ‖θ∗ru‖0 *= 0

}
.

This is precisely the structure captured by group-
sparsity. In particular, each θ∗rt, with t ∈ V \{r}, corre-
sponds to a group; if r has a small neighborhood,only
few of these groups will be non-zero.

In order to estimate the neighborhood N (r), we thus
perform a regression of Xr on the rest of the variables
X\r, using the group-sparse regularizer

∥∥Θ\r
∥∥
1,2

:=∑
u∈V \{r} ‖θru‖2. The conditional distribution of Xr

given the other variables X\r = {Xt | t ∈ V \{r}}
takes the form

PΘ∗
[
Xr = j | X\r = x\r

]
=

exp
(
θ∗r;j +

∑
t∈V \{r}

∑
k θ

∗
rt;jkI[xt = k]

)

1 +
∑

" exp
(
θ∗r;" +

∑
t∈V \{r}

∑
k θ

∗
rt;"kI[xt = k]

) ,

(5)

for all j ∈ {1, . . . ,m − 1}. Thus, Xr can be viewed as
the response variable in a multiclass logistic regression,
in which the indicator functions associated with the
other variables

{
I[xt = k], t ∈ V \{r}, k ∈ {1, 2, . . . ,m − 1}

}
,

play the role of the covariates.

Thus, we study the following convex program as an
estimate for Θ∗

r

Θ̂\r ∈ min
Θ\r∈R(m−1)2(p−1)

{
!(Θ\r;D) + λn

∥∥Θ\r
∥∥
1,2

}
,

(6)
where !(Θ\r;D) = 1

n

∑n
i=1 !

(i)(Θ\r;D) :=
1
n

∑n
i=1 logPΘ

[
Xr = x(i)

r | X\r = x(i)
\r

]
is the rescaled

multiclass logistic likelihood defined by the conditional
distribution (5), and λn > 0 is a regularization param-
eter. The convex program (6) is an !1/!2-regularized
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multiclass logistic regression problem, and is thus the
multiclass logistic analog of the group Lasso [36].

The solution to the program (6) yields an estimate
N̂ (r) of the neighborhood of node r by

N̂ (r) = {t ∈ V : t *= r; ‖θ̂rt‖2 *= 0}.

We are interested in the event that all the node neigh-
boorhoods are estimated exactly, {N̂ (r) = N (r); ∀r ∈
V }, which we also write as {Ê = E∗} since it entails
that the the full graph is estimated exactly.

Sparsistency. Our main result is a high-dimensional
analysis of the estimator (6), where allow the prob-
lems dimensions such as the number of nodes p, the
maximum node degree d, the size of the state space m
(and in the case of higher-order MRFs, the maximum
clique size c) to vary with the number of observations
n. Our goal is to establish sufficient conditions on the
scaling of (n, p, d,m, c) such that our proposed estima-
tor is consistent in the sense that

P
[
Ên = E∗

]
→ 1 as n → +∞.

We sometimes call this property sparsistency, as a
shorthand for consistency of the sparsity pattern of
the parameters.

2.2 Higher-order Model Selection

Natural, high-complexity Extension. Let us first see
what this model selection recipe of node-wise regres-
sion with group-sparse regularization, would entail
when extended to the general higher-order Markov
random fields (2) case. Recall that such a higher-order

MRF is parameterized by vectors θ∗C ∈ R(m−1)|C|
for

C ∈ C. Let c be the maximum clique size. It would
be convenient to view the parameters as a collection
of
∑c

j=1

(p
j

)
vectors indexed by a cliques C of size less

than or equal to c, but non-zero if and only if the clique
C ∈ C.

Again, we fix a node r, and define the long vector

Θ∗
\r ∈ R

∑c−1
j=1 (

p−1
j )(m−1)j+1

as the concatenation of the

parameter vectors θ∗rC for all C ⊆ V \r; |C| < c. Note
that recovery of the neighborhood of a vertex r corre-
sponds to the recovery of the set

N (r) =

{
u ∈ V \{r} | ∃C ⊆ V \{r, u}; ‖θ∗ruC‖0 *= 0

}
.

Thus, we could again make use of group sparsity where
in this case, the groups of parameters are the param-
eter vectors θ∗rC for different C ⊆ V \r; |C| < c. We
can then see that a small neighborhood N (r) for node
r entails that Θ∗

\r will have many of these groups be

zero. The group-structured penalty would then take
the form ‖Θ∗

\r‖1,2 :=
∑

{C⊆V \r |C|<c} ‖θ∗rC‖2.

Thus we would solve:

min
Θ\r∈R

∑c−1
j=1 (p−1

j )(m−1)j+1

{
!(Θ\r;D) + λn

∥∥Θ\r
∥∥
1,2

}
,

(7)

where !(Θ\r;D) is the likelihood of the data as be-
fore. Dahinden et al. [9, 10] studied the related pro-
gram of !1/!2 regularized maximum likelihood over the
complete graph (instead of node-wise regressions) but
showed good empirical performance of discrete graph-
ical model structure recovery. The caveat with the
higher-order group-sparse approach is the prohibitive
computational complexity of this procedure. Note that
the number of parameters is

∑c−1
j=1

(p−1
j

)
(m − 1)j+1

which scales prohibitively even for moderate c. In-
deed, even the computations in the pairwise case are
not inexpensive.

Sparsistency of a Simpler Estimate. But as we show in
Section 4, even when the underlying model is a higher
order MRF, surprisingly just solving the pairwise pro-
gram (6) is sufficient to recover the true edges, under
certain conditions. Thus, in our second main result,
we again analyze the sparsistency of the estimator in
(6), but for the case where the underlying graph is a
higher-order MRF.

2.3 Notation

We use the following notation for group-
structured norms. For any vector u ∈ Rp

where {1, . . . , p} is partitioned into a set of T
disjoint groups G = {G1, . . . , GT }, we define
‖u‖G,a,b = ‖(‖uG1‖a, . . . , uGT ‖a)‖b. In our case, for
the pairwise model, the nodewise regression has the
parameter vector Θ∗

\r ∈ R(m−1)2(p−1). Its groups are

collated on the edges: G = {Grs; s ∈ V \r} where
Grt is the index set of parameters on the (r, t) edge,
{θrt;jk; j, k ∈ {1, . . . ,m − 1}}.

Similarly, suppose Θ∗
\r is the nodewise regression pa-

rameter for the higher-order model case. Then its
groups are collated on the cliques: G = {GrC ;C ⊆
V \r |C| < c}, where GrC is the index set of parame-
ters on the r∪C clique, {θrC;jv; j ∈ {1, . . . ,m−1}; v ∈
{1, . . . ,m− 1}|C|}. In the sequel, we will suppress the
dependence of the group norms on these group parti-
tions G when it is clear from context, so that we will
simply use ‖Θ∗

\r‖a,b for ‖Θ∗
\r‖G,a,b.

We will be focusing on the choice a = 1, b =
2 which yields the group-lasso penalty [36]. For
a matrix M ∈ Rp×p, and denoting the i-th row
of M by M i, we can define the analogs of the
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group-structured norms on matrices: ‖M‖(a,b),(c,d) :=
‖(‖M1‖c,d, . . . , ‖Mp‖c,d)‖a,b. In our analysis, we will
always use b = d = 2, so that we use the minimized
notation: ‖M‖a,c to denote ‖M‖(a,2),(c,2).

3 Pairwise Discrete Graphical Models

Let Sr = {u ∈ V : (r, u) ∈ E} be the set of all neigh-
bors of the node r in the graph and Sc

r = V \Sr. No-
tice that ‖θ∗ru‖0 = 0 for all u ∈ Sc

r . Fixing r ∈ V ,

and defining Θ∗
\r as before, let S(ex)

r be the index set

of parameters {θ∗rt;jk *= 0} in Θ∗
\r. When clear from

context, we will overload notation and again use Sr for
this index set.

Let Q∗ = E
[
∇2 log

(
PΘ∗

\r

[
Xr

∣∣X\r
])]

be the

population Fisher information matrix. Note that
Q∗ ∈ R(m−1)2(p−1)×(m−1)2(p−1). Similarly, let
Qn = 1

n

∑n
i=1 ∇2!(i)

(
Θ\r;D

)
be the sample Fisher

information matrix.

