10-701 Machine Learning

Reinforcement learning (RL)

Markov decision process (MDP) with actions

Value computation

- An obvious question for such models is what is combined expected value for each state
- What can we expect to earn over our life time if we become Asst. prof.?
- What if we go to industry?

Before we answer this question, we need to define a model for future rewards:

- The value of a current award is higher than the value of future awards
 - Inflation, confidence
 - Example: Lottery

Discounted rewards

- The discounted rewards model is specified using a parameter γ
- Total rewards = current reward + $\gamma \text{ (reward at time t+1) +}$ $\gamma^2 \text{ (reward at time t+2) +}$ $\dots \dots$ $\gamma^k \text{ (reward at time t+k) +}$

infinite sum

Discounted awards

- The discounted award model is specified using a parameter γ
- Total awards = current award +
 γ (award at time t+1) +
 √² (award at time t+2) +
 Converges if 0<γ<1 <) +

infinite sum

Determining the total rewards in a state

- Define J*(s_i) = expected discounted sum of rewards when starting at state s_i
- How do we compute J*(s_i)?

Factors expected pay for all possible transitions for step *i*

$$J * (s_i) = r_i + \gamma X$$

$$= r_i + \gamma (p_{i1}J * (s_1) + p_{i2}J * (s_2) + \cdots + p_{in}J * (s_n))$$

How can we solve this?

Iterative approaches

- Solving in closed form is possible, but may be time consuming.
- It also doesn't generalize to non-linear models
- Alternatively, this problem can be solved in an iterative manner
- Lets define $J^t(s_i)$ as the expected discounted rewards after k steps
- How can we compute $J^t(s_i)$?

$$J^{1}(S_{i}) = r_{i}$$

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{t}(S_{k})\right)$$

Iterative approaches

- We know how to solve this!
- Lets fill the dynamic programming table
- Lets define $J^{\kappa}(s_i)$ as the expected discounted awards after k steps
- But wait ...

This is a never ending task!

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^t(S_k)\right)$$

When do we stop?

$$J^{1}(S_{i}) = r_{i}$$

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{t}(S_{k})\right)$$

Remember, we have a converging function

We can stop when $|J^{t\text{-}1}(s_i)\text{-}\ J^t(s_i)|_{\infty} < \epsilon$

Infinity norm selects maximal element

Example for γ =0.9

From MDPs to RL

- We still use the same Markov model with rewards and actions
- But there are a few differences:
 - 1. We do not assume we know the Markov model
 - 2. We adapt to new observations (online vs. offline)
- Examples:
 - Game playing
 - Robot interacting with environment
 - Agents

RL

- No actions
- With actions

Scenario

- You wonder the world
- At each time point you see a state and a reward
- Your goal is to compute the sum of discounted rewards for each state

Scenario

- You wonder the world
- At each time point you see a state and a reward
- Your goal is to compute the sum of discounted rewards for each state
- We will denote these by J^{est}(S_i)

Discounted rewards: γ =0.9

 Lets compute the discounted rewards for each time point:

t1:
$$4 + 0.9*0 + 0.9^{2*2} + 0.9^{3*2} = 7.1$$

t2: $0 + 0.9*2 + 0.9^{2*2} = 3.4$
t3: $2 + 0.9*2 = 3.8$
t4: $2 + 0 = 2$
t5: $0 = 0$

State	Observations	Mean
S ₁	7.1	7.1
S ₂	3.4, 2	2.7
S_3	3.8	3.8
S ₄	0	0

Supervised learning for RL

- Type equation here. Observe set of states and rewards: (s(0),r(0)) ...(s(T),r(T))
- For t=0 ... T compute discounted sum:

$$J[t] = \sum_{i=t}^{T} \gamma^{i-t} r_i$$

• Compute $J^{est}(s_i) = (mean of J(t) for t such that <math>s(t) = s_i)$

$$Jest[s_i] = \frac{\sum_{t|s[t]=s_i} J[t]}{\#s[t]=s_i}$$

We assume that we observe each state frequently enough and that we have many observations so that the final observations do not have a big impact on our prediction

