Regularized, Polynomial, Logistic Regression

Pradeep Ravikumar

Co-instructor: Ziv Bar-Joseph

Machine Learning 10-701

Regression algorithms

Linear Regression

Regularized Linear Regression – Ridge regression, Lasso

Polynomial Regression

Gaussian Process Regression

. . .

Recap: Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator

 \mathcal{F}_L - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$
 β_1 - intercept

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$= X\beta$$
 where $X = [X^{(1)} \dots X^{(p)}], \beta = [\beta_1 \dots \beta_p]^T$

Recap: Least Squares Estimator

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 $f(X_i) = X_i \beta$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Recap: Least Square solution satisfies Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

When is $(\mathbf{A}^T \mathbf{A})$ invertible?

Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T \mathbf{A})$?

Rank $(\mathbf{A}^T \mathbf{A})$ = number of non-zero eigenvalues of $(\mathbf{A}^T \mathbf{A})$ <= min(n,p) since \mathbf{A} is n x p

So, $rank(\mathbf{A}^T\mathbf{A})$ =: $r \le min(n,p)$ Not invertible if r < p (e.g. n < p i.e. high-dimensional setting)

Regularized Least Squares

What if $(\mathbf{A}^T\mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \text{Ridge Regression} \\ \text{(I2 penalty)} \end{array}$$

$$= \arg\min_{\beta} \quad (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \|\beta\|_2^2 \qquad \qquad \lambda \geq 0$$

$$\widehat{\beta}_{\text{MAP}} = (\mathbf{A}^\top \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^\top \mathbf{Y}$$

Is
$$(\mathbf{A}^{ op}\mathbf{A} + \lambda \mathbf{I})$$
 invertible?

Understanding regularized Least Squares

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

Regularized Least Squares

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of b (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \mathsf{Ridge \, Regression} \\ \mathsf{(l2 \, penalty)} \end{array}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \qquad \qquad \mathsf{Lasso} \\ \mathsf{(l1 \, penalty)} \end{array}$$

Many parameter values can be zero – many inputs are irrelevant to prediction in high-dimensional settings

Regularized Least Squares

What if $(\mathbf{A}^T\mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \mathsf{Ridge\ Regression} \\ \mathsf{(I2\ penalty)} \\ \lambda \geq 0 \\ \widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \\ & \mathsf{Lasso} \\ \mathsf{(I1\ penalty)} \end{array}$$

No closed form solution, but can optimize using sub-gradient descent (packages available)

Ridge Regression vs Lasso

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

$$pen(\beta) = \|\beta\|_2^2$$

Lasso:

$$pen(\beta) = \|\beta\|_1$$

Ideally IO penalty, but optimization becomes non-convex

Lasso (I1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates, interpretable solution!

Lasso vs Ridge

Lasso Coefficients

Ridge Coefficients

Regularized Least Squares – connection to MLE and MAP (Model-based approaches)

Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}) \quad Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$

$$f(X) = X\beta^*$$

$$\widehat{\beta}_{\text{MLE}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)$$

Conditional log likelihood

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i \beta - Y_i)^2 = \widehat{\beta}$$

Least Square Estimate is same as Maximum Conditional Likelihood Estimate under a Gaussian model!

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

I) Gaussian Prior

$$eta \sim \mathcal{N}(0, au^2 \mathbf{I})$$
 $p(eta) \circ p(eta)$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \underset{\text{constant}(\sigma^2, \tau^2)}{\text{Ridge Regression}}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I})^{-1}\boldsymbol{A}^{\top}\boldsymbol{Y}$$

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

I) Gaussian Prior

ussian Prior
$$eta \sim \mathcal{N}(0, au^2\mathbf{I})$$
 $p(eta) \propto e^{-eta^Teta/2 au^2}$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \underset{\mathsf{constant}(\sigma^2, \tau^2)}{\mathsf{Ridge Regression}}$$

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

II) Laplace Prior

$$eta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t) \qquad \qquad p(eta_i) \propto e^{-|eta_i|/t}$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\widehat{eta}_{\mathsf{MAP}} = \arg\min_{eta} \sum_{i=1}^n (Y_i - X_i eta)^2 + \lambda \|eta\|_1$$
 Lasso constant (σ^2, t)

Beyond Linear Regression

Polynomial regression Regression with nonlinear features

Polynomial Regression

Univariate (1-dim)
$$f(X)=\beta_0+\beta_1X+\beta_2X^2+\cdots+\beta_mX^m=\mathbf{X}\beta$$
 case:
$$\mathbf{W}=[1\ X\ X^2\dots X^m]\ \beta=[\beta_1\dots\beta_m]^T$$

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 or $(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$ $\widehat{f}_n(X) = \mathbf{X} \widehat{\beta}$ where $\mathbf{A} = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & \vdots \\ 1 & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$

Multivariate (p-dim)
$$f(X) = \beta_0 + \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$
 case:
$$+ \sum_{i=1}^p \sum_{j=1}^p \beta_{ij} X^{(i)} X^{(j)} + \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p X^{(i)} X^{(j)} X^{(k)} + \dots \text{ terms up to degree m}$$

Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1

Bias - Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but unstable

Bias – Variance Decomposition

Later in the course, we will show that

$$E[(f(X) - f^*(X))^2] = Bias^2 + Variance$$

Bias = $E[f(X)] - f^*(X)$ How far is the model from "true function"

