10-701
Machine Learning

Reinforcement learning (RL)

Markov decision process (MDP) with
actions

0.3 Y\

Graduate
0.2 student

Value computation

An obvious question for such models is what is
combined expected value for each state

What can we expect to earn over our life time if we
become Asst. prof.?

What if we go to industry?

Before we answer this question, we need to define a
model for future rewards:

* The value of a current award is higher than the value
of future awards

- Inflation, confidence

- Example: Lottery

Discounted rewards

* The discounted rewards model is specified using a
parameter y

 Total rewards = current reward +
v (reward at time t+1) +
v2 (reward at time t+2) +

vk (reward at time t+k) +

infinite sum

Discounted awards

« The discounted award model is specified using a
parameter y

 Total awards = current award +

vy (award at time t+1) +
v2 (award at time t+2) +

Converges If O<y<1l <) +

infinite sum

Determining the total rewards in a
state

» Define J*(s;) = expected discounted sum of rewards when
starting at state s

. *(5)?
How do we compute J*(s))" Factors expected pay

for all possible
transitions for step |

J*(s) =1 +X
=6 +7(Pid *(81) + Pipd *(S,) +--- pipd *(sy))

How can we solve this?

lterative approaches

Solving in closed form is possible, but may be time consuming.
It also doesn’t generalize to non-linear models

Alternatively, this problem can be solved in an iterative manner
Lets define J(s;) as the expected discounted rewards after k steps
How can we compute Ji(s;)?

Jl(Si) =1
Jz(si) =1 "‘7(2 pi,k‘]l(sk)j

JHl(Si) =T +7/(Z pi,k"]t(sk)j

lterative approaches

. We know how to solve this!

. Lets fill the dynamic programming table

Lets detine J¥(s;) as the expected discounted awards after K
steps

But wait ...

This Is a never ending task!

J 2(Si) =1 "‘?/(Z pi,k‘]l(sk)]

Jt+1(8i) =T +7/(Z pi,th(Sk)j

When do we stop?
Jl(si):ri

JZ(Si) =1 "‘7/(2 pi,kjl(sk)j

JHI(Si) =1 "‘7/(2 pi,k‘]t(sk)j

Remember, we have a converging function

We can stop when |Jti(s)- Ji(s)|,, < €

\

Infinity norm selects maximal element

Example for y=0.9

A

Graduate

0.2 Asst. prof
40

J2(Gr)=20+0.9%(0.6*20+0.2*40
+0.2*200) |

student
20

)\ 4

|

2
t Jt(G/) J(P) | J{(Goo) | (D) 0
1 |20 / 40 |200 |0 Google
2 (74" |87 362 |0

200
3 (141 |135 [493 |0
4 |209 182 |600 |O 0.9

From MDPs to RL

« We still use the same Markov model with rewards and
actions

« But there are a few differences:
1. We do not assume we know the Markov model
2. We adapt to new observations (online vs. offline)
« Examples:
- Game playing
- Robot interacting with enviroment
- Agents

« No actions
 With actions

RL

Scenario

* You wonder the world
« At each time point you see a state and a reward

* Your goal is to compute the sum of discounted rewards
for each state

Scenario

You wonder the world
At each time point you see a state and a reward

Your goal is to compute the sum of discounted rewards
for each state

We will denote these by J¢<(S))

Discounted rewards: y=0.9

» Lets compute the discounted
rewards for each time point:

t1: 4+ 0.9*0 + 0.92*2 + 0.9%*2 =7.1
t2: 0 + 0.9%2 + 0.92*2 =34

t3: 2 + 0.9*2 = 3.8
t4:2+0 =2

t5: 0 =0

State | Observations Mean
S; 7.1 7.1
S, 34,2 2.7
S, 3.8 3.8
S, 0 0

Supervised learning for RL

e Type equation here.Observe set of states and rewards:
(8(0),r(0)) ...(s(T),r(T))

 Fort=0... T compute discounted sum:

J[t] =Zy”ﬁ

« Compute J®sY(s;) = (mean of J(t) for t such that s(t) = s,)
> JIt]

Jest[s.] = ==
#s[t] =s,

We assume that we observe each state frequently enough and
that we have many observations so that the final observations
do not have a big impact on our prediction

a bk wbhE

6

Algorithm for supervised learning

Initialize Counts(s;) = J(s;)= Disc(s;)) =0
Observe a state s, and a reward r
Counts(s;) = Counts(s;) + 1
Disc(s;) = Disc(s)) + 1
For all states |

J(s))= J(s)) + r*Disc(s;)

Disc(s;) = y*Disc(s))
.Goto 2

At any time we can estimate J* by setting:
Jesi(s))= J(s;) / Counts(s;)

Running time and space

« Each update takes O(n) where n is the number of states,
since we are updating vectors containing entries for all

states
« Space is also O(n)

1. Convergences to true J* can be proven

2. Can be more efficient by ignoring states for which
Disc() is very low already.

Problems with supervised learning

« Takes a long time to converge
* Does not use all available data
- We can learn transition probabilities as well!