Define J ∗ = E
[
I [xt2 = k2] I [xt1 = k1]

T
]

∈
R(m−1)(p−1)×(m−1)(p−1). Accordingly, define J n

to be the empirical mean of the same quantity
over n drawn samples. In the proofs (specifically
in analyzing the derivative of the Hessian of the
log-likelihood function), we will actually need control
over 1∗ := J ∗⊗1(m−1)×(m−1), the Kronecker product
of J ∗ and matrix of all ones (which would be of the
size of Q∗). But by properties of Kronecker products,
we have Λmax(1∗) = Λmax(J ∗), so that it suffices to
impose assumptions on the maximum eigen values of
J ∗ and J n.

3.1 Assumptions

We begin by stating the assumptions imposed on the
true model. We note that similar sufficient conditions
have been imposed in papers analyzing Lasso [33] and
block-regularization methods [22, 24].

(A1) Invertibility: Λmin

(
Q∗

SrSr

)
≥ Cmin > 0.

(A2) Incoherence:
∥∥∥Q∗

Sc
rSr

(
Q∗

SrSr

)−1
∥∥∥
∞,2

≤ 1−2α√
dr

for some α ∈
(
0, 1

2

)
.

(A3) Boundedness: Λmax (J ∗) ≤ Dmax < ∞.

The next lemma states that imposing these assump-
tions on the population quantities implies analogous
conditions on the sample statistics with high probabil-
ity.

Lemma 1. Assumptions (A1)-(A3) on the population
Fisher information matrix yield the following (analo-
gous) properties on the empirical Fisher information
matrix:

(B1) P
[
Λmin

(
Qn

SrSr

)
< Cmin − ε

]

≤ 2 exp(− 1
8 (ε

√
n −

√
dr)2 + log((m − 1)2dr)).

(B2) P
[∥∥∥Qn

Sc
rSr

(
Qn

SrSr

)−1
∥∥∥
∞,2

> 1−α√
dr

+ ε

]

≤ 6 exp(− 1
8 (C̄min(

α
3
√
dr

+ ε)
√
n

− (1 +
√
dr

C2
min

√
n
)
√
dr)2 + log((m − 1)2(p − 1))).

(B3) P [Λmax (J n) > Dmax + ε] ≤ 2 exp
(

− 1
8 (ε

√
n −

√
dr)2 + log

(
(m − 1)2dr

))
.

3.2 Main Theorem

We can now state our main result on the sparsistency
of the group-sparse regularized estimator.

Theorem 1. Consider a discrete graphical model of
the form (3) with parameters Θ∗ and associated edge
set E such that conditions (A1)-(A3) are satisfied.
Suppose the regularization parameter satisfies

λn ≥ 8(2 − α)
α

(√
log(p − 1)

n
+

m − 1

4
√
n

)
. (8)

Then, there exist positive constants K, c1 and c2 such
that if the number of samples n scales as

n ≥ K(m − 1)2d 2
r log

(
(m − 1)2(p − 1)

)
, (9)

then with probability 1 − c1 exp(−c2λ2nn) we are guar-
anteed

(a) For each node r ∈ V , the !1/!2 regularized logis-
tic regression (6) has a unique solution and hence
specifies a neigborhood N̂ (r).

(b) For each node r ∈ V correctly excludes all
edges not in the true neighborhood N (r).
Moreover, it includes all edges (r, t) such that∥∥∥θ∗rt;jk

∥∥∥
2

≥ 10
Cmin

λn.

Before sketching the proof outline, we first state some
lemmas characterizing the solution of (3).

Lemma 2 (Optimality Conditions). Any optimal
primal-dual pair (Θ̂\r, Ẑ\r) of (3) satisfies

1. (Stationary Condition).

∇!
(
Θ̂\r

)
+ λnẐ\r = 0. (10)
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2. (Dual Feasibility). Ẑ\r is equal to the subgra-

dient ∂‖Θ̂\r‖1,2 so that for any u ∈ V \r,

(a) if (Θ̂\r)u;jk *= 0 for some j, k then

(Ẑ\r)u =
(Θ̂\r)u

‖(Θ̂\r)u‖2
.

(b) if the entire group (Θ̂\r)u = 0, then

‖(Ẑ\r)u‖2 ≤ 1.

The next lemma states that structure recovery is guar-
anteed if the dual is strictly feasible.

Lemma 3 (Strict Dual Feasibility). Suppose that

there exists an optimal primal-dual pair
(
Θ̂\r, Ẑ\r

)
for

(6) such that

∥∥∥∥
(
Ẑ\r

)

Sc
r

∥∥∥∥
∞,2

< 1. Then, any optimal

primal solution Θ̃\r satisfies
(
Θ̃\r

)

Sc
r

= 0. Moreover,

if the Hessian sub-matrix
[
∇2!

(
Θ̂\r

)]

SrSr

5 0 then

Θ̂\r is the unique optimal solution.

We are now ready to sketch the proof of Theorem 1.

Proof. Part (a). The proof proceeds by a primal-dual
witness technique, and consists of the construction of
a feasible primal-dual pair in the following two steps:

(i) Primal Candidate using an oracle subprob-
lem: Let Θ̂\r be the optimal solution of the re-
stricted problem

Θ̂\r = arg min
(Θ\r)Sc

r
=0

{
!(Θ\r;D) + λn

∥∥Θ\r
∥∥
1,2

}
.

(11)

(ii) Dual Candidate from Stationary Optimal-
ity Condition: For any column u ∈ Sr set(
Ẑ\r

)

u
= 1

‖(Θ̂\r)u‖
2

(
Θ̂\r

)

u
.

Set
(
Ẑ\r

)

Sc
r

from the stationary condition (2).

Showing Strict Dual Feasibility. By construction, the
(Θ̂\r, Ẑ\r) pair satisfies the stationary condition (10).

It remains to show that the the dual Ẑ\r is strictly
feasible. We show that this holds, and also that the
solution is unique, with high probability in Lemma 5.

Part (b). By uniqueness of the solution shown in part
[(a)], the method excludes all edges that are not in
the set of edges. To show that all correct edges are

included, i.e., to show the correct correct sign recovery,
it suffices to show that

∥∥∥Θ̂Sr − Θ̂∗
Sr

∥∥∥
∞,2

≤ θmin

2
,

where, θmin = min
t∈V \{r}

‖θrt;jk‖2.

We provide an ‖·‖∞,2 bound on the error in (21), from
which

2

θmin

∥∥∥Θ̂Sr − Θ̂∗
Sr

∥∥∥
∞,2

≤ 2

θmin

5

Cmin
λn

≤ 1,

provided that θmin > 10
Cmin

λn.

4 Higher-Order Discrete Graphical
Models

Consider the general higher-order MRF from (2)

P(x) ∝ exp

{ ∑

C∈C;v∈{1,...,m−1}|C|

θ∗C;v I[xC = v]

}
,

parameterized by the collection of vectors θ∗C ∈
R(m−1)|C|

associated with the cliques C ∈ C.

As before, we fix a node r, and define the long vec-

tor Θ∗\r ∈ R
∑c−1

j=1 (
p−1
j )(m−1)j+1

as the concatenation
of the parameter vectors θ∗rC for all C ⊆ V \r; |C| <
c. Let Θ̄∗

P ∈ R(m−1)2dr be the vector containing
only neighbor-pairwise parameters θ̄∗rt;jk for all t ∈
N (r). Accordingly, let Θ̄∗

P c represent all non-zero non-
pairwise entries.

Hierarchical Models. A common assumption imposed
on such higher-order MRFs is that they be hierarchical
models [16]. Specifically, any MRF of the form (2) is
hierarchical if for any clique C, θ∗C = 0 implies that
θ∗B = 0 for any clique B ⊇ A containing A. This has
an importance consequence: the set of pairwise effects

N (r) =

{
u ∈ V \{r} | ‖θ∗ru‖0 *= 0

}
,

completely characterizes the set of edges.

