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Regression algorithms

Training data ‘ Learning algorithm

Linear Regression

‘ Prediction rule

f that predicts/estimates
output Y given input X

Regularized Linear Regression — Ridge regression, Lasso

Polynomial Regression
Gaussian Process Regression



Recap: Linear Regression

fn — arg_ Z (f(Xz) — Y})Q Least Squares Estimator
T .
1=1

Fr - Class of Linear functions

Uni-variate case:

f(X) =01+ poX

Multi-variate case:

P - intercept‘[

. FOO

f(X)=f(xV .. x®)=p,x1) 4 3,x(2) —|—---—|—6pX(P)

:Xﬁ where X:[X(l)X(p>], 6:[616P]T



Recap: Least Squares Estimator
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Recap: Least Square solution satisfies Normal
Equations

(ATA)B=ATY

pxp pxl p x1

if (AT A)isinvertible,

8= (ATA) 1ATY fi(x)=x8

When is (ATA) invertible ? -
Recall: Full rank matrices are invertible. Whatisrank of (A~ A)?

Rank(ATA) = numberof non-zero eigenvalues of (ATA)
<= min(n,p)since Aisnxp

So, rank(ATA) =:r <=min(n,p)
Not invertibleifr< p (e.g. n < pi.e. high-dimensional setting)



Regularized Least Squares

What if (ATA) is notinvertible ?

r equations, p unknowns—underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changesin inputdon’t
translate to large changesin output)

P — Ridge Regression
Buap = arg min 'Zl(yz- — X;8)% + \|8II5 (12 penalty)
1=
=argmin (A5 -Y)T(AF-Y) +AlISII3 A0

Buap = (ATA +AD)'ATY
s (ATA + )\I) invertible ?



Understanding regularized Least Squares

mﬁin(Aﬁ ~Y)I(AB-Y) 4 Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression:

pen(8) = [181I5

Bs with constant J(B)
(level sets of J(B))

,32 f Unregularized Least Squares solution
A

f3s with constant I2 norm
(level sets of pen(fp))

\f »
\/ B




Regularized Least Squares

What if (ATA) is notinvertible ?

r equations, p unknowns—underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of b (small changes ininputdon’t
translate to large changesin output)

3 R Ridge Regression
Buae = argmin 3 (¥; = X;8)” + A1813 Cenalt

(12 penalty)
1=1
~ o A>0
Bmap = arg mﬂln N (Y — XiB)2 + MBI Lasso
=1 (11 penalty)

Many parametervalues can be zero— manyinputs are irrelevantto
predictionin high-dimensional settings



Regularized Least Squares

What if (ATA) is notinvertible ?

r equations, p unknowns—underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of  (small changesin inputdon’t
translate to large changesin output)

3 R Ridge Regression
Buap = argmin 3 (¥; — X;6)° + Al6]3 S nalt

] (12 penalty)
1=
N A>0
Bumar = argmin Y (Y; — X;8)% + |81 Lasso
fi=1 (11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages
available)



Ridge Regression vs Lasso
min(AS = Y)T(AB —Y) + Apen(8) = min J(8) + Apen(5)

Ridge Regression: Lasso: Ideally 10 penalty,

pen(8) = ||38|I3 pen(3) = ||8||1 but optimization
becomes non-convex

Bs with constant J(B)
(level sets of J(B))

Bs with B2 s with

Bs with
constant constant constant
12 norm 11 norm 10 norm

. N

Lasso (1 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates,

interpretable solution! 10



Lasso vs Ridge

Lasso Coefficients

Ridge Coefficients




Regularized Least Squares — connection
to MLE and MAP
(Model-based approaches)



Least Squares and M(C)LE

Intuition:Signal plus (zero-mean) Noise model F(X) = Xﬁ*
Y =f(X)+e=X3"+e 2

e ~N(0,0°T) Y ~ N(XB*,c°D)

BuLe = arg maxlog p({Yi}r_118, 0%, { X} )
\ ]

|

Conditional log likelihood

n
=argmin 3, (X8 - Y;)? =33
1=1

Least Square Estimate is same as Maximum Conditional Likelihood Estimate
under a Gaussian model ! 13



Regularized Least Squares and M(C)AP

What if (ATA) is notinvertible ?

Buap = arg max 10g p({Yi}p_118,0°, {X;};-+1og p(8)
\ J J
Y Y
Conditional log likelihood log prior

|) Gaussian Prior

B8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬂin S = Xi8)% + MIBI5 Ridge Regression
=1
constant(c?, 72)

EMAP —(A'A+X)TAY

14



Regularized Least Squares and M(C)AP

What if (ATA) is notinvertible ?