Certainty-Equivalent (CE) Learning

* Lets try to learn the underlying Markov system’s
parameters

CE learning

« We keep track of three vectors:
Counts(s): number of times we visited state s

J(s): sum of rewards from state s
Trans(i,)): number of time we transtiioned from state s; to state s;

* When we visit state s;, receive reward r and move to state
s; we do the following:

Counts(s;) = Counts(s;) +1
J(s) =d(s) +r1

Trans(i,j) = Trans(i,)) +1

CE learning

* When we visit state s;, receive reward r and move to state
s; we do the following:

Counts(s;) = Counts(s;) +1
J(s) =J(s) +r1
Trans(i,j) = Trans(i,)) +1

Using this we can estimate at any time the following parameters:
Rest(si) — J(Si)/COUntS(si)
Pest(j|i) = Trans(i,j) / Counts(s))

Example: CE learning

Res(s)
State Mean reward
S; 4
S, 1
S, 2
S, 0

Pesi(j)
sl |s2 |s3 |s4
sl|0 1 0 0
s2 |0 0 0.5 |05
s3|0 1 0 0
s4 |0 0 0 1

CE learning

We can estimate at any time the following parameters:
Rest(si) — J(Si)/COUntS(Si)
Pest(j|i) = Trans(i,j) / Counts(s)

We now basically have an estimated which we can solve for all
states s:

I¥(s) =r (s) +7 2 p™(s; 183 (s))
J

CE: Run time and space

Run time
« Updates: O(1)
« Solving MDP:
- O(n3) using matrix inversion
- O(n?*#it) when using value iteration

Space
« O(n?) for transition probabilities

Improving CE: One backup

We do the same updates and estimates as the original
CE:

Counts(s;) = Counts(s;) +1
J(s) =J(s) +1
Trans(i,j) = Trans(i,)) +1

Rest(si) = J(Si)/COUntS(Si)
Pesi(j|i) = Trans(i,j) / Counts(s))

But we do not carry out the full value iteration
Instead, we only update Jes(s;) for the current state:

J®(s) = I’eSt(Si)+7/Z peSt(Sj |Si)JeSt(Sj)

CE one backup: Run time and

space
Run time
« Updates: O(1)
« Solving MDP:
- O(1) just update current state
Space

« O(n?) for transition probabilities

e Still a lot of memory, but much more efficient

« Can prove convergence to optimal solution
(but slower than CE)

Summary so far

Three methods

Method Time Space
Supervised learning | O(n) O(n)
CE learning O(n*#it) O(n?)
One backup CE 0O(1) O(n?)

Temporal difference (TD) learning

« Goal: Same efficiency as one backup CE while much less
space
« We only maintain the Jést array.

* Assume we have J®Y(s,) ... J®Y(s,). If we observe a
transition from state s; to state s; and a reward r, we

update using the following rule:

Jest (Si) _ (1—0[)J est (Si) _|_a(r _|_7/jest (Sj))

Temporal difference (TD) learning

* Assume we have J®Y(s,) ... J®Y(s,). If we observe a
transition from state s; to state s; and a reward r, we
update using the following rule:

Jest (Si) _ (1—0[)J est (Si) +a(r _|_7/jest (Sj))

/

parameter to determine how much
weight we place on current
observation

We have seen similar update rule before, as always, choosing
o IS an issue

Convergence

« TD learning is guaranteed to converge If:
 All states are visited often

« And: Z“t — o
t

Y ol <o
t

For example, a,=C/t for some constant C would
satisfy both requirements

TD: Complexity and space

« Time to update: O(1)
« Space: O(n)

Method Time Space
Supervised O(n) O(n)
learning

CE learning O(n?*#it) | O(n?)
One backup CE | O(1) O(n?)

« No actions
 With actions

\/

RL

Policy learning

« So far we assumed that we cannot impact the outcome
transition.

* |n real world situations we often have a choice of actions
we take (as we discussed for MDPSs).

« How can we learn the best policy for such cases?

Action A
()2
I R D D)

Action B

Policy learning using CE : Example

Pesi(jli,a)
RE(s) sl |Ss2 s3 s4
State Mean reward s1,A |0 0 1 0
S, 4 sl,B |0 1 0) 0
S, 4/3 s2 0 0 2/3 | 1/3
>3 2.5 s3 |1/3 |13 |0 1/3
S4 0 s4 |0 1 0 0

b G

Policy learning using CE
We can easily update CE by setting:
J=(s) =1 (s) + mg{yz P (s; | 8¢, a)d eSt(S,—)}

We revise our
transition model to
Include actions

Policy learning for TD

TD is model free
We can adjust TD to learn policies by defining the Q function:

Q*(s;,a) = expected sum of future (discounted) rewards if we start
at state s; and take action a

When we take a specific action a in state s; and then transition to
state s; we can update the Q function directly by setting:

Q™ (S;,2) = (1-2)Q™ (S;,a) +a(r; + 7 Max Q™ (S ,a))

Instead of the Jest vector we maintain the Q®stmatrix, which is a
rather sparse n by m matrix (n states and m actions)

Choosing the next action

 We can select the action that results in the highest expected sum of
future rewards

« But that may not be the best action. Remember, we are only
sampling from the distribution of possible outcomes. We do not
want to avoid potentially beneficial actions.

* Instead, we can take a more probabilistic approach:

est
Q7 (s,a)
a)=— —
p()= exp(——— O)
\
Decreases as time goes

The probablllty we by and we are more
will use action a Normalizing confident in the model

constant we |learned

Choosing the next action

Instead, we can take a more probabilistic approach:

QeSt (SI ’ a))
f (1)

p(a) oc exp(—

We can initialize Q values to be high to increase the likelihood that
we will explore more options

It can be shown that Q learning converges to optimal policy

What you should know

« Strategies for computing with expected rewards
« Strategies for computing rewards and actions
* Q learning