Thus, if we are able to estimate just the pairwise pa-
rameters of the entire higher-order model, we would
still be able to recover the edge-set. Thus, we study
the estimator in (6) but now when the observations
are actually drawn from Θ̄∗

\r. The hope is that this
solution would still estimate the pairwise parameters
of the underlying higher-order model well.
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4.1 Assumptions

For fixed positive values Cmin, Dmax and α ∈
(
0, 1

2

)
,

let γ := Dmax
Cmin

∥∥Θ̄∗
P c

∥∥
1
and τ = α+γ(

√
dr+1)

1+γ . We impose
the following assumptions on the truth:

(C0) Mismatch Factor: γ ≤
(

α
2−α

)2
Cmin

100
√
2(m−1)dr

.

This condition is required because of the mis-
match of the true underlying model and our pair-
wise model. In other words, we have a non-
zero mean noise, caused by model mismatch, that
needs to be small. Moreover, since Cmin ≤ (m −
1)

√
dr (see section 7.2), this condition ensures

that τ ∈
(
0, 1

2

)
for suitable choice of α.

(C1) Invertibility:

Λmin

(
E
[
∇2log

(
PΘ̄∗

\r

[
Xr | X\r

] )
]

SrSr

)
≥Cmin(1+γ).

(C2) Incoherence:

Let Q̄∗ := E
[
∇2log

(
PΘ̄∗

\r

[
Xr|X\r

])]
. Then

∥∥∥Q̄∗
Sc
rSr

(Q̄∗
SrSr

)−1
∥∥∥
∞,2

≤ 1−2τ√
dr

.

(C3) Boundedness: Λmax (J ∗) ≤ Dmax < ∞,

where J ∗ = E
[
I[XS1 = xS1 ]I[XS2 = xS2 ]

T
]

for any subset of nodes S1 and S2, and c
is the size of the maximum clique in the
true graphical model. Note that J ∗ ∈
R

∑c−1
i=1 (m−1)j(p−1)j×

∑c−1
i=1 (m−1)j(p−1)j .

As in the pairwise case, in the proofs (to control
the derivative of the Hessian of the log-likelihood
function), we need to bound the maximum eigen
value of matrix 1∗ = J ∗ ⊗ 1∑c−1

j=1(m−1)j×
∑c−1

j=1(m−1)j .

But again by properties of Kronecker products,
Λmax (1∗) = Λmax (J ∗), so that it suffices to impose
assumptions on J ∗.

The next lemma states that imposing these assump-
tions on the population quantities implies analogous
conditions on the sample statistics with high probabil-
ity. Define D =

∑c−1
j=1 d

j
r .

Lemma 4. Assumptions (C0) - (C3) imply the fol-
lowing bounds on the pairwise parameters

(D1) P
[
Λmin

([
∇2!

(
Θ̄∗

P ;D
)]

SrSr

)
≤ Cmin − ε

]

≤2exp

(
− 1

8

(
ε
√
n−

√
D
)2
+log

(∑c
j=2(m − 1)jd j−1

r

))
.

(D2) P
[∥∥∥∇2!

(
Θ̄∗

P ;D
)
Sc
rSr

∇2!
(
Θ̄∗

P ;D
)−1

SrSr

∥∥∥
∞,2

> 1−α√
dr
+ε

]

≤6exp
(
− 1

8

(
C̄min

(
τ

3
√
D+ε

)√
n −

(
1+

√
D

C2
min

√
n

)√
D
)2

. +log
(∑c

j=2(m − 1)j(1 − p)j−1
))
.

(D3) P
[
Λmax

(
Ê
[
I[Xt1 =k1]I[Xt2 =k2]T

])
≥Dmax+ε

]

≤2exp

(
− 1

8

(
ε
√
n−

√
D
)2
+log

(∑c
j=2(m − 1)jd j−1

r

))
.

4.2 Main Theorem

The following theorem shows that if the graphical
model satisfies hierarchical assumption, then pairwise
estimation exactly recovers the underlying graphical
model provided that the higher order dependency pa-
rameters are not too large.

Theorem 2. Consider an m-ary graphical model with
parameter Θ̄∗ and associate edge set Ē such that condi-
tions (C0)-(C3) and hierarchical assumption are satis-
fied. Suppose the size of the largest clique in the graph
is c and the regularization parameter satisfies

λn ≥ 8(2 − α)
α

(√
log(p − 1)

n
+

m − 1

4
√
n

+
1

4

∥∥Θ̄∗
P c

∥∥
1

)
.

Then, there exist positive constants K, c1 and c2 such
that for

n ≥ K(m − 1)2d
3
2 c−1
r log

(
(m − 1)c(p − 1)c−1

)
,

with probability 1 − c1 exp
(

−c2
(
λn − 2

∥∥Θ̄∗
P c

∥∥
1

)2
n
)

we are guaranteed

(a) For each node r ∈ V , the !1/!2 regularized logis-
tic regression (6) has a unique solution and hence
specifies a neigborhood N̂ (r).

(b) For each node r ∈ V correctly excludes all edges
not in the true neighborhood N (r). Moreover,

it includes all edges (r, t) such that
∥∥∥θ̄∗rt;jk

∥∥∥
2

≥
10

Cmin
λn.

Proof. Part [(a)]. The proof proceeds along the same
lines as that of Theorem 1. We construct a primal-
dual pair precisely as before using an oracle subprob-
lem. However, showing strict-dual feasibility is more
delicate when the true model has higher-order factors.

Showing Strict Dual Feasibility. By construction, the
(Θ̂\r, Ẑ\r) pair satisfies the stationary condition (10),

as before. We then show that the the dual Ẑ\r is
strictly feasible, and also that the solution is unique,
with high probability in Lemma 7.
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Figure 1: Probability of success P[N̂ (r) = N (r)]versus
the control parameter β(n, p, d) = n

10d log(p) for discrete
graphical models on a Line Graph and a Grid.

Part [(b)]. Here again, we can argue as in the proof of
Theorem 1 to show that all correct edges are included
given an ‖ · ‖∞,2 bound on the error provided in (24).

5 Experiments

In this section, we report a set of synthetic experiments
investigating the consequences of the main theorems.
These results illustrate the behavior of the structure
learning algorithm on various types of graphs. We fix
the size of the alphabetm = 3. For a given graph type,
we pick a pairwise parameter set Θ∗. We generate n
samples according to the probability distribution cor-
responding to Θ∗. Then, we solve (6) and compare the
graph corresponding to the solution with the original
graph. If the two graphs are identical, we declare that
the algorithm has succeeded.

Pairwise Model: We consider two different classes of
graphs: line graphs and grids (Fig. 4.2). In particular,
we consider line graphs of size p = 16, 32 and a grid
of size

√
p × √

p = 16. In each of these cases, the
parameter vector Θ∗ is generated by setting each non-
zero entry θ∗rt;jk ∈ [−0.5, 0.5] for the line graphs and
θ∗rt;jk ∈ [0, 5] for the grid unfirmly at random. To

(a) Line Graph (b) Grid (c) Three-Way

Figure 2: Line graph (a) and Grid (b) are used in
studying pairwise graphical model selection. Three-
way graph (c) is used for studying higher-order graph-
ical model selection.
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Figure 3: Probability of success P[N̂ (r) = N (r))]versus
the control parameter β(n, p, d) = n

10d log(p) for a
higher order discrete graphical model on a Three-way
graph.

estimate the probability of success, we use 15 batches
of samples drawn from the distribution specified by
Θ∗. We consider two types of simulations:

Neighborhood Recovery: Here, we focus on the re-
covery of the neighborhood of a particular node in a
graph. Fixing a sample batch, for each pair (p, n), we

set λn = K

(√
p−1
n + m−1

4
√
n

)
, where K is the constant

chosen by cross validation. We compare the graph in-
duced by Θ̂K∗ with the graph induced by Θ∗ to get
the probability of success. Fig 4.2 shows the probabil-
ity of success in neighborhood recovery. Notice that
for different values of n and p, the phase transition
graphs stack on the top of each other; this shows that
the scaling of the samples n is correct.

