Appendix A

Lemma 12. Let F = {f : X — R}, the constraint set C C F, and the functional G : F — R,
consider the optimization problem:

ff=argmax G(f) st feC
feFr

If the Fréchet derivative V G(f) exists, then [* is locally optimal iff. f* € C and:
(VG(f*). f*=f =0 v fec,
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Lemma 12 is a generalization of the well known first order condition for optimality of finite dimen-
sional optimization problems [24, Section 4.2.3] to optimization of smooth functionals.

Proposition 13. Let L be a measure of the form (4), and s be some estimator of its optimal

threshold 6*. Assume b5 € (0,1) and ds -2 6*. Also assume the cumulative distribution of 1,
conditionedonY = landonY =0, F, y—1(2) =P(n, < 2|Y =1)and F, |y—o(2) = P(n, <
z|Y = 0) are continuous at z = 6*. Let the classifier be given by one of the following:

(a) the classifier égs (z) = sign(fi, — b8s), where 1) is a class probability estimate that satisfies
B[z — 12|12 0 for some v > 1,

(b) the classifier éSs = sign(g?)ss), the empirical minimizer of the ERM (7) using a suitably
calibrated convex loss ¢ is [9],

then éSs is L-consistent.

Proof. Given Proposition 6, the proofs for parts (a) and (b) essentially follow from the arguments in
[7] for consistency with respect to the AM measure. Under the stated assumptions, the decomposi-

tion Lemma (Lemma 2) of [7] holds: For a classifier é, if
R;_(0) - min R;_(0) 20 then, £*—L(H)B0

This allows us to directly invoke Theorems 5 and Theorems 6 of [7] giving us the desired L-
consistency in parts (a) and (b) respectively. O

Appendix B: Proofs

Proof of Theorem 2

Proof. Let F = {f : X — R}, and note that © C F. We consider a continuous extension of (4) by
extending the domain of £ from © to F. This results in the following optimization:

ff=argmax L(f) st [fe€©O (8)
fer

It is clear that (4) is equivalent to (8), and the minima coincide i.e. f* = 6*. The Fréchet derivative
of L evaluated at x is given by:
1 |: _ dgﬁ(f) — C2

L))z =
VL) (c1 = diL(f)) D (f) c1 — diL(f) #(e)
where D,.(f) is denominator of L(f). A function f* € © optimizes L if f* € © and (Lemma 12):
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Thus, when ¢; > d;L*, a necessary condition for local optimality is that the sign of f* and the
sign of [VL(f*)] agree pointwise wrt. x. This is equivalent to the condition that sign(f*) =
sign(n, — 0*). Combining this result with the constraint set f € ©, we have that f* = sign(f*),
thus f* = sign(n, — §*) is locally optimal. Finally, we note that f* = sign(n, — §*) is unique for
f € O, thus f* is globally optimal. The proof for ¢; < dyL* follows using similar arguments. [




Proof of Proposition 6

Proof. From Corollary 4 we know §* = —i—f. Since 0 < 6* < 1, and ¢; < 1 from Proposition 7,

we have 1 > ¢; > 0. We can rewrite £(6) as £(0) = ¢1[(1 — 6*)TP + 6*TN] + A, where A is a
constant. We have:

Rs:(0) = Egye|((1=0)1y=1) + 0 1y=0}) - Lo(e) 4}
(1= 8")P(y = 1,6(z) = 0) + 6" Py = 0,6(x) = 1)
= (1-0")FN + 6°FP
= (1-6%)(r —TP)+6*(1 — 7 —TN)
= (1-6)7+6"(1—m)— ((1-6*)TP+5*TN)
~ (- rai-m+ 2 Lro)
C1 C1

Observing that (1 —6*)7 4 6*(1 — ) + £ is a constant independent of 6, the proof is complete. [

