Generalization and Model Selection The Story of Empirical Risk vs True Risk

Instructor: Pradeep Ravikumar

Co-Instructor: Ziv Bar-Joseph

Machine Learning 10-701

Overview

- 1. True risk vs. empirical risk
- 2. Improving empirical risk minimization
- 3. Model selection (which requires estimating true risk of estimators)
- 4. Estimating true risk of estimators
- 5. Analyzing generalization error via true risk

1. TRUE RISK VS EMPIRICAL RISK

True Risk vs. Empirical Risk

<u>True Risk</u>: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Expected performance on a random test point (X,Y)

True Risk vs. Empirical Risk

<u>True Risk</u>: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Expected performance on a random test point (X,Y)

Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples $\frac{1}{n}\sum_{i=1}^n \mathbf{1}_{f(X_i)\neq Y_i}$ Regression – Average Squared Error $\frac{1}{n}\sum_{i=1}^n (f(X_i)-Y_i)^2$

Some quick notation

True Risk :
$$R(f) := \mathbb{E}(\ell(f(X), Y))$$

Empirical Risk given data D : $\widehat{R}_D(f) := \frac{1}{|D|} \sum_{i \in D} \ell(f(X_i), Y_i)$

True Risk vs Empirical Risk

- So we minimize with respect to empirical risk
- And evaluate with respect to true risk

- Is there any danger to this mismatch?
 - Overfitting!!

Overfitting

Is the following predictor a good one?

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$$

What is its empirical risk? (performance on training data) zero!

What about true risk?

>> zero

Will predict very poorly on new random test point:

Large generalization error!

Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (0-NN classifier)

Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to k-1)

Overfitting: Effect of discrepancy between empirical and true risks

If we allow very complicated predictors, we could overfit the training data.

Questions

- So, Empirical risk minimization (ERM) might "overfit" when the model complexity is high, due to mismatch between empirical risk and true risk
- But we do not have access to true risk since it depends on unknown distribution:(
- And so we estimate true risk via empirical risk!
- Can we do better?

Overview

- 1. True risk vs. empirical risk
- 2. Improving empirical risk minimization
- 3. Model selection (which requires estimating true risk of estimators)
- 4. Estimating true risk of estimators
- 5. Analyzing generalization error via true risk

2. IMPROVING EMPIRICAL RISK MINIMIZATION

Risk Minimization

 Can we improve upon ERM by using better estimates of true risk than empirical risk?

Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
 Bound on deviation from true risk

With high probability, $|R(f) - \widehat{R}_n(f)| \leq C(f)$ $\forall f \in \mathcal{F}$ Concentration bounds (later)

Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda C(f) \right\}$$
Choose by model selection!

Problem: Identify flood plain from noisy satellite images

Noiseless image

Noisy image

True Flood plain (elevation level > x)

Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda C(f) \right\}$$

Choose by model selection!

Problem: Identify flood plain from noisy satellite images

True Flood plain (elevation level > x)

Zero penalty

CV penalty

Theoretical penalty

Occam's Razor

William of Ockham (1285-1349) *Principle of Parsimony:*

"One should not increase, beyond what is necessary, the number of entities required to explain anything."

Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)

Importance of Domain Knowledge

Oil Spill Contamination

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Complexity Regularization

Penalize complex models using **prior knowledge**.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Bayesian viewpoint:

prior probability of f, p(f) $\equiv e^{-C(f)}$

cost is small if f is highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F \equiv uniform prior on $f \in F$, zero probability for other predictors

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \widehat{R}_n(f)$$

Complexity Regularization

Penalize complex models using **prior knowledge**.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Examples: MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

$$\widehat{\theta}_{\mathsf{MAP}} = \arg\max_{\theta} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\theta}_{\text{MAP}} = \arg\max_{\theta} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|$$

How to choose tuning parameter λ? Model Selection

Penalize models based on some norm of regression coefficients

Information Criteria – AIC, BIC

Penalize complex models based on their information content.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
bits needed to describe f (description length)

AIC (Akiake IC)
$$C(f) = \#$$
 parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily – limits complexity of models as # training data n become large

3. MODEL SELECTION

Model Selection

- Model classes with increasing complexity
 - Regularization parameter λ in structural risk estimators
 - Larger values of $\lambda =>$ Lower complexity
 - Question: How to select λ?
 - Regression with polynomials of order k = 0, 1, 2, ...
 - Higher degree => Higher complexity
 - Question: How to select k?
 - k and λ are called "tuning" parameters
- General setup:
 - Define a finite set of model classes
 - Regression: $\{\mathcal{F}_{k=0}, \mathcal{F}_{k=1}, \mathcal{F}_{k=2}\}$
 - Structural risk: $\{\mathcal{F}_{\lambda=0.01},\mathcal{F}_{\lambda=0.1},\mathcal{F}_{\lambda=1}\}$
 - For each model class, find best estimator in model class, and estimate corresponding true risks: $\{\hat{R}(\hat{f}_1), \hat{R}(\hat{f}_2), \hat{R}(\hat{f}_3)\}$
 - Model selection: Select best model class: $rg\min_i \hat{R}(\hat{f}_i)$

Model Selection

Formal setup:

