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Logistic Regression

Assumes the following functional form for P(Y | X):
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P(Y = 1X) =

Logistic function applied to a linear

function of the data
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(or Sigmoid): 1 + exp(—=z)




Logistic function as a Graph
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Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of logistic/sigmoid
units:
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Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)
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Two layers of logistic units Highly non-linear decision surface



Neural Network
trained to drive a

car!
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Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10"
e Connections per neuron ~ 10%7°
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process



Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wg+ Z W;T;)
)

1-Hidden layer, o(X) = o | wo -+ Z wha(wg + Z w?%)
1 output NN: h | 7 J
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M(C)LE Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y

y =f(X) + ¢ ——  assume noise N(0,s,), iid

deterministic

 Let's maximize the conditional data likelihood

W «— arg max In HP(YZ|XZ, W)
l

W « arg mmi/n Z(yl — f,\\{fﬁl))Q Learned
l I neural network

Train weights of all units to minimize sum of squared errors
of predicted network outputs



MAP Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y
y = f(X) + € —_noise N(0,5,)
"\ deterministic
Gaussian P(W) = N(0,cl)

}
W «— arg max in P(W) [ PV Xt W)
l

. - 2 BTN
W « arg mI/II/n c;wZ ;(y x))

L. ! 1

In P(W) < c 2w

Train weights of all units to minimize sum of squared errors
of predicted network outputs plus weight magnitudes




Gradient Descent
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E — Mean Square Error

Gradient
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OF For Neural Networks,

Aw; = —77% E[w] no longer convex in w



Training Neural Networks

O
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o = G(net) = —

l+e

o(x) is the sigmoid function

1
1+ e *

Nice property: %;J = o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation
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Error Gradient for a Sigmoid Unit

Sigmoid Unit
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w] Using all training data D
2. W < W — HVED[’U_J’]

1
Epw] = = I — 0l)?
plw] =5 leZD(y )
Incremental mode Gradient Descent:
DO until SatiSﬁed aISO known as
e For each training example | in D Stochastic Gradient
Descent (SGD)

1. Compute the gradient V E []
2. W 4 W — nVE, [7]
I |
B, [w] = §(Y' —ol)?
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough



Backpropagation Algorithm (MLE) head hid 4 whod hood

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs > Using Forward propagation
2. For each output unit k | = training examp|e
o < oi(1 — ok)(y! — o}) y, = target output (label)

3. For each hidden unit h of output unit k

Oy = unit output
(obtained by forward
propagation)

5[!, — Ollz(]- - 0}1) > wh.kdl!'
k€outputs '
4. Update each network weight w; ;
Wi wi i+ A’wzl, w; = wt fromii to j
where Note: if i is input variable,

| [ 1 —
A’w,t?]‘ = 775j‘017, 0; = X;



More on Backpropagation

e Gradient descent over entire network weight Objective/Error no
vector longer convex in
weights

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw;j(n) = nd;zi;+ alw;j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast



Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].



Limited by amount of labeled data.
What about unsupervised problems?

Auto-Encoders
Deep Generative Models



Learning Hidden Layer Representations

A target function:
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Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??
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Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Neural Nets for Face Recognition

left strt rght up
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Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces



Learned Hidden Unit Weights

W
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Typical input images

http://www.cs.cmu.edu/~tom /faces.html



Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns



Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

» |dea: use hidden layer in network to capture state history

+_v({ + 1)

x(r)

(«) Feedforward network (b) Recurrent network



Training Networks on Time Series

How can we train recurrent net??

* vir+1)

(c) Recurrent network
unfolded in time



Overfitting in ANNs

Error
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How to avoid overfitting?

Regularization — train neural network by maximize M(C)AP
Early stopping

Regulate # hidden units — prevents overly complex models
= dimensionality reduction



Artificial Neural Networks: Summary

Actively used to model distributed computation in brain
Highly non-linear regression/classification

Vector-valued inputs and outputs

Potentially millions of parameters to estimate - overfitting

Hidden layers learn intermediate representations — how many
to use?

Prediction — Forward propagation
Gradient descent (Back-propagation), local minima problems

Coming back in new form as deep networks



