Neural Networks

Pradeep Ravikumar
Co-instructor: Ziv Bar Joseph
Machine Learning 10-701

Slides Courtesy: Previous Instructors

ACHI

Logistic Regression

Assumes the following functional form for P(Y | X):

1
1+ exp(—(wo +)_; wi X))

P(Y = 1X) =

Logistic function applied to a linear

function of the data

N
Logistic . =
function O

(or Sigmoid): 1 + exp(—=z)

Logistic function as a Graph

1
T 1+ exp(—(wo + >, w; X;))

Output, o(x) = o(wg + Z w; X;)

Sigmoid Unit

a O—L >
net =2, w; x; L
=0

[o = G(net) = -

l+e

Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of logistic/sigmoid
units:

 Output layer, Y

S]
~ - -
- - o~
- S -~ o
b I N _"
= < <
\ \ g ; ’,

Hidden layer, H

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

a head
a nhid

+ hod

x had

¢ hawed
* heard
o heed
< hud

» who'd
~ hood

Output
head hid layer A who’d hood

N =

D e o
PR SON

Hidden B e P SO S8

-
N\ 277
\ 2K/
-

0 500 1000 1400

layer F1 + E2 F1 (Hz)

Two layers of logistic units Highly non-linear decision surface

Neural Network
trained to drive a

car!

Straight
Ahead

Sharp
Right

30 Output
Units

30x32 Sensor
Input Retina

Weights to output units from one hidden unit
FIERY

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10"
e Connections per neuron ~ 10%7°
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wg+ Z W;T;)
)

1-Hidden layer, o(X) = o | wo -+ Z wha(wg + Z w?%)
1 output NN: h | 7 J

\ Op,]

M(C)LE Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y

y =f(X) + ¢ —— assume noise N(0,s,), iid

deterministic

 Let's maximize the conditional data likelihood

W «— arg max In HP(YZ|XZ, W)
l

W « arg mmi/n Z(yl — f,\\{fﬁl))Q Learned
l I neural network

Train weights of all units to minimize sum of squared errors
of predicted network outputs

MAP Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y
y = f(X) + € —_noise N(0,5,)
"\ deterministic
Gaussian P(W) = N(0,cl)

}
W «— arg max in P(W) [PV Xt W)
l

. - 2 BTN
W « arg mI/II/n c;wZ ;(y x))

L. ! 1

In P(W) < c 2w

Train weights of all units to minimize sum of squared errors
of predicted network outputs plus weight magnitudes

Gradient Descent

25+

E — Mean Square Error

Gradient

V E[@]

.
.

Training rule:

A

g
I
|
S
<
&
B

1.e.,
OF For Neural Networks,

Aw; = —77% E[w] no longer convex in w

Training Neural Networks

O

|

o = G(net) = —

l+e

o(x) is the sigmoid function

1
1+ e *

Nice property: %;J = o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

OF

8w,¢

Error Gradient for a Sigmoid Unit

Sigmoid Unit
TS
net _igow" *i o = G(ner) = -net
l+e
0 1
- Ow; 2 IeZD(yI B 0|)2 But we know:
10 dol do(net!)
= oY ou T netl ~ anett. 2179
27 Ow; net net |
L Onet! O(w-T")
= — 2 | — ol | — ol _ _ |
QXI: (y ¢)6811].,'(}/ o) 8’(1).,7 810, Xy
0! So:
= Y(yl— o) (_8) 0 op
| (;vozl Onet! = — ¥ (yl—ol)ol! (1 —oNa)
= —X(y!'—ol) dw; leD

| Onet! Ow;

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w] Using all training data D
2. W < W — HVED[’U_J’]

1
Epw] = = I — 0l)?
plw] =5 leZD(y)
Incremental mode Gradient Descent:
DO until SatiSﬁed aISO known as
e For each training example | in D Stochastic Gradient
Descent (SGD)

1. Compute the gradient V E []
2. W 4 W — nVE, [7]
I |
B, [w] = §(Y' —ol)?
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough

Backpropagation Algorithm (MLE) head hid 4 whod hood

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs > Using Forward propagation
2. For each output unit k | = training examp|e
o < oi(1 — ok)(y! — o}) y, = target output (label)

3. For each hidden unit h of output unit k

Oy = unit output
(obtained by forward
propagation)

5[!, — Ollz(]- - 0}1) > wh.kdl!'
k€outputs '
4. Update each network weight w; ;
Wi wi i+ A’wzl, w; = wt fromii to j
where Note: if i is input variable,

| [1 —
A’w,t?]‘ = 775j‘017, 0; = X;

More on Backpropagation

e Gradient descent over entire network weight Objective/Error no
vector longer convex in
weights

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw;j(n) = nd;zi;+ alw;j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Limited by amount of labeled data.
What about unsupervised problems?

Auto-Encoders
Deep Generative Models

Learning Hidden Layer Representations

A target function:

{/
IR

i
AN
‘

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Training

Hidden unit encoding for input 01000000

08
0.7 r
0.6

0.4
03 |
0.2 |

I

-
————

N

0.1

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Neural Nets for Face Recognition

left strt rght up

| ' ‘
f
.]
- - n

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

W
left strt rght up Learned WW 0
Q. Q)) > left strt t
WV s N

30x32 |

Typical input images

http://www.cs.cmu.edu/~tom /faces.html

Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

» |dea: use hidden layer in network to capture state history

+_v({ + 1)

x(r)

(«) Feedforward network (b) Recurrent network

Training Networks on Time Series

How can we train recurrent net??

* vir+1)

(c) Recurrent network
unfolded in time

Overfitting in ANNs

Error

Error

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 1)

T T T
R ..
- Training set error . .
Validation set error *
-
- i
k"\\\‘
0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)
[Sony, T T T
* - -
- Training set error * .
M e Validation set error +
— ++ =
+,
| W%]
*
- - M .
B P H'H'H-H-—H_:
>
- * -
*
u LY
1 1 SOLLIII00000LIIIIER RIS
1000 2000 3000 4000 5000 6000

Number of weight updates

How to avoid overfitting?

Regularization — train neural network by maximize M(C)AP
Early stopping

Regulate # hidden units — prevents overly complex models
= dimensionality reduction

Artificial Neural Networks: Summary

Actively used to model distributed computation in brain
Highly non-linear regression/classification

Vector-valued inputs and outputs

Potentially millions of parameters to estimate - overfitting

Hidden layers learn intermediate representations — how many
to use?

Prediction — Forward propagation
Gradient descent (Back-propagation), local minima problems

Coming back in new form as deep networks