Model Classes $\{\mathcal{F}_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of increasing complexity $\mathcal{F}_1\prec\mathcal{F}_2\prec\dots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_{\lambda}} J(f, \lambda)$$

Stage I: Given λ , estimate \hat{f}_{λ} using

- Empirical risk minimization
- Structural risk minimization
- Complexity regularized risk minimization

Stage II: Select λ for which \hat{f}_{λ} has minimum value of true risk estimated using

- Cross-validation
- Hold-out
- Information-theoretic risk estimates (AIC, BIC)

4. ESTIMATING TRUE RISK OF ESTIMATORS

Estimating True Risk of Estimators

- Suppose we train an estimator \hat{f}_D on data D
- How do we estimate its true risk $R(\widehat{f}_D)$?
- We could use the training data D itself i.e. use empirical risk on training data $\widehat{R}_D(\widehat{f}_D)$
- Not such a good idea
- If the midterm questions are comprised entirely of homework questions, would the midterm grade be an optimistic estimate of the "true" midterm grade?
 - Yes!
- Similarly, using the empirical risk on training data would be an optimistic estimate of the true risk

Algorithmic and Closed Form Estimates of True Risk

- Algorithmic Estimates of True Risk:
 - Empirical Risk
 - Optimistic
 - Evaluating Risk on a holdout set
 - Cross-validation
- Closed form Estimates of True Risk
 - Structural Risk

Hold-out method

Can judge generalization error by using an independent sample of data.

Hold – out procedure:

n data points available

$$D \equiv \{X_i, Y_i\}_{i=1}^n$$

1) Split into two sets: Training dataset

$$D_T = \{X_i, Y_i\}_{i=1}^m$$

Holdout dataset

$$D_T = \{X_i, Y_i\}_{i=1}^m$$
 $D_V = \{X_i, Y_i\}_{i=m+1}^n$

2) Use D_{τ} for training a predictor

$$\widehat{f}_{D_T}$$

3) Use D_V for evaluating the predictor

$$\widehat{R}_{D_V}(\widehat{f}_{D_T})$$

Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Holdout error may be misleading (bad estimate of generalization error) if we get an "unfortunate" split

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for n runs

Cross-validation

Random subsampling

Randomly subsample a fixed fraction αn (0< α <1) of the dataset for validation. Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

Estimating true risk

K-fold/LOO/random sub-sampling:

Error estimate =
$$\frac{1}{K} \sum_{k=1}^{K} \widehat{R}_{V_k}(\widehat{f}_{T_k})$$

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \widehat{R}_{V_k} might deviate a lot from the mean.

Practical Issues in Cross-validation

How to decide the values for K and α ?

- Large K
 - + The bias of the error estimate will be small
 - The variance of the error estimate will be large (few validation pts)
 - The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + The variance of the error estimate will be small (many validation pts)
 - The bias of the error estimate will be large

Common choice: K = 10, $\alpha = 0.1 \odot$

Structural Risk

Add a penalty based on deviation of true and empirical risks:

Suppose we have a bound, that with high probability:

$$|R(f) - \widehat{R}_n(f)| \leq C(f) \quad orall f \in \mathcal{F}$$
 Concentration bounds (later) $R(f) \leq \widehat{R}_n(f) + C(f), \quad orall f \in \mathcal{F}$

Use $\widehat{R}_n(\widehat{f}_n) + C(\widehat{f}_n)$ as a pessimistic estimate of true risk!

5. ANALYZING GENERALIZATION ERROR VIA TRUE RISK

Estimation and Approximation Errors

Estimated Predictor: \widehat{f}_n

Optimal Predictor : f^*

Risk of Estimated Predictor : $R(\widehat{f}_n)$

Above is random due to samples in training data

Expectation of above wrt training data : $\mathbb{E}(R(\widehat{f}_n))$

Risk of Optimal Predictor : $R(f^*)$

Players in the risk minimization story

Estimated Predictor : \widehat{f}_n

Optimal Predictor: f^*

Risk of Estimated Predictor: $R(\widehat{f_n})$

Above is random due to samples in training data

Expectation of above wrt training data : $\mathbb{E}(R(\widehat{f}_n))$

Risk of Optimal Predictor : $R(f^*)$

Interested in the excess risk: $\mathbb{E}(R(\widehat{f}_n)) - R(f^*)$

Behavior of True Risk

Want \widehat{f}_n to be as good as optimal predictor f^*

Behavior of True Risk

$$E\left[R(\widehat{f}_n)\right] - R^* = \underbrace{\left(E[R(\widehat{f}_n)] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}}$$

Overview

- 1. True Risk vs. Empirical Risk
 - Explanation for overfitting
- 2. Improving Empirical Risk Minimization
 - Structural risk estimation (upper bound on true risk)
 - Complexity regularization (prior information, information criteria)
- 3. Estimating True Risk of Estimators
 - Algorithmic Estimators: Hold-out, Cross Validation
 - Closed-Form Estimators: Structural Risk
- 4. Model Selection by Estimating True Risk
 - Given complexity, estimate predictor
 - Select complexity based on estimates of true risk (HO, CV, etc.)
- 5. Analyzing Generalization Error via True Risk
 - Estimation error vs approximation error