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Classification
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Classification

» Assume we want to teach a computer to distinguish between cats and dogs ...




Bayes decision rule

X — Input feature set
y - label

If we know the conditional probability p(x | y) and class
priors p(y) we can determine the appropriate class by
using Bayes rule:

N Px|ly=phP(y=i" «— Minimizes our
Ply=rlx)= P(x) =4:(%) probability of
3S- making a mistake

We can use ¢;(X) to select the appropriate
We chose class 0 if g4(x) > g,(x) and class 1 othe

This is termed the ‘Bayes decision rule’ and leads to Note that p(x)
optimal classification. does not affect

However, it is often very hard to compute ... our decision



Bayes decision rule

N
P(x |yp(l,)§(y DY

P(y=i[x)=

« \We can also use the resulting probabilities to determine our
confidence in the class assignment by looking at the likelihood

ratio:
L(x) = %(x)

q,(x)

Also known as likelihood
ratio, we will talk more
about this later



Bayes decision rule: Example

Normal Gaussians
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Bayes error

p(x|y=1)

 For the Bayes decision
rule we can calculate the P(Y|X)

probability of an error P.(X)P(Y=1) / P(X) P,(X)P(Y=0) / P(X)

* This is the probability
that we assign a sample to
the wrong class, also ‘ ‘
known as the risk \
X

X values for which we
* The risk for sample x is: will have errors

R(x) = min{P,(x)P(y=1), Po(x)P(y=0)} / P(x)

'  Risk can be used to
determine a ‘reject’

region



Bayes error sy

P,(X)P(Y=1) / P(X)  Po(X)P(Y=0)/P(X)

* The probability that we
assign a sample to the ‘ ‘
wrong class, is known as

the risk X

* The risk for sample x is:
R(x) = min{P,(x)P(y=1), Po(x)P(y=0)} / P(x)

» We can also compute

the expected risk (the risk |

for the entire range of E[r(x)] = j r(x) p(x)dx
values of x): x
= [ min{p,(x)p(y =1).py(x)p(y = 0)} dx

L, is the region where we assign = p(y=0) I po(x)dx+ p(y =1) _[ p,(x)dx
instances to class 1 > L Ly




Loss function

The risk value we computed assumes that both errors

(assigning instances of class 1 to class 0 and vice versa) are
equally harmful.

However, this is not always the case.
Why?

In general our goal is to minimize loss, often defined by a loss
function: L, ,(x) which is the penalty we pay when assigning
Instances of class 0 to class 1

E[L]= Lo, p(y =0) [ po(x)dx+L,p(y =1) [ p, (x)dlx



Types of classifiers

We can divide the large variety of classification approaches into roughly two main
types

1. Instance based classifiers
- Use observation directly (no models)
- e.¢. K nearest neighbors

2. Generative:
- build a generative statistical model
- e.g., Naive Bayes

3. Discriminative
- directly estimate a decision rule/boundary
- e.0., decision tree



Classification

Assume we want to teach a computer to distinguish between cats and dogs ...

Several steps:

1. feature transformation
2. Model / classifier
specification

3. Model / classifier
estimation (with
regularization)

4. feature selection




Classification

Assume we want to teach a computer to distinguish between cats and dogs ...

Several steps:

1. feature transformation

2. Model / classifier
specification

3. Model / classifier

estimation (with
regularization)

4. feature selection

How do we encode the picture? A collection of

pixels? Do we use the entire image or a
subset? ...



Classification

Assume we want to teach a computer to distinguish between cats and dogs ...

Several steps:

1. feature transformation

2. Model / classifier
specification

3. Model / classifier
estimation (with
regularization)

4. feature selection

What type of classifier should we use?



Classification

Assume we want to teach a computer to distinguish between cats and dogs ...

Several steps:

1. feature transformation

2. Model / classifier
specification

3. Model / classifier

estimation (with
regularization)

4. feature selection

How do we learn the parameters of our

classifier? Do we have enough examples to
learn a good model?



Classification

Assume we want to teach a computer to distinguish between cats and dogs ...

Several steps:

1. feature transformation

2. Model / classifier
specification

3. Model / classifier

estimation (with
regularization)

4. feature selection

Do we really need all the features? Can we
use a smaller number and still achieve the
same (or better) results?



Supervised learning

Classification 1s one of the key components of ‘supervised learning’

Unlike other learning paradigms, in supervised learning the teacher (us)
provides the algorithm with the solutions to some of the instances and the
goal is to generalize so that a model / method can be used to determine
the labels of the unobserved samples

Classifier

Wy, W, ...

o |

teacher




Types of classifiers

« We can divide the large variety of classification approaches into roughly two main types

1. Instance based classifiers
- Use observation directly (no models)
- e.¢g. K nearest neighbors

2. Generative:
- build a generative statistical model

- e.9., Bayesian networks

3. Discriminative
- directly estimate a decision rule/boundary

- e.9., decision tree



K nearest neighbors



K nearest neighbors (KNN)

« A simple, yet surprisingly
efficient algorithm
« Requires the definition of a

distance function or similarity
measures between samples

e Select the class based on the

majority vote in the k closest O -
points @ ".
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K nearest neighbors (KNN)

Need to determine an appropriates

value for k
What happens if we chose k=17
What if k=37
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K nearest neighbors (KNN)

e Choice of k influences the
‘smoothness’ of the resulting
classifier

« Inthat sense it is similar to a
kernel methods (discussed later in
the course)

« However, the smoothness of the O -
function is determined by the ® ".
actual distribution of the data ® 4 ] ]
(p(x)) and not by a predefined @ ® m
parameter.
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The effect of increasing k
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The effect of increasing k

We will be using Euclidian
distance to determine what are
the k nearest neighbors:

d(x,x") = \/Z(xi ~x,')’




KNN with k=1
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KNN with k=3
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Ties are broken
using the order:

Red , . Blue




KNN with k=5
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Comparisons of different k's
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A probabillistic interpretation of
KNN

The decision rule of KNN can be viewed using a probabilistic
Interpretation

What KNN is trying to do is approximate the Bayes decision rule on a
subset of the data

To do that we need to compute certain properties including the conditional
probability of the data given the class (p(x|y)), the prior probability of each
class (p(y)) and the marginal probability of the data (p(x))

These properties would be computed for some small region around our
sample and the size of that region will be dependent on the distribution of
the test samples*

* Remember this idea. We will return to it
when discussing kernel functions



Computing probabilities for KNN

« LetV be the volume of the m dimensional ball around z containing the k
nearest neighbors for z (where m is the number of features).

« Then we can write

K

POV =P="1 pl)= & al

K
NV pxly=1 NV po=1 N

« Using Bayes rule we get: | _
z — new data point to classify

V - selected ball
P — probability that a random pointis in V
o(y=1|2) = p(zly=D)ply=1) K, N - total number of samples
p(2) K K - number of nearest neighbors

N, - total number of samples from class 1

K; - number of samples from class 1 in K



Computing probabilities for KNN

N - total number of samples

V - Volume of selected ball

K - number of nearest neighbors

N, - total number of samples from class 1

_ K; - number of samples from class 1 in K
« Using Bayes rule we get:

p(zly=Dply=1) _K,
p(z) K

p(y=1|2) =

Using Bayes decision rule we will chose the
class with the highest probability, which in
this case is the class with the highest
number of samples in K



Important points

Optimal decision using Bayes rule
Types of classifiers

Effect of values of k on knn classifiers
Probabilistic interpretation of knn



