
Reinforcement learning (RL)

10-701

Machine Learning

Markov decision process (MDP) with

actions

Graduate

student

20

Asst. prof

40

Tenured

prof.

100

Google

200

On the

street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action

B

0.6

0.1

0.1

0.8

Value computation
• An obvious question for such models is what is

combined expected value for each state

• What can we expect to earn over our life time if we

become Asst. prof.?

• What if we go to industry?

Before we answer this question, we need to define a

model for future rewards:

• The value of a current award is higher than the value

of future awards

 - Inflation, confidence

 - Example: Lottery

Discounted rewards

• The discounted rewards model is specified using a

parameter 

• Total rewards = current reward +

  (reward at time t+1) +

 2 (reward at time t+2) +

 ………….

 k (reward at time t+k) +

 infinite sum

Discounted awards

• The discounted award model is specified using a

parameter 

• Total awards = current award +

  (award at time t+1) +

 2 (award at time t+2) +

 ………….

 k (award at time t+k) +

 infinite sum

Converges if 0<<1

Determining the total rewards in a

state

• Define J*(si) = expected discounted sum of rewards when

starting at state si

• How do we compute J*(si)?

))(*)(*)(*(

)(*

2211 niniii

ii

sJpsJpsJpr

XrsJ









How can we solve this?

Factors expected pay

for all possible

transitions for step i

Iterative approaches
• Solving in closed form is possible, but may be time consuming.

• It also doesn’t generalize to non-linear models

• Alternatively, this problem can be solved in an iterative manner

• Lets define Jt(si) as the expected discounted rewards after k steps

• How can we compute Jt(si)?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

Iterative approaches

• Solving in closed form is possible, but may be time

consuming.

• Alternatively, this problem can be solved in an iterative

manner

• Lets define Jk(si) as the expected discounted awards after k

steps

• How can we compute Jk(si)?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

We know how to solve this!

Lets fill the dynamic programming table

But wait …

This is a never ending task!

When do we stop?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

Remember, we have a converging function

We can stop when |Jt-1(si)- J
t(si)| < 

Infinity norm selects maximal element

Example for =0.9

Graduate

student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.2

0.8

0.2

0.1

0.1

1

0.6

0.1

t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

1 20 40 200 0

2 74 87 362 0

3 141 135 493 0

4 209 182 600 0

J2(Gr)=20+0.9*(0.6*20+0.2*40

+0.2*200)

From MDPs to RL

• We still use the same Markov model with rewards and

actions

• But there are a few differences:

 1. We do not assume we know the Markov model

 2. We adapt to new observations (online vs. offline)

• Examples:

 - Game playing

 - Robot interacting with enviroment

 - Agents

RL

• No actions

• With actions

Scenario

• You wonder the world

• At each time point you see a state and a reward

• Your goal is to compute the sum of discounted rewards

for each state

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

Scenario

• You wonder the world

• At each time point you see a state and a reward

• Your goal is to compute the sum of discounted rewards

for each state

• We will denote these by Jest(Si)

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

Discounted rewards: =0.9

• Lets compute the discounted

rewards for each time point:

 t1: 4 + 0.9*0 + 0.92*2 + 0.93*2 = 7.1

 t2: 0 + 0.9*2 + 0.92*2 = 3.4

 t3: 2 + 0.9*2 = 3.8

 t4: 2 + 0 = 2

 t5: 0 = 0

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

State Observations Mean

S1 7.1 7.1

S2 3.4, 2 2.7

S3 3.8 3.8

S4 0 0

Supervised learning for RL

• Type equation here.Observe set of states and rewards:

(s(0),r(0)) …(s(T),r(T))

• For t=0 … T compute discounted sum:

• Compute Jest(si) = (mean of J(t) for t such that s(t) = si)





T

ti

i

ti rtJ ][

i

stst

i
sts

tJ

sJ i







][#

][

][est
][|

We assume that we observe each state frequently enough and

that we have many observations so that the final observations

do not have a big impact on our prediction

Algorithm for supervised learning

1. Initialize Counts(si) = J(si)= Disc(si) = 0

2. Observe a state si and a reward r

3. Counts(si) = Counts(si) + 1

4. Disc(si) = Disc(si) + 1

5. For all states j

 J(sj)= J(sj) + r*Disc(sj)

 Disc(sj) = *Disc(sj)

6. Go to 2

At any time we can estimate J* by setting:

Jest(si)= J(si) / Counts(si)

Running time and space

• Each update takes O(n) where n is the number of states,

since we are updating vectors containing entries for all

states

• Space is also O(n)

1. Convergences to true J* can be proven

2. Can be more efficient by ignoring states for which

Disc() is very low already.

Problems with supervised learning

• Takes a long time to converge

• Does not use all available data

 - We can learn transition probabilities as well!

Certainty-Equivalent (CE) Learning

• Lets try to learn the underlying Markov system’s

parameters

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

S2

R2=?

S1

R1=?

S4

R4=?

S3

R3=?

?

? ?

?