Variance = $E[(f(X) - E[f(X)])^2]$ How variable/stable is the model

Effect of Model Complexity

Effect of Model Complexity

Regression with basis functions

$$f(X) = \sum_{j=0}^{m} \beta_j \phi_j(X)$$
 Basis coefficients Basis functions (Linear combinations yield meaningful spaces)

periodic functions

Polynomial Basis

Fourier Basis Wavelet Basis

Good representation for local functions

Regression with nonlinear features

In general, use any nonlinear features

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
or
$$(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{A} = \begin{bmatrix} \phi_0(X_1) \ \phi_1(X_1) \ \dots \ \phi_m(X_1) \\ \vdots \ \ddots \ \vdots \\ \phi_0(X_n) \ \phi_1(X_n) \ \dots \ \phi_m(X_n) \end{bmatrix}$$

$$\widehat{f}_n(X) = \mathbf{X}\widehat{\beta}$$
 $\mathbf{X} = [\phi_0(X) \ \phi_1(X) \ \dots \ \phi_m(X)]$

Regression to Classification

Regression

X = Brain Scan

Classification

X = Cell Image

Anemic cell Healthy cell

Y = Diagnosis

Can we predict the "probability" of class label being Anemic or Healthy – a real number – using regression methods?

Y = Age of a subject

But output (probability) needs to be in [0,1]

Logistic Regression

Not really regression

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear function of the data

Logistic function $\frac{1}{1 + exp(-z)}$

Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Decision boundary: Note - Labels are 0,1

$$P(Y = 0|X) \overset{0}{\underset{1}{\gtrless}} P(Y = 1|X)$$

$$w_0 + \sum_i w_i X_i \underset{\mathbf{0}}{\gtrless} 0$$

(Linear Decision Boundary)

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow P(Y = 1|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow \frac{P(Y=1|X)}{P(Y=0|X)} = \exp(w_0 + \sum_i w_i X_i) \stackrel{1}{\gtrless} 1$$

$$\Rightarrow w_0 + \sum_i w_i X_i \overset{1}{\underset{0}{\gtrless}} 0$$

Training Logistic Regression

How to learn the parameters w_0 , w_1 , ... w_d ? (d features)

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum Likelihood Estimates

$$\widehat{\mathbf{w}}_{MLE} = \arg\max_{\mathbf{w}} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} \mid \mathbf{w})$$

But there is a problem ...

Don't have a model for P(X) or P(X|Y) – only for P(Y|X)

Training Logistic Regression

How to learn the parameters w₀, w₁, ... w_d? (d features)

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum (Conditional) Likelihood Estimates

$$\hat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} \mid X^{(j)}, \mathbf{w})$$

Discriminative philosophy – Don't waste effort learning P(X), focus on P(Y|X) – that's all that matters for classification!

Expressing Conditional log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} \left[y^{j} (w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j})) \right]$$

Bad news: no closed-form solution to maximize /(w)

Good news: *I*(**w**) is concave function of **w** concave functions easy to maximize

Concave function

A function I(w) is called **concave** if the line joining two points $I(w_1),I(w_2)$ on the function does not go above the function on the interval $[w_1,w_2]$

(Strictly) Concave functions have a unique maximum!

Optimizing concave function

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function can be reached by

Gradient Ascent Algorithm

Initialize: Pick w at random

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_d}\right]'$$
Learning rate, $\eta > 0$

Update rule:

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i} \Big|_{t}$$

Gradient Ascent for Logistic Regression

Gradient ascent rule for w_0 :

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_0} \Big|_t$$

$$l(\mathbf{w}) = \sum_j \left[y^j (w_0 + \sum_i^d w_i x_i^j) - \ln(1 + exp(w_0 + \sum_i^d w_i x_i^j)) \right]$$

$$\frac{\partial l(\mathbf{w})}{\partial w_0} = \sum_j \left[y^j - \frac{1}{1 + exp(w_0 + \sum_i^d w_i x_i^j)} \cdot exp(w_0 + \sum_i^d w_i x_i^j) \right]$$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change < ϵ

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,d,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

That's all M(C)LE. How about M(C)AP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- Define priors on w
 - Common assumption: Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Zero-mean Gaussian prior

M(C)AP estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \sum_{j=1}^n \ln P(y^j \mid \mathbf{x}^j, \mathbf{w}) - \sum_{i=1}^d \frac{w_i^2}{2\kappa^2}$$

Still concave objective!

Penalizes large weights

M(C)AP – Gradient

• Gradient

$$\frac{\partial}{\partial w_i} \operatorname{In} \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Zero-mean Gaussian prior

$$\frac{\partial}{\partial w_i} \ln p(\mathbf{w}) + \frac{\partial}{\partial w_i} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$
Same as before
$$\propto \frac{-w_i}{\kappa^2}$$
Extra term Penalizes large weights

M(C)LE vs. M(C)AP

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\frac{1}{\kappa^2} w_i^{(t)} + \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Logistic Regression for more than 2 classes

• Logistic regression in more general case, where $Y \in \{y_1,...,y_K\}$

for
$$k < K$$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{d} w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

for k=K (normalization, so no weights for this class)

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

Predict
$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$

Is the decision boundary still linear?