Buap = arg max 10g p({Yi}p_118,0°, {X;};-+1og p(8)
\ J J
Y Y
Conditional log likelihood log prior

|) Gaussian Prior

B8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬂin S = Xi8)% + MIBI5 Ridge Regression
=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small”

15



Regularized Least Squares and M(C)AP

What if (ATA) is notinvertible ?

Buap = arg max 10g p({Yi}p_118,0°, {X;};-+1og p(8)
\ J J
Y Y
Conditional log likelihood log prior

II) Laplace Prior

3; %4 Laplace(0,1) p(B;) o e~ 1Bil/t
Buar = arg min > (¥ - XiB8)* + AI8l1 Lasso

1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 3

16



Beyond Linear Regression

Polynomial regression
Regression with nonlinear features

17



Polynomial Regression

degree m

/

Univariate (1-dim) (X)) = Bg + 81X + B2X? + - - - + B X™ = X3
case:

where X = [1 X X2Xm] Bz[ﬁlﬁm]T

3= (ATA) 1ATY o (ATA+A)'ATY (X)) = X3
1 X7 X7 ... X7
where A — : . :

1 X, X2 ... X

Multivariate (p-dim) f(X) = Bo+ 51X(1) + 52X(2) I BpX(p)

case: p p . | p p p | |

+ Z Z Bin(Z)X(J) 4 S: S: S: x (&) x () x (k)
i=1 j=1 i=1 j=1 k=1

+ ...terms up to degree m 18



Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1
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What is the right order?
ﬁ N
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Bias — Variance Tradeoff

3 Independenttraining datasets

Large bias, Small variance — poor approximation but robust/stable
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Bias — Variance Decomposition

Later in the course, we will show that
E[(f(X) - f*(X))?] = Bias? + Variance
Bias = E[f(X)] — f*(X) ..... How far is the model from “true function”

Variance = E[(f(X) - E[f(X)])?] ..... How variable/stable is the model

21



Effect of Model Complexity

Complexity of F~



Effect of Model Complexity

Complexity of ~



Regression with basis functions

f(X) =30 Bi¢;(X)
| \ J

1
Basis coefficients ‘l’ Basis functions (Linear combinations yield meaningful spaces)

Polynomial Basis Fourier Basis

o (X) #0(X)

\/ '

¢1(X)/ $1(X) o~
A N
¢2(X)\/ $o(X) ~ N
N VOV

Good representation for
periodic functions

Po(X)

Wavelet Basis

$1(X)

NV

P2(X)

\V4 \Y4

/\/\/\
\V4 \4

Good representation for local
functions 24



Regression with nonlinear features

| $o(X)
F(X) =Yg BjX7 = Yo Bi¢;(X) $1(X)
\_'_’
Weight of Nonlinear /

each feature features \/ d>(X)

In general, use any nonlinear features

e.g. X, log X, 1/X, sin(X), ...

8= (ATA)O—rlATY A — ¢Eo(X1) ¢1(X1) -.-.-.ébm(in)_
(ATA i )\I)_lATY _gbO(Xn) ¢1(Xn) SR ¢m(Xn>_
fn(X) = X3 X = [po(X) ¢1(X) .. dm(X)] 2




Regression to Classification

Regression

—> Y = Age of a subject

. . X =Brain Scan
Classification

Can we predict the “probability”
of class label being Anemic or
Healthy — a real number — using
Anemic cell regression methods?
Healthy cell
But output (probability) needs to
bein [0,1]

o : . 26
X = Cell Image Y = Diagnosis



Logistic Regression

Assumes the followingfunctional form for P(Y | X):

1

Logistic function appliedto a linear

function of the data T
N 07
.2 0.6

Logistic B o

function 1 &

(or Sigmoid): 1 4+ exp(—=z)

Features can be discrete or continuous! z



Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1
1+ exp(wo —+ Zz wZXZ)

P(Y =0|X) =

Decision boundary: Note - Labels are 0,1

0
P(Y =0|X) = P(Y =1|X)
1
1
Wwo + szXz 2 0
i 0

(Linear Decision Boundary)

28



Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1

P(Y =0|X)=
( 0| ) 1—|—exp(w0—|—zzw1X,&)

exp(wo + Y, wi X;)

= P(Y =1|X)= T expluwg £ 5 wi X1}

P(Y = 1]|X)
P(Y = 0|X)

=

= exp(wy + Z w; X;) 1

o/\V

1
) 0

29



Training Logistic Regression
How to learn the parameters wy, Wy, ... Wy? (d features)
Training Data  {(x,yUyn_, xO0) = (x©, ... x0)
Maximum Likelihood Estimates

n . .
WyLE = argmax 1] P(x vy | w)
=1

But there is a problem ...