CE learning

• We keep track of three vectors:

• When we visit state si, receive reward r and move to state

sj we do the following:

Counts(s): number of times we visited state s

J(s): sum of rewards from state s

Trans(i,j): number of time we transtiioned from state si to state sj

Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

CE learning

• When we visit state si, receive reward r and move to state

sj we do the following:

Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

Using this we can estimate at any time the following parameters:

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

Example: CE learning

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

s1 s2 s3 s4

s1 0 1

0 0

s2 0 0

0.5 0.5

s3 0 1

0 0

s4 0 0

0 1

State Mean reward

S1 4

S2 1

S3 2

S4 0

Rest(si)

Pest(j|i)

CE learning

We can estimate at any time the following parameters:

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

We now basically have an estimated which we can solve for all

states sk:

)()|()()(j

est

k

j

j

est

k

est

k

est sJsspsrsJ  

CE: Run time and space

Run time

• Updates: O(1)

• Solving MDP:

 - O(n3) using matrix inversion

 - O(n2*#it) when using value iteration

Space

• O(n2) for transition probabilities

Improving CE: One backup

• We do the same updates and estimates as the original

CE:

• But we do not carry out the full value iteration

• Instead, we only update Jest(si) for the current state:

Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

)()|()()(j

est

i

j

j

est

i

est

i

est sJsspsrsJ  

CE one backup: Run time and

space

Run time

• Updates: O(1)

• Solving MDP:

 - O(1) just update current state

Space

• O(n2) for transition probabilities

• Still a lot of memory, but much more efficient

• Can prove convergence to optimal solution

(but slower than CE)

Summary so far

• Three methods

Method Time Space

Supervised learning O(n) O(n)

CE learning O(n2*#it) O(n2)

One backup CE O(1) O(n2)

Temporal difference (TD) learning

• Goal: Same efficiency as one backup CE while much less

space

• We only maintain the Jest array.

• Assume we have Jest(s1) … Jest(sn). If we observe a

transition from state si to state sj and a reward r, we

update using the following rule:

))(()()1()(j

est

i

est

i

est sjrsJsJ  

Temporal difference (TD) learning

• Assume we have Jest(s1) … Jest(sn). If we observe a

transition from state si to state sj and a reward r, we

update using the following rule:

))(()()1()(j

est

i

est

i

est sjrsJsJ  

parameter to determine how much

weight we place on current

observation

We have seen similar update rule before, as always, choosing

 is an issue

Convergence

• TD learning is guaranteed to converge if:

• All states are visited often

• And:



t

t


t

t

2

For example, t=C/t for some constant C would

satisfy both requirements

TD: Complexity and space

• Time to update: O(1)

• Space: O(n)

Method Time Space

Supervised

learning

O(n) O(n)

CE learning O(n2*#it) O(n2)

One backup CE O(1) O(n2)

RL

• No actions

• With actions



Policy learning

• So far we assumed that we cannot impact the outcome

transition.

• In real world situations we often have a choice of actions

we take (as we discussed for MDPs).

• How can we learn the best policy for such cases?

S1, 4

S2, 0 S3, 2 S2, 2 S4, 0

S3, 3 S4, 0 S2, 2 S3, 2

Action A

Action B
S1, 4

Policy learning using CE : Example

s1 s2 s3 s4

s1,A 0 0 1 0

s1,B 0 1

0 0

s2 0 0 2/3 1/3

s3 1/3 1/3 0 1/3

s4 0 1 0 0

State Mean reward

S1 4

S2 4/3

S3 2.5

S4 0

Rest(si)

Pest(j|i,a)

S1, 4

S2, 0 S3, 2 S2, 2 S4, 0

S3, 3 S4, 0 S2, 2 S3, 2

Action A

Action B
S1, 4

Policy learning using CE

We can easily update CE by setting:









 )(),|(max)()(j

est

k

j

j

est

a
k

est

k

est sJasspsrsJ 

We revise our

transition model to

include actions

Policy learning for TD

• TD is model free

• We can adjust TD to learn policies by defining the Q function:

• Q*(si,a) = expected sum of future (discounted) rewards if we start

at state si and take action a

• When we take a specific action a in state si and then transition to

state sj we can update the Q function directly by setting:

))',(max(),()1(),(
'

aSQraSQaSQ j

est

a
ii

est

i

est  

Instead of the Jest vector we maintain the Qest matrix, which is a

rather sparse n by m matrix (n states and m actions)

Choosing the next action

• We can select the action that results in the highest expected sum of

future rewards

• But that may not be the best action. Remember, we are only

sampling from the distribution of possible outcomes. We do not

want to avoid potentially beneficial actions.

• Instead, we can take a more probabilistic approach:

)
)(

),(
exp(

1
)(

tf

asQ

Z
ap i

est



The probability we

will use action a

Decreases as time goes

by and we are more

confident in the model

we learned
Normalizing

constant

Choosing the next action

• Instead, we can take a more probabilistic approach:

• We can initialize Q values to be high to increase the likelihood that

we will explore more options

• It can be shown that Q learning converges to optimal policy

)
)(

),(
exp()(

tf

asQ
ap i

est



What you should know

• Strategies for computing with expected rewards

• Strategies for computing rewards and actions

• Q learning