Higher-Order Model: In this case, we consider a
graph with higher order dependencies and try to es-
timate it using the pairwise model. We consider the
three-way graph (triangle + line graph of size p − 2)
shown in Fig 2(c). There is only one three-way fac-
tor involving three nodes. The rest of the graph is
characterized by pairwise parameters. Solving (7), we
investigate the probability of success for neighborhood
recovery of the node that connects the line graph and
the triangle. Fig. 4.2 illustrates the result.
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Supplementary Material

6 Auxiliary Lemmas: Proof of
Lemma 3

Proof. We can rewrite (6) as an optimization problem
over the !1/!2 ball of radius C for some C(λn) < ∞.

Since λn > 0, by KKT conditions,
∥∥∥Θ̃\r

∥∥∥
1,2

= C for

all optimal primal solution Θ̃\r.

By definition of the !1/!2 subdifferential, we know that

for any column u ∈ V \{r}, we have
∥∥∥
(
Ẑ\r

)

u

∥∥∥
2

≤
1. Considering the necessary optimality condition

∇!
(
Θ̂\r

)
+ λnẐ\r = 0, by complementary slackness

condition, we have
〈
Θ̃\r, Ẑ\r

〉
− C =

〈
Θ̃T

\r, Ẑ\r

〉
−

∥∥∥Θ̃\r

∥∥∥
1,2

= 0. Now if for an arbitrary column u ∈

V \{r}, we have
∥∥∥
(
Ẑ\r

)

u

∥∥∥
2
< 1 and

(
Θ̃\r

)

u
*= 0 then

this would contradict the condition that
〈
Θ̃\r, Ẑ\r

〉
=

∥∥∥Θ̃\r

∥∥∥
1,2

.

For this restricted problem, if the Hessian sub-matrix
is positive definite, then the problem is strictly convex
and it has a unique solution.

7 Derivatives of the Log-Likelihood
Function

In this section, we point out the key properties of the
gradient, Hessian and derivative of the Hessian for the
log-liklihood function. These properties are used to
prove the concentration lemmas.

7.1 Gradient

By simple derivation, we have

∂

∂θ∗rt;"k
!(i)(Θ\r;D)

=I
[
x(i)
t = k

](
I
[
x(i)
r =!

]
−PΘ∗

\r

[
Xr=! |X\r=x(i)

\r

])
.

It is easy to show that EΘ∗
\r

[
∂

∂θ∗
rt;!k

!(i)(Θ\r;D)
]
= 0

andVar
(

∂
∂θ∗

rt;!k
!(i)(Θ\r;D)

)
≤1

4 . With i.i.d assumption

on drawn samples, we have Var
(

∂
∂θ∗

rt;!k
!(Θ\r;D)

)
=

Var
(

1
n

∑n
i=1

∂
∂θ∗

rt;!k
!(i)(Θ\r;D)

)
≤ 1

4n . Hence, for a

fixed t ∈ V \{r} by Jensen’s inequality,

EΘ∗
\r

[∥∥∥∥∥
∂

∂θ∗rt;"k
!(Θ\r;D)

∥∥∥∥∥
2

]

≤

√√√√√EΘ∗
\r




∥∥∥∥∥

∂

∂θ∗rt;"k
!(Θ\r;D)

∥∥∥∥∥

2

2





≤ m − 1

2
√
n

.

Considering the terms associated with θ∗rt;"k’s in the
gradient vector of the log-likelihood function, for a
fixed t ∈ V \{r}, only m − 1 (out of (m − 1)2) val-
ues are non-zero. By a simple calculation, we get

max
t∈V \{r}

∥∥∥∥∥
∂

∂θ∗rt;"k
!(i)(Θ\r;D)

∥∥∥∥∥
2

≤
√
2 ∀i.

By Azuma-Hoeffding inequality, we get

P
[∥∥∥∥∥

∂

∂θ∗rt;"k
!(Θ\r;D)

∥∥∥∥∥
2

>
m − 1

2
√
n

+ε

]
≤2 exp

(
−ε

2

4
n

)
,

for all t ∈ V \{r}. Using the union bound, we get

P
[

max
t∈V \{r}

∥∥∥∥∥
∂

∂θ∗rt;"k
!(Θ\r;D)

∥∥∥∥∥
2

>
m − 1

2
√
n

+ε

]

≤ 2 exp

(
−ε

2

4
n+ log(p − 1)

)
.

(12)

7.2 Hessian

For the Hessian of the log-likelihood function, we have

∂2 !(i)(Θ\r;D)

∂θ∗rt2;"2k2
∂θ∗rt1;"1k1

=I
[
x(i)
t1 =k1

]
I
[
x(i)
t2 =k2

]
η"1"2

(
x(i)

)
,

where,

η"1"2

(
x(i)

)
:= PΘ∗

\r

[
Xr = !1

∣∣∣X\r = x(i)
\r

]

(
I
[
x(i)
r =!1

]
I
[
x(i)
r =!2

]
−PΘ∗

\r

[
Xr=!2

∣∣∣X\r=x(i)
\r

])
.

Consider the zero-mean random variable

Z(i)
t1"1k1;t2"2k2

:=

∂2 !(i)(Θ\r;D)

∂θ∗rt2;"2k2
∂θ∗rt1;"1k1

− E
[

∂2 !(Θ\r;D)

∂θ∗rt2;"2k2
∂θ∗rt1;"1k1

]
.

Notice that Var
(
Z(i)
t1"1k1;t2"2k2

)
≤ 1 and consequently,

by i.i.d assumption, Var
(

1
n

∑n
i=1 Z

(i)
t1"1k1;t2"2k2

)
≤ 1

n .
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Hence, for fixed values t1, !1, k1 and t2 ∈ S2 ⊆ V \{r},
we have

EΘ∗
\r

[∥∥∥∥∥
1

n

n∑

i=1

Z(i)
t1"1k1;t2"2k2

∥∥∥∥∥
2

]

≤

√√√√√EΘ∗
\r




∥∥∥∥∥
1

n

n∑

i=1

Z(i)
t1"1k1;t2"2k2

∥∥∥∥∥

2

2





≤
√

|S2|
n

.

(13)
This radom variable, for fixed values t1, !1, k1
and a fixed t2, is bounded and in particular,∥∥∥ 1
n

∑n
i=1 Z

(i)
t1"1k1;t2"2k2

∥∥∥
2

≤ 2. By Azuma-Hoeffding in-

equality and the union bound,

P
[∥∥Qn

SrSr
− Q∗

SrSr

∥∥
∞,2

>

√
dr√
n

+ ε

]

≤ 2 exp

(
−ε

2

8
n+ log

(
(m − 1)2dr

))
.

P
[∥∥∥Qn

Sc
rSr

− Q∗
Sc
rSr

∥∥∥
∞,2

>

√
dr√
n

+ ε

]

≤ 2 exp

(
−ε

2

8
n+ log

(
(m − 1)2(p−dr−1)

))
.

(14)
Similar analysis as (13) combined with the ineqality
Λmax(·) ≤ ‖·‖∞,2, shows that

P
[
Λmax

(
Qn

SrSr
− Q∗

SrSr

)
>

√
dr√
n

+ ε

]

≤ 2 exp

(
−ε

2

8
n+ log

(
(m − 1)2dr

))
.

(15)
We also need a control over the deviation of the inverse
sample Fisher information matrix from the inverse of
its mean. We have

Λmax

((
Qn

SrSr

)−1 −
(
Q∗

SrSr

)−1
)

= Λmax

((
Q∗

SrSr

)−1 (
Q∗

SrSr
− Qn

SrSr

) (
Qn

SrSr

)−1
)

≤ Λmax

((
Q∗

SrSr

)−1
)
Λmax

(
Q∗

SrSr
− Qn

SrSr

)

Λmax

((
Qn

SrSr

)−1
)

≤
√
dr

Cmin
√
n
Λmax

((
Qn

SrSr

)−1
)
.

By part (B1) in Lemma 1, we have

P
[
Λmax

((
Qn

SrSr

)−1
)
>

1

Cmin
+ ε

]

≤2 exp



−

(
Cminε

√
n

1+Cminε −
√
dr
)2

8
+log

(
(m − 1)2dr

)


.

