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Value computation 
• An obvious question for such models is what is 

combined expected value for each state 

• What can we expect to earn over our life time if we 

become Asst. prof.? 

• What if we go to industry? 

Before we answer this question, we need to define a 

model for future rewards: 

• The value of a current award is higher than the value 

of future awards 

   - Inflation, confidence 

   - Example: Lottery 



Discounted rewards 

• The discounted rewards model is specified using a 

parameter  

• Total rewards = current reward + 

                              (reward at time t+1) + 

                             2 (reward at time t+2) + 

                             …………. 

                             k (reward at time t+k) + 

                               

                              infinite sum 



Discounted awards 

• The discounted award model is specified using a 

parameter  

• Total awards = current award + 

                              (award at time t+1) + 

                             2 (award at time t+2) + 

                             …………. 

                             k (award at time t+k) + 

                               

                              infinite sum 

 

Converges if 0<<1 

 



Determining the total rewards in a 

state  

• Define J*(si) = expected discounted sum of rewards when 

starting at state si 

• How do we compute J*(si)? 
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How can we solve this? 

Factors expected pay 

for all possible 

transitions for step i 



Iterative approaches 
• Solving in closed form is possible, but may be time consuming. 

• It also doesn’t generalize to non-linear models 

• Alternatively, this problem can be solved in an iterative manner 

• Lets define Jt(si) as the expected discounted rewards after k steps 

• How can we compute Jt(si)? 
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Iterative approaches 

• Solving in closed form is possible, but may be time 

consuming. 

• Alternatively, this problem can be solved in an iterative 

manner 

• Lets define Jk(si) as the expected discounted awards after k 

steps 

• How can we compute Jk(si)? 
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We know how to solve this! 

Lets fill the dynamic programming table 

 

But wait … 

This is a never ending task! 



When do we stop? 
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Remember, we have a converging function 

We can stop when |Jt-1(si)- J
t(si)| <   

Infinity norm selects maximal element 



Example for =0.9 
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t Jt(Gr) Jt(P) Jt(Goo) Jt(D) 

1 20 40 200 0 

2 74 87 362 0 

3 141 135 493 0 

4 209 182 600 0 

J2(Gr)=20+0.9*(0.6*20+0.2*40

+0.2*200) 



From MDPs to RL 

• We still use the same Markov model with rewards and 

actions 

• But there are a few differences: 

    1. We do not assume we know the Markov model 

    2. We adapt to new observations (online vs. offline) 

• Examples: 

    - Game playing 

    - Robot interacting with enviroment 

    - Agents  



RL 

• No actions 

• With actions 



Scenario 

• You wonder the world 

• At each time point you see a state and a reward 

• Your goal is to compute the sum of discounted rewards 

for each state  

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0 



Scenario 

• You wonder the world 

• At each time point you see a state and a reward 

• Your goal is to compute the sum of discounted rewards 

for each state  

• We will denote these by Jest(Si) 

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0 



Discounted rewards: =0.9 

• Lets compute the discounted 

rewards for each time point: 

    t1: 4 + 0.9*0 + 0.92*2 + 0.93*2 = 7.1 

    t2: 0 + 0.9*2 + 0.92*2       = 3.4 

    t3: 2 + 0.9*2                      = 3.8 

    t4: 2 + 0                            = 2 

    t5: 0                                   = 0                                  

 

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0 

State Observations Mean 

S1 7.1 7.1 

S2 3.4, 2 2.7 

S3 3.8 3.8 

S4 0 0 



Supervised learning for RL 

• Type equation here.Observe set of states and rewards: 

(s(0),r(0)) …(s(T),r(T))  

• For t=0 … T compute discounted sum:  

 

 

• Compute Jest(si) = (mean of J(t) for t such that s(t) = si) 
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We assume that we observe each state frequently enough and 

that we have many observations so that the final observations 

do not have a big impact on our prediction  



Algorithm for supervised learning 

1. Initialize Counts(si) = J(si)= Disc(si) = 0 

2. Observe a state si and a reward r  

3. Counts(si) = Counts(si) + 1 

4. Disc(si) = Disc(si) + 1 

5. For all states j 

         J(sj)= J(sj) + r*Disc(sj) 

         Disc(sj) = *Disc(sj) 

6. Go to 2 

       

At any time we can estimate J* by setting: 

Jest(si)= J(si) / Counts(si) 



Running time and space 

• Each update takes O(n) where n is the number of states, 

since we are updating vectors containing entries for all 

states 

• Space is also O(n) 

1. Convergences to true J* can be proven 

2. Can be more efficient by ignoring states for which 

Disc() is very low already. 



Problems with supervised learning 

• Takes a long time to converge 

• Does not use all available data 

    - We can learn transition probabilities as well! 



