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Regression	algorithms

Learning algorithm
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Linear	Regression
Regularized	Linear	Regression	– Ridge	regression,	Lasso
Polynomial	Regression
Gaussian	Process	Regression
…

that	predicts/estimates
output	Y	given	input	X	



Recap:	Linear	Regression
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- Class	of	Linear	functions

β1 - intercept

β2 =	slopeUni-variate case:

Multi-variate case:

where																																																					,

Least	Squares	Estimator



Recap:	Least	Squares	Estimator
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f(Xi) = Xi�



Recap:	Least	Square	solution	satisfies	Normal	
Equations
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If																		is	invertible,	

When	is																				invertible	?	
Recall:	Full	rank	matrices	are	invertible.	What	is	rank	of																	?	

p	x	p p	x1 p	x1

Rank																		 =				number	of	non-zero	eigenvalues	of																		
<=			min(n,p)	since	A is	n	x	p

So,	rank																	=:	r	<=	min(n,p)
Not	invertible	if	r	<	p	(e.g.	n	<	p	i.e.	high-dimensional	setting)
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Regularized	Least	Squares

What	if																			is	not	invertible	?	

r	equations	,	p	unknowns	– underdetermined	system	of	linear	equations
many	feasible	solutions

Need	to	constrain	solution further	

e.g.	bias	solution	to	“small”	values	of	β (small	changes	in	input	don’t	
translate	to	large	changes	in	output)	

�̂MAP = (A>A+ �I)�1A>Y

(A>A+ �I)Is invertible	?	

� � 0

Ridge	Regression
(l2	penalty)
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Understanding	regularized	Least	Squares

Ridge	Regression:	

βs with	constant	J(β)
(level	sets	of	J(β))

βs with	constant	l2	norm
(level	sets	of	pen(β))

β2

β1

Unregularized Least Squares solution
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Regularized	Least	Squares

What	if																			is	not	invertible	?	

Lasso
(l1	penalty)

r	equations	,	p	unknowns	– underdetermined	system	of	linear	equations
many	feasible	solutions

Need	to	constrain	solution further	

e.g.	bias	solution	to	“small”	values	of	b (small	changes	in	input	don’t	
translate	to	large	changes	in	output)

Many	parameter	values can	be	zero	– many	inputs	are	irrelevant	to	
prediction	in	high-dimensional	settings

� � 0

Ridge	Regression
(l2	penalty)
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Regularized	Least	Squares

What	if																			is	not	invertible	?	

Lasso
(l1	penalty)

r	equations	,	p	unknowns	– underdetermined	system	of	linear	equations
many	feasible	solutions

Need	to	constrain	solution further	

e.g.	bias	solution	to	“small”	values	of	β (small	changes	in	input	don’t	
translate	to	large	changes	in	output)

� � 0

Ridge	Regression
(l2	penalty)

No	closed	form	solution,	but	can	optimize	using	sub-gradient	descent	(packages	
available)



Ridge	Regression	vs Lasso
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Ridge	Regression:	 Lasso:

Lasso	(l1	penalty)	results	in	sparse	solutions	– vector	with	more	zero	coordinates
Good	for	high-dimensional	problems	– don’t	have	to	store	all	coordinates,	
interpretable	solution!

βs with	
constant	
l1	norm

Ideally	l0	penalty,	
but	optimization	
becomes	non-convex

βs with	
constant	
l0	norm

βs with	constant	J(β)
(level	sets	of	J(β))

βs with	
constant	
l2	norm

β2

β1



Lasso	vs	Ridge

Lasso	Coefficients Ridge	Coefficients
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Regularized	Least	Squares	– connection	
to	MLE	and	MAP	
(Model-based	approaches)



Least	Squares	and	M(C)LE
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Intuition:	Signal	plus	(zero-mean)	Noise	model

Least	Square	Estimate	is	same	as	Maximum	Conditional	Likelihood	Estimate	
under	a	Gaussian	model	!

Conditional	 log	 likelihood

= X�⇤

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized	Least	Squares	and	M(C)AP
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What	if																			is	not	invertible	?	

Conditional	 log	 likelihood log	prior

I)	Gaussian	Prior

0

Ridge Regression

b�MAP = (AAA>AAA+ �III)�1AAA>YYY

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized	Least	Squares	and	M(C)AP
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What	if																			is	not	invertible	?	

Prior	belief	that	β is	Gaussian	with	zero-mean	biases	solution	 to	“small”	β

I)	Gaussian	Prior

0

Ridge Regression

Conditional	 log	 likelihood log	prior

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized	Least	Squares	and	M(C)AP
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What	if																			is	not	invertible	?	

Prior	belief	that	β is	Laplace	with	zero-mean	biases	solution	 to	“sparse”	β

Lasso

II)	Laplace	Prior

Conditional	 log	 likelihood log	prior

p({Yi}ni=1|�,�2, {Xi}ni=1)



Beyond	Linear	Regression
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Polynomial	regression
Regression	with	nonlinear	features



Polynomial	Regression
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Univariate (1-dim)	
case:

where																																																								,

Multivariate	(p-dim)	
case:

degree	m

f(X) = �0 + �1X
(1) + �2X

(2) + · · ·+ �pX
(p)

+
pX

i=1

pX

j=1

�ijX
(i)X(j) +

pX

i=1

pX

j=1

pX

k=1

X(i)X(j)X(k)

+ . . . terms up to degree m

b�MAP = (ATA+ �I)�1ATYor

where																																																								
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Polynomial	Regression
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Polynomial	of	order	k,	equivalently	of	degree	up	to	k-1

What	is	the	right	order?	