Don’t have a model for P(X) or P(X]Y) — only for P(Y | X)

30



Training Logistic Regression
How to learn the parameters wy, Wy, ... W, ? (d features)
Training Data  {(x@),y()n_, X0 = (xP, ... ,Xcgj))

Maximum (Conditional) Likelihood Estimates

n . .
WNCOLE = arg max 1] P(Y(3)|X(3),w)
j=1

Discriminative philosophy— Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!

31



Expressing Conditional log Likelihood

1
1+ exp(wg + >; w; X;)

exp(wo + > w; X;)
1 + exp(wo + >; wiX;)

P(Y =0|X,w) =

P(Y =1|X,w) =

I(w) = In HP(yj|Xj,W)
J

| d | d .
— Z y! (wg + Z’wz’x‘g) —In(1 + exp(wo + Zwixi))
j 2 i

Bad news: no closed-form solution to maximize /(w)

Good news: /(w) is concave function of w
concave functions easy to maximize

32



Concave function

A function I(w) is called concave
if the line joining two points
l(w,),l(w,) on the function does
not go above the function on the
interval [wy,ws,]

(Strictly) Concave functions have

Convex

a unigue maximum/!

e

Both Concave & Convex Neither

33



Optimizing concave function

* Conditionallikelihood for Logistic Regressionis concave
 Maximum of a concave function can be reached by

Gradient Ascent Algorithm

Initialize: Pick w at random

Gradient:
l(w)
ol(w ol(w
Val(w) = [2AW) 0wy,
871)0 Owg
L i te, N>0
Update rule: / sarnng rate >
Aw = nVwl(w)

wz-(t_l_l) — w-(t) +n——7

(]

34



Gradient Ascent for Logistic Regression

Gradient ascent rule for wy:

U%Hﬂ)ewﬁﬂ-kna“w)

. d . d .
[(w) = Z [yj(wg 4 szazg) —In(1 4 exp(wg + szafg))}

.

J

d

MWZZPj ld,ijM+ZW@]

)

\ )

N

wi T w§? + 93l - P =1 %, w®)]

35



Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate untilchange < ¢

wy e wg? + 3y - POV =1, w)]
J

Fori=1,...,d,

wi(t_l_l) — wi(t)—l—nZa;g[yj—P(Yj = 1| x7, w(t))]
] l l

|

Predict what current weight

repeat ,
thinks label Y should be

* Gradientascent is simplest of optimization approaches
— e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

36



That’s all M(C)LE. How about M(C)AP?

p(w|Y,X) o« PY [X,w)p(w)

* Definepriorsonw

—w?
— Common assumption:Normal distribution, 1 wﬁ
A . p(w) =[] e 2x
zero mean, identity covariance i RV 2T

— “Pushes” parameterstowards zero Zero-mean Gaussian prior

 M(C)AP estimate

mn
e J | xJ
w’ = arg maxiIn p(w) .Hl P(y) | x),w)
]:

S¥

n . . w2
*
w* = arg max Z In P(y/ | x7,w) — Z 2;2
71=1 lz=1 ,
Y

Penalizes large weights

Still concave objective!

37



M(C)AP — Gradient

. —w?2
* Gradient p(w) =TI 12 i
S RV2T
o0 ik Pl wd Zero-mean Gaussian prior
In{p(w) [] PG/ | x7,w)

9 9 n o

71 <]
S, Inp(w) + w0, In L—Hl P(y’ | x ,W)J
WIS =1

Same as before
L) X

Extraterm Penalizes large weights




M(C)LE vs. M(C)AP

e Maximum conditional likelihood estimate

n
* __ J | «J
w* = argmaxin LH1P(y | x ,w)]

w,i(t_l_l) — wi(t) —I—UZQ:;Z[yj —P(Y =1| x7, w(t))]
J

* Maximum conditional a posteriori estimate

n
* __ J | ~J
w* = argmaxin [p(w) .Hl P(y | x ,w)]
J:

wi™ w4y {:zwz-(“ + Yl — P(y =1, w<t>>]}
J

39



Logistic Regression for more than 2 classes

* Logistic regression in more general case, where Y &{yy,...,Y«!

for k<K

P(Y = ) = - Pro Sy i X0

1+ Zf( 11 eXD(’ij + Zz 1 ]zX )

for k=K (normalization, so no weights for this class)

1
1+ Y5 exp(wjo + S0 wjiX;)

P(Y = yi|X) =

Predict f*(z) = arg max P(Y = y|X = x)
=y

Is the decision boundary still linear?

40