Certainty-Equivalent (CE) Learning 

• Lets try to learn the underlying Markov system’s 

parameters 

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0 
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CE learning 

• We keep track of three vectors: 

 

 

 

• When we visit state si, receive reward r and move to state 

sj we do the following: 

Counts(s): number of times we visited state s 

J(s): sum of rewards from state s 

Trans(i,j): number of time we transtiioned from state si to state sj 

 

Counts(si) = Counts(si) +1 

J(si) =J(si) + r 

Trans(i,j) = Trans(i,j) +1 

 



CE learning 

• When we visit state si, receive reward r and move to state 

sj we do the following: 

Counts(si) = Counts(si) +1 

J(si) =J(si) + r 

Trans(i,j) = Trans(i,j) +1 

 

Using this we can estimate at any time the following parameters: 

Rest(si) = J(si)/Counts(si) 

Pest(j|i) = Trans(i,j) / Counts(si) 



Example: CE learning 

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0 

s1 s2 s3 s4 

s1 0 1 
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S1 4 
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CE learning 

We can estimate at any time the following parameters: 

Rest(si) = J(si)/Counts(si) 

Pest(j|i) = Trans(i,j) / Counts(si) 

 

We now basically have an estimated which we can solve for all 

states sk: 
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CE: Run time and space 

Run time 

• Updates: O(1) 

• Solving MDP:  

    - O(n3) using matrix inversion 

    - O(n2*#it) when using value iteration 

 

Space 

• O(n2) for transition probabilities 



Improving CE: One backup 

• We do the same updates and estimates as the original 

CE: 

 

 

 

• But we do not carry out the full value iteration 

• Instead, we only update Jest(si) for the current state: 

Counts(si) = Counts(si) +1 

J(si) =J(si) + r 

Trans(i,j) = Trans(i,j) +1 

Rest(si) = J(si)/Counts(si) 

Pest(j|i) = Trans(i,j) / Counts(si) 
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CE one backup: Run time and 

space 

Run time 

• Updates: O(1) 

• Solving MDP:  

    - O(1) just update current state 

Space 

• O(n2) for transition probabilities 

• Still a lot of memory, but much more efficient 

• Can prove convergence to optimal solution 

(but slower than CE) 



Summary so far 

• Three methods 

Method Time Space 

Supervised learning O(n) O(n) 

CE learning O(n2*#it) O(n2) 

One backup CE O(1) O(n2) 



Temporal difference (TD) learning 

• Goal: Same efficiency as one backup CE while much less 

space 

• We only maintain the Jest array. 

• Assume we have Jest(s1) … Jest(sn). If we observe a 

transition from state si to state sj and a reward r, we 

update using the following rule:  
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Temporal difference (TD) learning 

• Assume we have Jest(s1) … Jest(sn). If we observe a 

transition from state si to state sj and a reward r, we 

update using the following rule:  
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parameter to determine how much 

weight we place on current 

observation 

We have seen similar update rule before, as always, choosing 

 is an issue 



Convergence 

• TD learning is guaranteed to converge if: 

• All states are visited often 

• And: 
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For example, t=C/t for some constant C would 

satisfy both requirements 



TD: Complexity and space 

• Time to update: O(1) 

• Space: O(n) 

Method Time Space 

Supervised 

learning 

O(n) O(n) 

CE learning O(n2*#it) O(n2) 

One backup CE O(1) O(n2) 



RL 

• No actions 

• With actions 

 



Policy learning 

• So far we assumed that we cannot impact the outcome 

transition. 

• In real world situations we often have a choice of actions 

we take (as we discussed for MDPs). 

• How can we learn the best policy for such cases? 

S1, 4 

S2, 0 S3, 2 S2, 2 S4, 0 

S3, 3 S4, 0 S2, 2 S3, 2 

Action A 

Action B 
S1, 4 



Policy learning using CE : Example 

s1 s2 s3 s4 

s1,A 0 0 1 0 

s1,B 0 1 

 

0 0 

s2 0 0 2/3 1/3 

s3 1/3 1/3 0 1/3 

s4 0 1 0 0 

State Mean reward 

S1 4 

S2 4/3 

S3 2.5 

S4 0 

Rest(si) 

Pest(j|i,a) 

S1, 4 

S2, 0 S3, 2 S2, 2 S4, 0 

S3, 3 S4, 0 S2, 2 S3, 2 

Action A 

Action B 
S1, 4 



Policy learning using CE 

We can easily update CE by setting:  
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We revise our 

transition model to 

include actions 



Policy learning for TD 

• TD is model free 

• We can adjust TD to learn policies by defining the Q function: 

• Q*(si,a) = expected sum of future (discounted) rewards if we start 

at state si and take action a  

• When we take a specific action a in state si and then transition to 

state sj we can update the Q function directly by setting: 
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Instead of the Jest vector we maintain the Qest matrix, which is a 

rather sparse n by m matrix (n states and m actions) 



Choosing the next action 

• We can select the action that results in the highest expected sum of 

future rewards 

• But that may not be the best action. Remember, we are only 

sampling from the distribution of possible outcomes. We do not 

want to avoid potentially beneficial actions. 

• Instead, we can take a more probabilistic approach: 
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The probability we 

will use action a 

Decreases as time goes 

by and we are more 

confident in the model 

we learned 
Normalizing 

constant 



Choosing the next action 

• Instead, we can take a more probabilistic approach: 

 

 

 

 

• We can initialize Q values to be high to increase the likelihood that 

we will explore more options 

• It can be shown that Q learning converges to optimal policy 
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What you should know 

• Strategies for computing with expected rewards 

• Strategies for computing rewards and actions 

• Q learning 