(16)
Hence, we get,

P
[
Λmax

((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)
>

√
dr

C2
min

√
n
+ε

]

≤4 exp



−

(
Cminε

√
n

1+Cminε −
√
dr
)2

8
+log

(
(m − 1)2dr

)


.

(17)

7.3 Derivative of Hessian

We want to bound the rate of the change for the ele-
ments of Hessian matrix. Let

∇Q(i)
t2"2k2;t1"1k1

:=
∂

∂Θ\r

∂2 !(i)(Θ\r;D)

∂θ∗rt2;"2k2
∂θ∗rt1;"1k1

= I
[
x(i)
t1 = k1

]
I
[
x(i)
t2 = k2

] ∂

∂Θ\r
η"1"2

(
x(i)

)
.

Recall the definition of η(·) from section 7.2. We have

∂η"1"2
(
x(i)

)

∂θrt3;"3k3

=I
[
x(i)
t3 =k3

]
PΘ∗

\r

[
Xr=!1

∣∣∣X\r=x(i)
\r

]



η"2"3
(
x(i)

)
−

η"1"2
(
x(i)

)
η"1"3

(
x(i)

)

PΘ∗
\r

[
Xr = !1

∣∣∣X\r = x(i)
\r

]2



 .

For any t3 ∈ V \{r}, each entry is bounded by
1
2 and there are only m − 1 non-zero entries for
each k3. Hence, for any t3, one can colculde that∥∥∥ ∂

∂θrt3;!3k3
η"1"2

(
x(i)

)∥∥∥
2

≤ m−1√
2

for all i. Finally, for

all !1 and !2 we have

max
t3∈V \{r}

∥∥∥∥
∂

∂θrt3;"3k3

η"1"2

(
x(i)

)∥∥∥∥
2

≤ m − 1√
2

. (18)

8 Proof of Lemma 1

(B1) By variational representation of the smallest
eigenvalue, we have

Λmin

(
Q∗

SrSr

)
= min

‖x‖2=1
xTQ∗

SrSr
x

≤ yTQn
SrSr

y + yT
(
Q∗

SrSr
− Qn

SrSr

)
y,
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for all y ∈ R(m−1)2dr with ‖y‖2 = 1 and in particular
for the unit-norm minimal eigenvalue of Qn

SrSr
. Hence,

Λmin

(
Qn

SrSr

)
≥ Λmin

(
Q∗

SrSr

)
− Λmax

(
Q∗

SrSr
−Qn

SrSr

)
.

By (15), we get

P
[
Λmin

(
Qn

SrSr

)
< Cmin − ε

]

≤ P
[
Λmax

(
Q∗

SrSr
− Qn

SrSr

)
> ε

]

≤ 2 exp

(
− (ε

√
n −

√
dr)2

8
+ log

(
(m − 1)2dr

))
.

(B2) We can write

Qn
Sc
rSr

(
Qn

SrSr

)−1
= Q∗

Sc
rSr

(
Q∗

SrSr

)−1

︸ ︷︷ ︸
T0

+Q∗
Sc
rSr

((
Qn

SrSr

)−1 −
(
Q∗

SrSr

)−1
)

︸ ︷︷ ︸
T1

+
(
Qn

Sc
rSr

− Q∗
Sc
rSr

) (
Q∗

SrSr

)−1

︸ ︷︷ ︸
T2

+
(
Qn

Sc
rSr

− Q∗
Sc
rSr

)((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)

︸ ︷︷ ︸
T3

.

Considering assumption (A3), ‖T0‖∞,2 < 1−2α√
dr

and

hence, it suffices to show that ‖Ti‖∞,2 < α
3
√
dr

for i =

1, 2, 3. For the first term, we have

∥∥∥Q∗
Sc
rSr

((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)∥∥∥

∞,2

=
∥∥∥Q∗

Sc
rSr

(
Q∗

SrSr

)−1(
Q∗

SrSr
−Qn

SrSr

) (
Qn

SrSr

)−1
∥∥∥
∞,2

≤
∥∥∥Q∗

Sc
rSr

(
Q∗

SrSr

)−1
∥∥∥
∞,2

Λmax

(
Q∗

SrSr
− Qn

SrSr

)

Λmax

((
Qn

SrSr

)−1
)

≤ 1 − 2α√
dr

√
dr√
n

1

Cmin
.

The last inequality follows from (14) and (16) with
high probability. Setting C̄min = min (Cmin, 1), by ap-
plying the union bound,

P
[∥∥∥Q∗

Sc
rSr

((
Qn

SrSr

)−1 −
(
Q∗

SrSr

)−1
)∥∥∥

∞,2
> ε

]

≤4exp



−

(
C̄minε

√
n−

√
dr− 1−2α

Cmin

)2

8
+log

(
(m−1)2dr

)


.

For the second term, we have
∥∥∥
(
Qn

Sc
rSr

− Q∗
Sc
rSr

) (
Q∗

SrSr

)−1
∥∥∥
∞,2

≤
∥∥∥Qn

Sc
rSr

− Q∗
Sc
rSr

∥∥∥
∞,2

Λmax

((
Q∗

SrSr

)−1
)

≤
√
dr√
n

1

Cmin
.

The last inequality follows from (14) with high proba-
bility. Hence, we have

P
[∥∥∥
(
Qn

Sc
rSr

− Q∗
Sc
rSr

) (
Q∗

SrSr

)−1
∥∥∥
∞,2

> ε

]

≤2exp



−

(
ε
√
n− (1+Cmin)

√
dr

Cmin

)2

8
+log

(
(m−1)2(p−1−dr)

)


.

For the third term, we have
∥∥∥
(
Qn

Sc
rSr

− Q∗
Sc
rSr

)((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)∥∥∥

∞,2

≤
∥∥∥Qn

Sc
rSr

− Q∗
Sc
rSr

∥∥∥
∞,2
Λmax

((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)

≤
√
dr√
n

√
dr

C2
min

√
n

=
dr

C2
minn

The last inequality follows from (14) and (17). Hence,
we have

P
[∥∥∥
(
Qn

Sc
rSr

− Q∗
Sc
rSr

)((
Qn

SrSr

)−1−
(
Q∗

SrSr

)−1
)∥∥∥

∞,2
>ε

]

≤ 6 exp

(
−

(
C̄minε

√
n −

(
1 +

√
dr

C2
min

√
n

)√
dr
)2

8

+ log
(
(m − 1)2(p − 1 − dr)

)
)
.

The result follows by substituting ε with α
3
√
dr
.

(B3) We can write

P [Λmax (J n) > Dmax + ε]

≤ P
[∥∥∥∥∥

1

n

n∑

i=1

(
J (i) − J ∗

)∥∥∥∥∥
F

> ε

]
.

Consequently, same analysis as part (B1) gives the
result.

This concludes the proof of the Lemma.

9 Sufficiency Lemmas for Pairwise
Dependencies

Lemma 5. The constructed candidate primal-dual

pair
(
Θ̂\r, Ẑ\r

)
satisfy the conditions of the Lemma 3
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with probability 1−c1 exp(−c2n) for some positive con-
stants c1, c2 ∈ R.

Proof. Using the mean-value theorem, for some Θ̄\r in

the convex combination of Θ̂\r and Θ∗
\r, we have

∇2!
(
Θ∗

\r;D
) [
Θ̂\r −Θ∗

\r

]

= ∇!
(
Θ̂\r;D

)
− ∇!

(
Θ∗

\r;D
)

+
(

∇2!
(
Θ∗

\r;D
)

− ∇2!
(
Θ̄\r;D

)) [
Θ̂\r −Θ∗

\r

]

= −λnẐ\r − ∇!
(
Θ∗

\r;D
)

︸ ︷︷ ︸
Wn

\r

+
(

∇2!
(
Θ∗

\r;D
)

− ∇2!
(
Θ̄\r;D

)) [
Θ̂\r −Θ∗

\r

]

︸ ︷︷ ︸
Rn

\r

.

We can rewrite these set of equations as two sets of
equations over Sr and Sc

r . By Lemma 1, the Hessian
sub-matrix on Sr is invertible with high probability
and thus we get

Qn
Sc
rSr

(
Qn

SrSr

)−1
(

−λn
(
Ẑ\r

)

Sr

−
(
Wn

\r

)

Sr

+
(
Rn

\r

)

Sr

)

= −λn
(
Ẑ\r

)

Sc
r

−
(
Wn

\r

)

Sc
r

+
(
Rn

\r

)

Sc
r

.

