
Appendix A

Lemma 12. Let F = {f : X 7! R}, the constraint set C ⇢ F , and the functional G : F 7! R,

consider the optimization problem:

f

⇤
= argmax
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G(f) s.t. f 2 C

If the Fr´echet derivative rG(f) exists, then f
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Lemma 12 is a generalization of the well known first order condition for optimality of finite dimen-
sional optimization problems [24, Section 4.2.3] to optimization of smooth functionals.
Proposition 13. Let L be a measure of the form (4), and

ˆ

�

S

be some estimator of its optimal

threshold �

⇤
. Assume

ˆ
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2 (0, 1) and
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⇤
. Also assume the cumulative distribution of ⌘
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conditioned on Y = 1 and on Y = 0, F

⌘
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|Y=1

(z) = P(⌘
x

 z|Y = 1) and F

⌘
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|Y=0

(z) = P(⌘
x


z|Y = 0) are continuous at z = �

⇤
. Let the classifier be given by one of the following:

(a) the classifier

ˆ

✓
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(x) = sign(⌘̂
x
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), where ⌘̂ is a class probability estimate that satisfies
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[|⌘̂
x
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(b) the classifier

ˆ

✓

ˆ

�

S

= sign(ˆ�
ˆ

�
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), the empirical minimizer of the ERM (7) using a suitably

calibrated convex loss `

ˆ

�

S

[9],

then

ˆ

✓

ˆ

�

S

is L-consistent.

Proof. Given Proposition 6, the proofs for parts (a) and (b) essentially follow from the arguments in
[7] for consistency with respect to the AM measure. Under the stated assumptions, the decomposi-
tion Lemma (Lemma 2) of [7] holds: For a classifier ˆ✓, if
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R
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p! 0 then, L⇤ � L(ˆ✓) p! 0

This allows us to directly invoke Theorems 5 and Theorems 6 of [7] giving us the desired L-
consistency in parts (a) and (b) respectively.

Appendix B: Proofs

Proof of Theorem 2

Proof. Let F = {f : X 7! R}, and note that ⇥ ⇢ F . We consider a continuous extension of (4) by
extending the domain of L from ⇥ to F . This results in the following optimization:

f

⇤
= argmax

f2F
L(f) s.t. f 2 ⇥ (8)

It is clear that (4) is equivalent to (8), and the minima coincide i.e. f⇤
= ✓

⇤. The Fréchet derivative
of L evaluated at x is given by:
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where D

r

(f) is denominator of L(f). A function f

⇤ 2 ⇥ optimizes L if f⇤ 2 ⇥ and (Lemma 12):Z
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Thus, when c

1

� d

1

L⇤, a necessary condition for local optimality is that the sign of f⇤ and the
sign of [rL(f⇤

)] agree pointwise wrt. x. This is equivalent to the condition that sign(f⇤
) =

sign(⌘
x

� �

⇤
). Combining this result with the constraint set f 2 ⇥, we have that f⇤

= sign(f⇤
),

thus f⇤
= sign(⌘
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� �
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) is locally optimal. Finally, we note that f⇤
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� �

⇤
) is unique for

f 2 ⇥, thus f⇤ is globally optimal. The proof for c
1

< d

1

L⇤ follows using similar arguments.
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Proof of Proposition 6

Proof. From Corollary 4 we know �

⇤
= � c2

c1
. Since 0 < �
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< 1, and c
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< 1 from Proposition 7,
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Observing that (1��⇤)⇡+�⇤(1�⇡)+ ˜

A

c1
is a constant independent of ✓, the proof is complete.

Proof of Lemma 8

Proof. For a given ✓, ✏
1

> 0, ⇢ > 0, there exists an N such that for any n > N , P(|TP
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.

Choosing some ✏
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for all n > N implied by this ✏
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Now, for the rate of convergence, Hoeffding’s inequality with ⇢ = 4e
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(✓)� L(✓)| < ✏) > 1� ⇢ holds with probability at least ⇢. This completes the proof.

Proof of Lemma 9

Proof. Let ⇢ = 16e

ln(en)�n✏

2
1/32, then ✏
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= r̃(n, ⇢). Using Lemma 29.1 in [25], we obtain:
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, then
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Proof of Theorem 10

Proof. Using a strongly proper loss function [19] and its corresponding link function  , and an
appropriate function class to minimize the empirical loss, we can obtain a class probability estimator
⌘̂ such that E
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⇥
|⌘̂

x

�⌘
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|2
⇤
! 0 (from Theorem 5 in [26]). Convergence in mean implies convergence
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in probability and so we have ⌘̂ p! ⌘. Now let ✓⇤
�

= sign(⌘
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� �). Recall that ˆ� denotes the empirical
maximizer obtained in Step 3. Now, since L
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where ✏ is defined as in Lemma 9. The last step is true by instantiating Lemma 9 with the thresholded
classifiers corresponding to �(x) = ⌘

x

.

Proof of Theorem 11

Proof. For a fixed �, E
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