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Machine Learning

Ensemble methods and Boosting



Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners are good

— e.g., naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

— Low variance, don’t usually overfit

* Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

* Can we make all weak learners always good???
— Nolll
— But often yes...



Simplest approach:
A “bucket of models”

* |nput:
— your top T favorite learners (or tunings)
o« Ly by
— A dataset D
* Learning algorithm:
— Use 10-CV to estimate the error of L,....,L;
— Pick the best (lowest 10-CV error) learner L*
— Train L* on D and return its hypothesis h*



’

Pros and cons of a “bucket of models’

* Pros:
— Simple
— Will give results not much worse than the best of the
“base learners”

* Cons:
— What if there’s not a single best learner?

e Other approaches:
— Vote the hypotheses (how would you weight them?)
— Combine them some other way?
— How about learning to combine the hypotheses?



Stacked learners: first attempt

* |nput:
— vyour top T favorite learners (or tunings)
o« Lyols
— A dataset D containing (x,y), ....
* Learning algorithm:
— Train Ly,....,..;on Dto get h,,....,h;
— Create a new dataset D’ containing (x’,y’),....
X' isa vector of the T predictions h,(x),....,h(x)
* yisthe label y for x

— Train new classifieron D’ to get h’ --- which combines the
predictions!

* To predict on a new x:
— Construct X’ as before and predict h’ (x’)



Pros and cons of stacking

* Pros:
— Fairly simple

— Slow, but easy to parallelize

e Cons:

— What if there’ s not a single best combination
scheme?

— E.g.: for movie recommendation sometimes L1 is
best for users with many ratings and L2 is best for
users with few ratings.



Voting (Ensemble Methods)

 Instead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the

Input space
« Qutput class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more
conviction
— Classifiers will be most “sure” about a particular part
of the space
— On average, do better than single classifier!

« But how do you ?7??
— force classifiers to learn about different parts of the
iInput space”?
— weigh the votes of different classifiers?



Comments

* Ensembles based on blending/stacking were key
approaches used in successful applications (for
example, the netflix competition)

— Winning entries blended many types of classifiers
* Ensembles based on stacking are the main

architecture used in Watson

— Not all of the base classifiers/rankers are learned,
however; some are hand-programmed.



Boosting [Schapire, 1989]

ldea: given a weak learner, run it multiple times on (reweighted)
training data, then let the learned classifiers vote

On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a hypothesis — h,
— A strength for this hypothesis — a,

Final classifier:

- Alinear combination of the votes of the different classifiers
weighted by their strength

Practically useful
Theoretically interesting



Learning from weighted data

Sometimes not all data points are equal
— Some data points are more equal than others
Consider a weighted dataset
— D(i) — weight of i th training example (x',y")
— Interpretations:
* | th training example counts as D(i) examples

« If | were to “resample” data, | would get more samples of “heavier”
data points

Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”

— e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted count



Given: (21,41),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dy (¢) = 1/m.
Fort=1,...,T:

Train weak learner using distribution Dj;.
Getweak classifier h; : X — R.

Choose a; € R.

Update:

Dy (7) exp(—ouyihi(z;))
Zi

Diy1(i) =
where Z; is a normalization factor

m
Zy = > Dy(i) exp(—ay;hi(z;))
=
Output the final classifier: '

T
H(z) = sign (Z atht(m)) :

t=1

Figure 1: The boosting algorithm AdaBoost.



Boosting: A toy example




Boosting: A toy example

Round 1
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0ty=0.42



Boosting: A toy example

Round 2

€7=0.21
a5=0.65



Round 3

Thanks, Rob Schapire

Boosting: A toy example

€3=0.14
a3=0.92




Thanks, Rob Schapire

Boosting: A toy example

Final Classifier

H =sign | 0.42 + 0.65 +0.92
final




What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:
1 2 1 X
— > 6(H(zy) #y;) < — > exp(—y;f(x;))
mi=1 mi=1

Where f(z) = Z athi(x); H(x) = sign(f(x))
t



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Dy (i) exp(—ay;hi(z;))

Diyq(i) = Z

Training error of final classifier is bounded by:

m | m
% N S(H (x) # y;) < % > exp(—yif(z)) = 1] 2
i=1 =1 t

Where f(x) = Z athy(x); H(x) = sign(f(z))
t

Vo= 3" Du(i) exp(—ashi(:))
=1




What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:

o
% > 6(H(x;) # yi) < %ZGXD(—%JB(%D =12
i=1 v t

Where f(z) = Z athi(x); H(x) = sign(f(x))
t

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing &, and h, on each
iteration to minimize Z;

Zi= 3" Dy(i) exp(—arysh(z)
1=1



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Zi= 3" Dy(i) exp(—arysh(z)

Define

We can show that:

1=1

et = Y Di(0)d(hi(x;) # i)
i—1

Z =1—-g)exp “+eg exp”



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Z =1—¢g)exp “+¢g exp™

For Boolean target function, this is accomplished by [Freund & Schapire '97]:

Where:

1—6,3
oztz%ln( 6, )

et = Y Di(0)d(hi(x;) # i)
i—1




Given: (21,41),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (¢) = 1/m.

Fort=1,...,T:

Train base learner using distribution Dj;.
Get base classifier h; : X — R.

Choose a; € R.
Update:

P
<«

Diyq(2) =

Dy (7) exp(—ouyihi(z;))

Zi




Strong, weak classifiers

Zi= 3" Di(i) exp(—aihi ()
1=1

 If each classifier is (at least slightly) better than random
- <05

« With a few extra steps it can be shown that AdaBoost will achieve
zero training error (exponentially fast):

m T
> 6(H(x) #yi) <] Zt <exp (—2 > (12— €t)2>
[ =1

1
m.,—1



Boosting results — Digit recognition
[Schapire, 1989]

.”1lﬂ | 10[) ll “1I[l)ﬂﬂ
# rounds

* Boosting often
— Robust to overfitting
— Test set error decreases even after training error is zero



Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets

N
(=1

error C4.5
> o

o

=

0 5 10 15 20 25 30 0 5 10 15 20 25 30
errorboosting stumps error boosting C4.5

25



AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Random forest
A collection of decision trees

* For each tree we select a subset of the
attributes (recommended square root of |A|)
and huild.tree using just these attributes

* An input sample is =57 22 sing majority
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What you need to know about Boosting

 Combine weak classifiers to obtain very strong classifier

— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training error
* AdaBoost algorithm
* Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier



Boosting and Logistic Regression

Logistic regression assumes:
1

1+ exp(f(x))

And tries to maximize data likelihood:
m
1

P(D|H) = zl;Il 1 + exp(—y;f(z;))

P(Y =1|X) =

Equivalent to minimizing log loss

S In(1 + exp(—yif ()))

1=1



Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

S In(1 + exp(—yif ()))

1=1

Boosting minimizes similar loss function!!

=Y exp(-yif () = [ 2
1 t

Both smooth approximations of 0/1 loss!

30



Logistic regression and Boosting

Logistic regression: Boosting:
e Minimize loss fn * Minimize loss fn

Z; IN(1 4 exp(—y;f(x;))) Z exp(—y; f(x;))

i=1
e Define e Define Z
_ . flx) =) oathi(x)
f(z) = ijxj r
’ where h(x;) defined

(not a linear classifier)

* Weights q, learned
incrementally