Bias	– Variance	Tradeoff
Large	bias,	Small	variance	– poor	approximation	but	robust/stable

Small	bias,	Large	variance	– good	approximation	but	unstable
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3	Independent	training	datasets
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Bias	– Variance	Decomposition

Later	in	the	course,	we	will	show	that	

E[(f(X)	- f*(X))2]	=	Bias2 +	Variance

Bias	=	E[f(X)]	– f*(X) …..		How	far	is	the	model	from	“true	function”

Variance	=	E[(f(X)	- E[f(X)])2] …..	How	variable/stable	is	the	model



Effect	of	Model	Complexity

Test	error

Variance

Bias



Effect	of	Model	Complexity

Test	error

Variance

BiasTraining	error



Regression	with	basis	functions
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Polynomial	Basis	

Basis	functions	 (Linear	combinations	yield	meaningful	 spaces)Basis	coefficients

Good	representation	for	
periodic	 functions

Good	representation	for	local	
functions

Fourier	Basis	 Wavelet	Basis

…… …
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Regression	with	nonlinear	features

In	general,	use	any	nonlinear	features	

e.g.	eX,	log	X,	1/X,	sin(X),	…

Nonlinear	
features

Weight	of
each	feature

�0(X1) �1(X1) . . . �m(X1)

�0(Xn) �1(Xn) . . . �m(Xn)

X = [�0(X) �1(X) . . . �m(X)]

b�MAP = (ATA+ �I)�1ATY

or
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Regression	to	Classification
Regression

Classification

Anemic	cell
Healthy	cell

X	=	Cell	Image Y	=	Diagnosis

X	=	Brain	Scan

Y	=	Age	of	a	subject

Can	we	predict	the	“probability”	
of	class	label	being	Anemic	or	
Healthy	– a	real	number	– using	
regression	methods?

But	output	(probability)	needs	to	
be	in	[0,1]	



Logistic	Regression

27

Assumes	the	following	functional	form	for	P(Y|X):

Logistic
function
(or	Sigmoid):

Logistic	function	applied	to	a	linear
function	of	the	data

z
lo
gi
st
ic
	(z
)

Features	can	be	discrete	or	continuous!

Not	really	regression



Logistic	Regression	is	a	Linear	
Classifier!
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Assumes	the	following	functional	form	for	P(Y|X):

Decision	boundary:

(Linear	Decision	Boundary)

0

1

Note	- Labels	are	0,1

1



Logistic	Regression	is	a	Linear	
Classifier!
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Assumes	the	following	functional	form	for	P(Y|X):

0
1

0

1

1



Training	Logistic	Regression
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How	to	learn	the	parameters	w0,	w1,	…	wd?	(d	features)

Training	Data

Maximum	Likelihood	Estimates

But	there	is	a	problem	…	

Don’t	have	a	model	for	P(X)	or	P(X|Y)	– only	for	P(Y|X)



Training	Logistic	Regression
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How	to	learn	the	parameters	w0,	w1,	…	wd? (d	features)

Training	Data

Maximum	(Conditional)	Likelihood	Estimates

Discriminative	philosophy– Don’t	waste	effort	learning	P(X),	
focus	on	P(Y|X)	– that’s	all	that	matters	for	classification!



Expressing	Conditional	log	Likelihood
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Bad	news:	no	closed-form	solution	to	maximize	l(w)

Good	news:		l(w)	is	concave	function	of	w	
concave	functions	easy	to	maximize
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Concave	function
l(w)

w

A function l(w) is called concave
if the line joining two points
l(w1),l(w2) on the function does
not go above the function on the
interval [w1,w2]

w1 w2

l(w1)

l(w2)

(Strictly)	Concave	functions	have	
a	unique	maximum!

Convex Both	Concave	&	Convex Neither



Optimizing	concave	function
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• Conditional	likelihood	for	Logistic	Regression	is	concave	
• Maximumof	a	concave	function	can	be	reached	by	

Gradient	Ascent	Algorithm

Gradient:

Learning	rate,	η>0
Update	rule:

d

l(w)

w

Initialize:	Pick	w at	random



Gradient	Ascent	for	Logistic	Regression
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Gradient	ascent	rule	for	w0:

=
X

j

"
yj � 1

1 + exp(w0 +
Pd

i wix
j
i )

· exp(w0 +
dX

i

wix
j
i )

#



Gradient	Ascent	for	Logistic	Regression
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• Gradient	ascent	is	simplest	of	optimization	approaches
– e.g.,	Newton	method,	Conjugate	gradient	ascent,	IRLS	(see	Bishop	4.3.3)

Gradient	ascent	algorithm:	iterate	until	change	<	ε

For	i=1,…,d,	

repeat			 Predict	what	current	weight
thinks	label	Y	should	be



That’s	all	M(C)LE.	How	about	M(C)AP?

37

• Define	priors	on	w
– Common	assumption:	Normal	distribution,	

zero	mean,	identity	covariance
– “Pushes”	parameters	towards	zero

• M(C)AP	estimate

Still	concave	objective!

Zero-mean	Gaussian	prior

Penalizes	large	weights



M(C)AP	– Gradient

• Gradient
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Zero-mean	Gaussian	prior

Same	as	before

Extra	term	Penalizes	large	weights



M(C)LE	vs.	M(C)AP
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• Maximum	conditional	likelihood	estimate

• Maximum	conditional	a	posteriori	estimate



Logistic	Regression	for	more	than	2	classes
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• Logistic	regression	in	more	general	case,	where	Y	 {y1,…,yK}

for	k<K

for	k=K	(normalization,	so	no	weights	for	this	class)

Predict

Is	the	decision	boundary	still	linear?

2