Equivalently, we get

(
Ẑ\r

)

Sc
r

=
1

λn

[(
Wn

\r

)

Sc
r

−
(
Rn

\r

)

Sc
r

]

− 1

λn
Qn

Sc
rSr

(
Qn

SrSr

)−1
((
Wn

\r

)

Sr

−
(
Rn

\r

)

Sr

)

+Qn
Sc
rSr

(
Qn

SrSr

)−1
(
Ẑ\r

)

Sr

.

Notice that

∥∥∥∥
(
Ẑ\r

)

Sr

∥∥∥∥
∞,2

= 1. Thus, we can establish

the following bound
∥∥∥∥
(
Ẑ\r

)

Sc
r

∥∥∥∥
∞,2

≤
(
1 +

∥∥∥Qn
Sc
rSr

(
Qn

SrSr

)−1
∥∥∥
∞,2

√
dr

)





∥∥∥Wn
\r

∥∥∥
∞,2

λn
+

∥∥∥Rn
\r

∥∥∥
∞,2

λn
+ 1



− 1

≤ (2 − α)
(

α

4(2 − α) +
α

4(2 − α) + 1

)
− 1

= 1 − α

2
< 1.

The second inequality holds with high probability aco-
ording to Lemma 1 and Lemma 6.

Lemma 6. For quantities defined in the proof of
Lemma 5, the following inequalities hold:

P





∥∥∥Wn
\r

∥∥∥
∞,2

λn
≥ α

4(2 − α)





≤ 2 exp



−

(
α

4(2−α)λn
√
n − m−1

2

)2

4
+ log(p − 1)





P





∥∥∥Rn
\r

∥∥∥
∞,2

λn
>

α

4(2 − α)





≤ 2 exp



−

(
α

4(2−α)λn
√
n − m−1

2

)2

4
+ log(p − 1)



.

Proof. The first inequality follows directly from
(12), for ε = α

4(2−α)λn − m−1
2
√
n
, provided that

λn ≥ 2(2−α)
α

m−1√
n
. This probability goes to zero, if

λn ≥ 8(2−α)
α

(√
log(p−1)

n + m−1
4
√
n

)
.

Before we proceed, we want to point out a tech-
nical fact that we will use it through the rest
of the proof. For λn achieves the lower bound
mentioned above, any positive value K and

n ≥ 1
K2

64(2−α)2

α2

(√
log(p − 1) + m−1

4

)2
d 2
r , we

have λndr ≤ K. Hence, we can assume λndr is less
than any fixed constant K for sufficiently large n.

In order to bound Rn
\r, we need to bound∥∥∥∥

(
Θ̂\r

)

Sr

−
(
Θ∗

\r
)
Sr

∥∥∥∥
∞,2

, using the technique used in

Rothman et al. [28]. Let G : R(m−1)2dr → R be a
function defined as

G
(
(U)Sr

)
:= "

((
Θ∗

\r
)
Sr
+(U)Sr

;D
)
−"

((
Θ∗

\r
)
Sr

;D
)

+λn

(∥∥∥
(
Θ∗

\r
)
Sr

+(U)Sr

∥∥∥
1,2
−
∥∥∥
(
Θ∗

\r
)
Sr

∥∥∥
1,2

)
.

By optimality of Θ̂\r, it is clear that
(
Û
)

Sr

=
(
Θ̂\r

)

Sr

−
(
Θ∗

\r
)
Sr
minimizes G. Since G(0) = 0 by

construction, we have G
((

Û
)

Sr

)
≤ 0. Suppose there

exist an !∞/!2 ball with radius Br such that for any∥∥∥(U)Sr

∥∥∥
∞,2

= Br, we have that G
(
(U)Sr

)
> 0. Then,

we can claim that

∥∥∥∥
(
Û
)

Sr

∥∥∥∥
∞,2

≤ Br; because if, in

contrary, we assume that
(
Û
)

Sr

is outside the ball,
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then for an appropriate choice of t ∈ (0, 1), the point

t
(
Û
)

Sr

+(1− t)0 lies on the boundary of the ball. By

convexity of G, we have

G

(
t
(
Û
)

Sr

+ (1 − t)0

)
≤ tG

((
Û
)

Sr

)
+(1 − t)G (0)

≤ 0.

This is a contradiction to the assumption of the
positivity of G on the boundary of the ball.

Let (U)Sr ∈ R(m−1)2dr be an arbitrary vector with∥∥∥(U)Sr

∥∥∥
∞,2

= 5
Cmin

λn. Applying mean value theorem

to the log liklihood function, for some β ∈ [0, 1], we
get

G
(
(U)Sr

)
=
〈(

W\r
)
Sr

, (U)Sr

〉

+

〈
(U)Sr

,∇2!

((
Θ∗

\r

)

Sr

+ β (U)Sr
;D

)
(U)Sr

〉

+ λn

(∥∥∥∥
(
Θ∗

\r

)

Sr

+ (U)Sr

∥∥∥∥
1,2

−
∥∥∥∥
(
Θ∗

\r

)

Sr

∥∥∥∥
1,2

)
.

(19)
We bound each of these three terms individually. By
Cauchy-Schwartz inequality, we have

∣∣∣
〈(

W\r
)
Sr

, (U)Sr

〉∣∣∣ ≤
∥∥∥
(
W\r

)
Sr

∥∥∥
∞,2

∥∥(U)Sr

∥∥
1,2

≤ α

4(2 − α)λndr
5

Cmin
λn

≤ 5

4Cmin
drλ

2
n.

Moreover, by triangle inequality,

λn

(∥∥∥∥
(
Θ∗

\r

)

Sr

+ (U)Sr

∥∥∥∥
1,2

−
∥∥∥∥
(
Θ∗

\r

)

Sr

∥∥∥∥
1,2

)

≥ −λn
∥∥(U)Sr

∥∥
1,2

≥ − 5

Cmin
drλ

2
n.

To bound the other term, notice that by Tailor expan-

sion, we get

Λmin

(
∇2!

((
Θ∗

\r

)

Sr

+ β (U)Sr
;D

))

≥ min
β∈[0,1]

Λmin

(
∇2!

((
Θ∗

\r

)

Sr

+ β (U)Sr
;D

))

≥ Λmin

(
Q∗

SrSr

)

− max
β∈[0,1]

Λmax





〈
∂∇2! (ΘSr ;D)

∂ΘSr

∣∣∣∣∣(
Θ∗

\r

)

Sr
+β(U)Sr

, (U)Sr

〉



≥ Cmin −
(

max
t3∈V \{r}

∥∥∥∥
∂

∂θrt3;"3k3

η"1"2

(
x(i)

)∥∥∥∥
2

√
dr

)

Λmax(1∗)
√
dr
∥∥(U)Sr

∥∥
∞,2

,

(20)
where, η(·) is defined in Section 7.2. We know that
Λmax(1∗) = Λmax(J ∗) as a property of Kronecher
product. By (18) and assumption on the maximum
eigenvalue of J ∗, we have

Λmin

(
∇2!

((
Θ∗

\r

)

Sr

+ β (U)Sr
;D

))

≥ Cmin − m − 1√
2

drDmax

∥∥(U)Sr

∥∥
∞,2

≥ Cmin − m − 1√
2

drDmax
5

Cmin
λn

≥ Cmin

2

(
λndr ≤ C2

min√
50(m − 1)Dmax

)
.

Hence, from (19), we get

G
(
(U)Sr

)
≥ dr

5

Cmin
λ2n

(
−1

4
+

5

2
− 1

)
> 0.