Algorithm for supervised learning

- 1. Initialize Counts(s_i) = $J(s_i)$ = Disc(s_i) = 0
- 2. Observe a state s_i and a reward r
- 3. $Counts(s_i) = Counts(s_i) + 1$
- 4. $Disc(s_i) = Disc(s_i) + 1$
- 5. For all states j $J(s_j) = J(s_j) + r^*Disc(s_j)$ $Disc(s_j) = \gamma^*Disc(s_j)$
- 6. Go to 2

At any time we can estimate J^* by setting: $J^{est}(s_i) = J(s_i) / Counts(s_i)$

Running time and space

- Each update takes O(n) where n is the number of states, since we are updating vectors containing entries for all states
- Space is also O(n)
 - 1. Convergences to true J* can be proven
 - 2. Can be more efficient by ignoring states for which Disc() is very low already.

Problems with supervised learning

- Takes a long time to converge
- Does not use all available data
 - We can learn transition probabilities as well!

Certainty-Equivalent (CE) Learning

 Lets try to learn the underlying Markov system's parameters

CE learning

We keep track of three vectors:

```
Counts(s): number of times we visited state s
```

J(s): sum of rewards from state s

Trans(i,j): number of time we transtiloned from state si to state si

 When we visit state s_i, receive reward r and move to state s_i we do the following:

```
Counts(s_i) = Counts(s_i) +1

J(s_i) = J(s_i) + r
Trans(i,j) = Trans(i,j) +1
```

CE learning

 When we visit state s_i, receive reward r and move to state s_i we do the following:

```
Counts(s_i) = Counts(s_i) +1
J(s_i) = J(s_i) + r
Trans(i,j) = Trans(i,j) +1
```

Using this we can estimate at any time the following parameters:

```
R^{est}(s_i) = J(s_i)/Counts(s_i)

P^{est}(j|i) = Trans(i,j) / Counts(s_i)
```

Example: CE learning

Pest(j|i)

 $R^{est}(s_i)$

State	Mean reward
S ₁	4
S ₂	1
S ₃	2
S ₄	0

	s1	s2	s3	s4
s1	0	1	0	0
s2	0	0	0.5	0.5
s3	0	1	0	0
s4	0	0	0	1

CE learning

We can estimate at any time the following parameters:

$$R^{est}(s_i) = J(s_i)/Counts(s_i)$$

$$P^{est}(j|i) = Trans(i,j) / Counts(s_i)$$

We now basically have an estimated which we can solve for all states s_k:

$$J^{est}(s_k) = r^{est}(s_k) + \gamma \sum_j p^{est}(s_j \mid s_k) J^{est}(s_j)$$

CE: Run time and space

Run time

- Updates: O(1)
- Solving MDP:
 - O(n³) using matrix inversion
 - O(n²*#it) when using value iteration

Space

O(n²) for transition probabilities

Improving CE: One backup

 We do the same updates and estimates as the original CE:

```
\begin{aligned} &\text{Counts}(s_i) = \text{Counts}(s_i) + 1 \\ &J(s_i) = J(s_i) + r \\ &\text{Trans}(i,j) = \text{Trans}(i,j) + 1 \end{aligned} \qquad \begin{aligned} &\text{Rest}(s_i) = J(s_i) / \text{Counts}(s_i) \\ &\text{Pest}(j|i) = \text{Trans}(i,j) / \text{Counts}(s_i) \end{aligned}
```

- But we do not carry out the full value iteration
- Instead, we only update Jest(si) for the current state:

$$J^{est}(s_i) = r^{est}(s_i) + \gamma \sum_j p^{est}(s_j \mid s_i) J^{est}(s_j)$$