Cc1
Proof of Lemma 8

Proof. For a given 0,¢; > 0,p > 0, there exists an N such that for any n > N, P(|TP,(0) —
TP(0)| < e1) > 1 — p/2 and P(|,(0) — v(0)| < €1) > 1 — p/2. By union bound, the two events
simultaneously hold with probability at least 1 — p. Let ¢; = 1/|¢q| if ¢; # 0 else é& = 0. Define
¢a,dy, do similarly. Now define C' = max(¢éy, é2) and D = max(dy, d2). Observe that either C' > 0
or D > 0 otherwise L is a constant. Now for a given € > 0, after some simple algebra, we need

(diTP(0) + day(0) + do)e
D(L@O)+e)+C

Choosing some ¢; satisfying the upper bound above guarantees £(0) —e < L£,,(0) < L(0)+e. Thus
for all n > N implied by this €; and p, P(|£,,(0) — L(0)| < €) > 1 — p holds.

€1 >

Now, for the rate of convergence, Hoeffding’s inequality with p = 4e—2net (or €1 = 4 /ﬁ In %)
gives us P(|TP,(0) — TP(0)| < €1) > 1 — p/2 and P(|7,(0) — v(0)| < €1) > 1 — p/2. Choose
€1 > 0 as a function of ¢ such that it is sufficiently small, i.e. ¢ < (lelr;((e [):?'e'fi()?gd”)e. We
know L(#) < L for any 6 (from Proposition 7), therefore D(L(0) +€) + C < D(L +¢€) + C.
Furthermore, d1 TP(6) 4+ dav(0) + do > bo + min(boo, b11, bo1, b10) := B. We can choose ¢; =

B LEE) o < (lePD((a [):z;‘)iil()i)gd“)e ore = %. From the first part of the lemma, we know

P(|L£,(0) — L(F)| < €) > 1 — pholds with probability at least p. This completes the proof. O

Proof of Lemma 9
Proof. Let p = 16e™(em)=n<i/32 then ¢; = #(n, p). Using Lemma 29.1 in [25], we obtain:

P[sup |TP,(0) — TP(0)| < e1] > 1 —p/2.
0ce

By union bound, the inequalities P| supyee | TP, (0)—TP(0)| < €1] and P[supgce [1n (0)—7(0)] <

61} simultaneously hold with probability at least 1 — p. If n is large enough that 7(n, p) < %, then

from Proposition 8 we know that, for any given 6, |£,,(0) — L(0)| < % with probability

at least 1 — p. The lemma follows. ’ O

Proof of Theorem 10

Proof. Using a strongly proper loss function [19] and its corresponding link function ¢, and an
appropriate function class to minimize the empirical loss, we can obtain a class probability estimator
) such that E, [|7); —7|?] — 0 (from Theorem 5 in [26]). Convergence in mean implies convergence



in probability and so we have 7 % 7. Now let 05 = sign(n, — 0). Recall that 4 denotes the empirical
maximizer obtained in Step 3. Now, since Ly, (%) > L, (6;. ), it follows that:

L= L(03) = L= La(03) + Ln(0F) — L(63)

< L= La(05) + La(07) — L(67)
< 2Sl;p|£(9§) — L,(03)]
< 250

where € is defined as in Lemma 9. The last step is true by instantiating Lemma 9 with the thresholded
classifiers corresponding to ¢(z) = n,. O

Proof of Theorem 11

Proof. For a fixed §, E(x y)p [¢5(05(X),Y)] — ming Ex yy~p[ls(0(X),Y)]. With the under-
standing that the surrogate loss ¢; (i.e. the ¢s-risk) satisfies regularity assumptions and the minimizer
is unique, the weighted empirical risk minimizer also converges to the corresponding Bayes classi-
fier [9]; i.e., we have 05 2 g5. In particular, éé LS 0% = sign(n, — 5). Let é denote the empirical
maximizer obtained in Step 2. Now, by using an argument identical to the one in Theorem 10 we
can show that £* — L(67) < 2¢ 0. O