We can colclude that
∥∥∥∥
(
Θ̂\r

)

Sr

−
(
Θ∗

\r

)

Sr

∥∥∥∥
∞,2

≤ 5

Cmin
λn. (21)

with high probability. With similar analysis on the
maximum eigenvalue of the derivative of Hessian as in
(20), it is easy to show that
∥∥∥Rn

\r

∥∥∥
∞,2

λn

≤ 1

λn

m − 1√
2

drDmax

∥∥∥∥
(
Θ̂\r

)

Sr

−
(
Θ∗

\r

)

Sr

∥∥∥∥
2

∞,2

≤ m − 1√
2

drDmax
25

C2
min

λn

≤ α

4(2 − α) ,

provided that λndr ≤ C2
min

50
√
2(m−1)Dmax

α
2−α .
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10 Proof of Lemma 4

(D1) By variational representation of the smallest
eigenvalue, we have

Λmin

([
∇2!

(
Θ̄∗

P ;D
)]

SrSr

)

≥ Λmin

([
∇2!

(
Θ̄∗

\r;D
)]

SrSr

)

− Λmax

([
∇2!

(
Θ̄∗

\r;D
)]

SrSr

−
[
∇2!

(
Θ̄∗

P ;D
)]

SrSr

)

≥ Cmin(1 + γ)

− Λmax

([
∇2!

(
Θ̄∗

\r;D
)]

SrSr

−
[
∇2!

(
Θ̄∗

P ;D
)]

SrSr

)
.

In the second inequality, we used the result of
Lemma 1, i.e., the inequality holds with probability
stated in Lemma 4. By Tailor expansion, for some
β ∈ [0, 1], and by (23), we get

Λmax

([
∇2!

(
Θ̄∗

\r;D
)]

SrSr

−
[
∇2!

(
Θ̄∗

P ;D
)]

SrSr

)

≤ Λmax





〈∂
[
∇2!

(
Θ̄;D

)]

SrSr

∂Θ̄

∣∣∣∣∣
Θ̄∗

\r−βΘ̄∗
Pc

, Θ̄∗
P c

〉



≤
∥∥∥∇η"1"2

(
x(i)

)∥∥∥
∞

Dmax

∥∥Θ̄∗
P c

∥∥
1

= γCmin.

Note that
∥∥∇η"1"2

(
x(i)

)∥∥
∞ ≤ 1 for η(·) defined in

section 7.3. The last inequality holds as a result of
Lemma 1 with the probability stated in Lemma 4.
Hence, the result follows.

(D2) We can write

∇2!
(
Θ̄∗

P ;D
)
Sc
rSr

(
∇2!

(
Θ̄∗

P ;D
)
SrSr

)−1
=

3∑

i=0

Ti,

where,

T0 = ∇2"
(
Θ̄∗

\r;D
)
Sc
rSr

(
∇2"

(
Θ̄∗

\r;D
)
SrSr

)−1

T1 = ∇2"
(
Θ̄∗

\r;D
)
Sc
rSr((

∇2"
(
Θ̄∗

P ;D
)
SrSr

)−1
−

(
∇2"

(
Θ̄∗

\r;D
)
SrSr

)−1
)

T2 =
(
∇2"

(
Θ̄∗

P ;D
)
Sc
rSr

−∇2"
(
Θ̄∗

\r;D
)
Sc
rSr

)

(
∇2"

(
Θ̄∗

\r;D
)
SrSr

)−1

T3 =
(
∇2"

(
Θ̄∗

P ;D
)
Sc
rSr

−∇2"
(
Θ̄∗

\r;D
)
Sc
rSr

)

((
∇2"

(
Θ̄∗

P ;D
)
SrSr

)−1
−

(
∇2"

(
Θ̄∗

\r;D
)
SrSr

)−1
)
.

By Lemma 1, we have that ‖T0‖∞,1 ≤ 1−τ√
dr

with the

probability stated in Lemma 4. For the second term,
we have

‖T1‖∞,2

≤‖T0‖∞,2Λmax



∇2!
(
Θ̄∗

\r;D
)

SrSr

− ∇2!
(
Θ̄∗

P ;D
)
SrSr

︸ ︷︷ ︸
T12





Λmax




(

∇2!
(
Θ̄∗

P ;D
)
SrSr

)−1

︸ ︷︷ ︸
T13





≤ 1 − τ√
dr
γCmin

1

Cmin
=

1 − τ√
dr
γ.

We used the result of (D1) for Λmax (T13) ≤ 1
Cmin

.

For the third term, we have

‖T2‖∞,2 ≤

∥∥∥∥∥∥∥∥∥

∇2!
(
Θ̄∗

\r;D
)

Sc
rSr

− ∇2!
(
Θ̄∗

P ;D
)
Sc
rSr

︸ ︷︷ ︸
T21

∥∥∥∥∥∥∥∥∥
∞,2

Λmax





(
∇2!

(
Θ̄∗

\r;D
)

SrSr

)−1

︸ ︷︷ ︸
T22





≤ γCmin
1

Cmin(1 + γ)

=
γ

1 + γ
.

For the fourth term, we have

‖T3‖∞,2 ≤ ‖T21‖∞,2 Λmax (T22)Λmax (T12)Λmax (T13)

≤ γCmin
1

Cmin(1 + γ)
γCmin

1

Cmin

≤ γ2

1 + γ
.

Putting all piences together, we get the result.

(D3) The result follows directly from Lemma 1.

This concludes the proof of Lemma.

11 Sufficiency Lemmas for Higher
Order Dependencies

Lemma 7. The constructed candidate primal-dual

pair
(
Θ̂\r, Ẑ\r

)
satisfy the conditions of the Lemma 3
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with probability 1−c1 exp(−c2n) for some positive con-
stants c1, c2 ∈ R.

Proof. Using the mean-value theorem, for some Θ̄\r in

the convex combination of Θ̂\r and Θ̄∗
P , we have

∇2!
(
Θ̄∗

P ;D
) [
Θ̂\r − Θ̄∗

P

]

= ∇!
(
Θ̂\r;D

)
− ∇!

(
Θ̄∗

P ;D
)

+
(
∇2!

(
Θ̄∗

P ;D
)

− ∇2!
(
Θ̄\r;D

)) [
Θ̂\r − Θ̄∗

P

]

= −λnẐ\r − ∇!
(
Θ̄∗

P ;D
)

︸ ︷︷ ︸
W̄n

\r

+
(
∇2!

(
Θ̄∗

P ;D
)

− ∇2!
(
Θ̄\r;D

)) [
Θ̂\r − Θ̄∗

P

]

︸ ︷︷ ︸
R̄n

\r

.

We can rewrite these set of equations as two sets of
equations over Sr and Sc

r . By Lemma 4, the Hessian
sub-matrix on Sr is invertible with high probability
and thus we get

∇2!
(
Θ̄∗

P ;D
)
Sc
rSr

(
∇2!

(
Θ̄∗

P ;D
)
SrSr

)−1

(
−λn

(
Ẑ\r

)

Sr

−
(
W̄n

\r

)

Sr

+
(
R̄n

\r

)

Sr

)

= −λn
(
Ẑ\r

)

Sc
r

−
(
W̄n

\r

)

Sc
r

+
(
R̄n

\r

)

Sc
r

.

Notice that
∥∥∥∥
(
Ẑ\r

)

Sr

∥∥∥∥
∞,2

= 1 and hence, we get

∥∥∥∥
(
Ẑ\r

)

Sc
r

∥∥∥∥
∞,2

≤
(
1+

∥∥∥∥∇2!
(
Θ̄∗

P ;D
)
Sc
rSr

(
∇2!

(
Θ̄∗

P ;D
)
SrSr

)−1
∥∥∥∥
∞,2

√
dr

)





∥∥∥W̄n
\r

∥∥∥
∞,2

λn
+

∥∥∥R̄n
\r

∥∥∥
∞,2

λn
+ 1



− 1

≤ (2 − α)
(

α

4(2 − α) +
α

4(2 − α) + 1

)
− 1

= 1 − α

2
< 1.

The second inequality holds with high probability ac-
cording to Lemma 4 and Lemma 8.

Lemma 8. For quantities defined in the proof of

Lemma 7, the following inequalities hold:

P





∥∥∥W̄n
\r

∥∥∥
∞,2

λn
>

α

4(2 − α)





≤ 2 exp

(
−

((
α

4(2−α)λn−
1
2

∥∥Θ̄∗
P c

∥∥
1

)√
n− m−1

2

)2

4

+ log(p − 1)

)

P





∥∥∥R̄n
\r

∥∥∥
∞,2

λn
>

α

4(2 − α)





≤ 2 exp

(
−

((
α

4(2−α)λn−
1
2

∥∥Θ̄∗
P c

∥∥
1

)√
n− m−1

2

)2

4

+ log(p − 1)

)
.