CE one backup: Run time and space

Run time

- Updates: O(1)
- Solving MDP:
 - O(1) just update current state

Space

- O(n²) for transition probabilities
 - Still a lot of memory, but much more efficient
 - Can prove convergence to optimal solution (but slower than CE)

Summary so far

Three methods

Method	Time	Space
Supervised learning	O(n)	O(n)
CE learning	O(n ² *#it)	O(n ²)
One backup CE	O(1)	O(n ²)

Temporal difference (TD) learning

- Goal: Same efficiency as one backup CE while much less space
- We only maintain the J^{est} array.
- Assume we have J^{est}(s₁) ... J^{est}(s_n). If we observe a transition from state s_i to state s_j and a reward r, we update using the following rule:

$$J^{est}(s_i) = (1-\alpha)J^{est}(s_i) + \alpha(r + \gamma j^{est}(s_i))$$

Temporal difference (TD) learning

Assume we have J^{est}(s₁) ... J^{est}(s_n). If we observe a transition from state s_i to state s_j and a reward r, we update using the following rule:

$$J^{est}(s_i) = (1 - \alpha)J^{est}(s_i) + \alpha(r + \gamma j^{est}(s_j))$$

parameter to determine how much weight we place on current observation

We have seen similar update rule before, as always, choosing α is an issue

Convergence

- TD learning is guaranteed to converge if:
- All states are visited often

• And:
$$\sum_{t} \alpha_{t} = \infty$$
$$\sum_{t} \alpha_{t}^{2} < \infty$$

For example, α_t =C/t for some constant C would satisfy both requirements

TD: Complexity and space

• Time to update: O(1)

• Space: O(n)

Method	Time	Space
Supervised learning	O(n)	O(n)
CE learning	O(n ² *#it)	O(n ²)
One backup CE	O(1)	O(n ²)

RL

- No actions √
- With actions

Policy learning

- So far we assumed that we cannot impact the outcome transition.
- In real world situations we often have a choice of actions we take (as we discussed for MDPs).
- How can we learn the best policy for such cases?

Policy learning using CE: Example

Rest(s_i)

State	Mean reward
S ₁	4
S ₂	4/3
S_3	2.5
S ₄	0

Pest(j|i,a)

	s1	s2	s3	s4
s1,A	0	0	1	0
s1,B	0	1	0	0
s2	0	0	2/3	1/3
s3	1/3	1/3	0	1/3
s4	0	1	0	0

Policy learning using CE

We can easily update CE by setting:

$$J^{est}(s_k) = r^{est}(s_k) + \max_{a} \left[\gamma \sum_{j} p^{est}(s_j | s_k, a) J^{est}(s_j) \right]$$
We revise our transition model to

include actions

Policy learning for TD

- TD is model free
- We can adjust TD to learn policies by defining the Q function:
- Q*(s_i,a) = expected sum of future (discounted) rewards if we start at state s_i and take action a
- When we take a specific action a in state s_i and then transition to state s_i we can update the Q function directly by setting:

$$Q^{est}(S_i, a) = (1 - \alpha)Q^{est}(S_i, a) + \alpha(r_i + \gamma \max_{a'} Q^{est}(S_j, a'))$$

Instead of the J^{est} vector we maintain the Q^{est} matrix, which is a rather sparse n by m matrix (n states and m actions)

Choosing the next action

- We can select the action that results in the highest expected sum of future rewards
- But that may not be the best action. Remember, we are only sampling from the distribution of possible outcomes. We do not want to avoid potentially beneficial actions.
- Instead, we can take a more probabilistic approach:

Choosing the next action

Instead, we can take a more probabilistic approach:

$$p(a) \propto \exp(-\frac{Q^{est}(s_i, a)}{f(t)})$$

- We can initialize Q values to be high to increase the likelihood that we will explore more options
- It can be shown that Q learning converges to optimal policy

What you should know

- Strategies for computing with expected rewards
- Strategies for computing rewards and actions
- Q learning