Proof. By simple derivation, we have

∂

∂θ̄∗rt;"k
!(i)(Θ̄P ;D) = I

[
x(i)
t = k

]

(
I
[
x(i)
r = !

]
− PΘ̄∗

P

[
Xr = ! | X\r = x(i)

\r

])
.

It is easy to show that

EΘ̄∗
\r

[
∂

∂θ̄∗rt;"k
!(i)(Θ̄P ;D)

]

= PΘ̄∗
\r

[
Xr = ! | Xt = k,X\r,t = x\r,t

]

− PΘ̄∗
P

[
Xr = ! | Xt = k,X\r,t = x\r,t

]

≤
∥∥Θ̄∗

P c

∥∥
1

max
β∈[0,1]

∥∥∥∇PΘ̄∗
\r− βΘ̄∗

Pc

[
Xr=! |Xt= k,X\r, t=x\r, t

]∥∥∥
∞

≤ 1

4

∥∥Θ̄∗
P c

∥∥
1
,

where, with abuse of notation Θ̄∗
\r − βΘ̄∗

P c repre-

sents the matrix Θ̄∗
\r purturbed only on the en-

tries corresponding to Θ̄∗
P c . Also, one can show

that Var
(

∂
∂θ∗

rt;!k
!(i)(Θ\r;D)

)
≤ 1

4 . Consequently,

with i.i.d assumption on drawn samples, we have

Var
(

∂
∂θ̄∗

rt;!k
!(Θ\r;D)

)
≤ 1

4n . For a fixed t ∈ V \{r}
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by Jensen’s inequality,

EΘ∗
\r

[∥∥∥∥∥
∂

∂θ̄∗rt;"k
!(Θ\r;D)

∥∥∥∥∥
2

]

≤

√√√√√EΘ∗
\r




∥∥∥∥∥

∂

∂θ̄∗rt;"k
!(Θ\r;D)

∥∥∥∥∥

2

2





≤ 1

2

√
(m − 1)2

n
+
∥∥Θ̄∗

P c

∥∥2
1

≤ m − 1

2
√
n

+
1

2

∥∥Θ̄∗
P c

∥∥
1
.

We have maxt∈V \{r}

∥∥∥ ∂
∂θ̄∗

rt;!k
!(i)(Θ\r;D)

∥∥∥
2

≤
√
2 for

all i and hence, by Azuma-Hoeffding inequality and
the union bound, we get

P




∥∥∥∥∥

∂

∂θ̄∗rt;"k
!(Θ\r;D)

∥∥∥∥∥
∞,2

>
m − 1

2
√
n

+
1

2

∥∥Θ̄∗
P c

∥∥
1
+ ε





≤ 2 exp

(
−ε

2

4
n+ log(p − 1)

)
.

For λn ≥ 8(2−α)
α

(
m−1
4
√
n
+ 1

4

∥∥Θ̄∗
P c

∥∥
1

)
, the result

follows.

In order to bound R̄n
\r, we need to control the estima-

tion error
(
Θ̂\r

)

Sr

−
(
Θ̄∗

P

)
Sr
. Let H : R(m−1)2dr → R

be a function defined as

H(USr ) := !
((
Θ̄∗

P

)
Sr

+ USr ;D
)

− !
((
Θ̄∗

P

)
Sr

;D
)

+ λn

(∥∥∥
(
Θ̄∗

P

)
Sr

+ USr

∥∥∥
1,2

−
∥∥∥
(
Θ̄∗

P

)
Sr

∥∥∥
1,2

)
.

By optimality of Θ̂\r, it is clear that U
∗ =

(
Θ̂\r

)

Sr

−
(
Θ̄∗

P

)
Sr

minimizesH. SinceH(0) = 0 by construction,

we have H(U∗) ≤ 0. Suppose there exist an !∞/!2
ball with radius Br such that for any ‖U‖∞,2 = Br,
we have that H(U) > 0. Then, we can claim that
‖U∗‖∞,2 ≤ Br. See proof of Lemma 6 for more dis-

cussion on this proof technique. Let U0 ∈ R(m−1)2dr

be an arbitrary vector with ‖U0‖∞,2 = 5
Cmin

λn. We
have

H(U0) := !
((
Θ̄∗

P

)
Sr

+ U0;D
)

− !
((
Θ̄∗

P

)
Sr

;D
)

+ λn

(∥∥∥
(
Θ̄∗

P

)
Sr

+ U0

∥∥∥
1,2

−
∥∥∥
(
Θ̄∗

P

)
Sr

∥∥∥
1,2

)
.

(22)
We bound each of these three terms individually. Ap-
plying mean value theorem to the log liklihood func-

tion, for some β ∈ [0, 1], we get

!
((
Θ̄∗

P

)
Sr

+ U0;D
)

− !
((
Θ̄∗

P

)
Sr

;D
)

=

〈(
W̄n

\r

)

Sr

, U0

〉
+
〈
U0,∇2!

((
Θ̄∗

P

)
Sr
+ βU0;D

)
U0

〉
.

Note that α
4(2−α)λn ≤ 1

4λn and hence, by our bound

on W̄n
\r and Cauchy-Shwartz inequality, we have

∣∣∣∣

〈(
W̄n

\r

)

Sr

, U0

〉∣∣∣∣ ≤
∥∥∥∥
(
W̄n

\r

)

Sr

∥∥∥∥
∞,2

‖U0‖1,2

≤ λn
4
dr ‖U0‖∞,2

≤ 5

4Cmin
λ2ndr.

To bound the other term, by Tailor expansion, we get

Λmin

(
∇2!

((
Θ̄∗

P

)
Sr
+ βU0;D

))

≥ min
β∈[0,1]

Λmin

(
∇2!

((
Θ̄∗

P

)
Sr
+ βU0;D

))

≥ Λmin

(
∇2!

((
Θ̄∗

P

)
Sr
;D
))

− max
β∈[0,1]

Λmax





〈
∂∇2!

((
Θ̄P

)
Sr
;D
)

∂
(
Θ̄P

)
Sr

∣∣∣∣∣
(Θ̄∗

P )Sr
+βU0

, U0

〉



≥ Cmin

− max
t3∈V \{r}

∥∥∥∥∥
∂η"1"2

(
x(i)

)

∂θ̄rt3;"3k3

∥∥∥∥∥
2

dr Λmax(1∗) ‖U0‖∞,2

≥ Cmin − m − 1√
2

drDmax ‖U0‖∞,2

≥ Cmin

2

(
λndr ≤ C2

min√
50(m − 1)Dmax

)
.

(23)
Here, we used the fact that Λmax(1∗) = Λmax(J ∗) as
a property of Kronecher product and also our assump-
tion on the maximum eigenvalue of J ∗. By triangle
inequality,

λn
(∥∥Θ̄∗

P + U0

∥∥
1,2

−
∥∥Θ̄∗

P

∥∥
1,2

)
≥ −λn ‖U0‖1,2
≥ −λndr ‖U0‖∞,2

≥ −5λ2ndr
Cmin

.

Hence, from (22), we get H(U0) ≥ 5λ2
ndr

4Cmin
> 0 and

hence,
∥∥∥∥
(
Θ̂\r

)

Sr

−
(
Θ̄∗

P

)
Sr

∥∥∥∥
∞,2

≤ 5

Cmin
λn, (24)

with high probability. With similar analysis as in 23,
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we have
∥∥∥R̄n

\r

∥∥∥
∞,2

λn

≤ 1

λn

m − 1√
2

drDmax

∥∥∥∥
(
Θ̂\r

)

Sr

−
(
Θ∗

\r

)

Sr

∥∥∥∥
2

∞,2

≤ m − 1√
2

drDmax
25

C2
min

λn

≤ α

4(2 − α) ,

provided that λndr ≤ C2
min

50
√
2(m−1)Dmax

α
2−α .


